3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2025-04-07 09:55:20 +00:00
yosys/frontends/verific/verificsva.cc
Clifford Wolf 25e33d7ab8 Major redesign of Verific SVA importer
Signed-off-by: Clifford Wolf <clifford@clifford.at>
2018-02-27 20:33:15 +01:00

1228 lines
33 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
// SVA Properties Simplified Syntax:
//
// prop:
// not prop
// prop or prop
// prop and prop
// seq |=> prop
// if (expr) prop [else prop]
// prop until prop
// prop implies prop
// prop iff prop
// accept_on (expr) prop
// reject_on (expr) prop
//
// seq:
// expr
// expr ##[N:M] seq
// seq or seq
// seq and seq
// seq intersect seq
// first_match (seq)
// expr throughout seq
// seq within seq
// seq [*N:M]
// expr [=N:M]
// expr [->N:M]
//
// Notes:
// |=> is a placeholder for |-> and |=>
// "until" is a placeholder for all until operators
// ##[N:M], [*N:M], [=N:M], [->N:M] includes ##N, [*N], [=N], [->N]
//
// Currently supported property styles:
// not seq
// seq |=> seq
// seq |=> seq until seq
//
// Currently supported sequence operators:
// ##[N:M]
// [*N:M]
// throughout
#include "kernel/yosys.h"
#include "frontends/verific/verific.h"
USING_YOSYS_NAMESPACE
#ifdef VERIFIC_NAMESPACE
using namespace Verific;
#endif
PRIVATE_NAMESPACE_BEGIN
struct SvaFsmNode
{
vector<pair<int, SigBit>> edges, links;
};
struct SvaFsm
{
Module *module;
SigBit clock;
bool clockpol;
SigBit trigger_sig = State::S1, disable_sig;
SigBit accept_sig = State::Sz, reject_sig = State::Sz;
SigBit throughout_sig = State::S1;
bool materialized = false;
vector<SigBit> disable_stack;
vector<SigBit> throughout_stack;
int startNode, acceptNode, rejectNode;
vector<SvaFsmNode> nodes;
SvaFsm(Module *mod, SigBit clk, bool clkpol, SigBit dis = State::S0, SigBit trig = State::S1)
{
module = mod;
clock = clk;
clockpol = clkpol;
disable_sig = dis;
trigger_sig = trig;
startNode = createNode();
acceptNode = createNode();
rejectNode = createNode();
}
void pushDisable(SigBit sig)
{
log_assert(!materialized);
disable_stack.push_back(disable_sig);
if (disable_sig == State::S0)
disable_sig = sig;
else
disable_sig = module->Or(NEW_ID, disable_sig, sig);
}
void popDisable()
{
log_assert(!materialized);
log_assert(!disable_stack.empty());
disable_sig = disable_stack.back();
disable_stack.pop_back();
}
void pushThroughout(SigBit sig)
{
log_assert(!materialized);
throughout_stack.push_back(throughout_sig);
if (throughout_sig == State::S1)
throughout_sig = sig;
else
throughout_sig = module->And(NEW_ID, throughout_sig, sig);
}
void popThroughout()
{
log_assert(!materialized);
log_assert(!throughout_stack.empty());
throughout_sig = throughout_stack.back();
throughout_stack.pop_back();
}
SigBit getAccept()
{
if (accept_sig != State::Sz)
return accept_sig;
log_assert(!materialized);
accept_sig = module->addWire(NEW_ID);
return accept_sig;
}
SigBit getReject()
{
if (reject_sig != State::Sz)
return reject_sig;
log_assert(!materialized);
reject_sig = module->addWire(NEW_ID);
return reject_sig;
}
int createNode()
{
log_assert(!materialized);
int idx = GetSize(nodes);
nodes.push_back(SvaFsmNode());
return idx;
}
void createEdge(int from_node, int to_node, SigBit ctrl = State::S1)
{
log_assert(!materialized);
log_assert(0 <= from_node && from_node < GetSize(nodes));
log_assert(0 <= to_node && to_node < GetSize(nodes));
if (throughout_sig != State::S1) {
if (ctrl != State::S1)
ctrl = module->And(NEW_ID, throughout_sig, ctrl);
else
ctrl = throughout_sig;
}
nodes[from_node].edges.push_back(make_pair(to_node, ctrl));
}
void createLink(int from_node, int to_node, SigBit ctrl = State::S1)
{
log_assert(!materialized);
log_assert(0 <= from_node && from_node < GetSize(nodes));
log_assert(0 <= to_node && to_node < GetSize(nodes));
if (throughout_sig != State::S1) {
if (ctrl != State::S1)
ctrl = module->And(NEW_ID, throughout_sig, ctrl);
else
ctrl = throughout_sig;
}
nodes[from_node].links.push_back(make_pair(to_node, ctrl));
}
void make_link_order(vector<int> &order, int node, int min)
{
order[node] = std::max(order[node], min);
for (auto &it : nodes[node].links)
make_link_order(order, it.first, order[node]+1);
}
void materialize_ndfsm()
{
log_assert(!materialized);
materialized = true;
vector<SigBit> next_state_sig(GetSize(nodes));
vector<SigBit> state_sig(GetSize(nodes));
// Create state FFs
{
SigBit not_disable = State::S1;
if (disable_sig != State::S0)
not_disable = module->Not(NEW_ID, disable_sig);
for (int i = 0; i < GetSize(nodes); i++)
{
next_state_sig[i] = module->addWire(NEW_ID);
Wire *w = module->addWire(NEW_ID);
w->attributes["\\init"] = Const(0, 1);
state_sig[i] = w;
module->addDff(NEW_ID, clock, next_state_sig[i], state_sig[i], clockpol);
if (i == startNode)
state_sig[i] = module->Or(NEW_ID, state_sig[i], trigger_sig);
if (disable_sig != State::S0)
state_sig[i] = module->And(NEW_ID, state_sig[i], not_disable);
}
}
// Follow Links
{
vector<int> node_order(GetSize(nodes));
vector<vector<int>> order_to_nodes;
for (int i = 0; i < GetSize(nodes); i++)
make_link_order(node_order, i, 0);
for (int i = 0; i < GetSize(nodes); i++) {
if (node_order[i] >= GetSize(order_to_nodes))
order_to_nodes.resize(node_order[i]+1);
order_to_nodes[node_order[i]].push_back(i);
}
for (int order = 0; order < GetSize(order_to_nodes); order++)
for (int node : order_to_nodes[order])
{
for (auto &it : nodes[node].links)
{
int target = it.first;
SigBit ctrl = state_sig[node];
if (it.second != State::S1)
ctrl = module->And(NEW_ID, ctrl, it.second);
state_sig[target] = module->Or(NEW_ID, state_sig[target], ctrl);
}
}
}
// Construct activations
{
vector<SigSpec> activate_sig(GetSize(nodes));
vector<SigBit> activate_bit(GetSize(nodes));
for (int i = 0; i < GetSize(nodes); i++) {
for (auto &it : nodes[i].edges)
activate_sig[it.first].append(module->And(NEW_ID, state_sig[i], it.second));
}
for (int i = 0; i < GetSize(nodes); i++) {
if (GetSize(activate_sig[i]) == 0)
activate_bit[i] = State::S0;
else if (GetSize(activate_sig[i]) == 1)
activate_bit[i] = activate_sig[i];
else
activate_bit[i] = module->ReduceOr(NEW_ID, activate_sig[i]);
}
if (activate_bit[rejectNode] != State::S0)
{
SigBit not_rej = module->Not(NEW_ID, next_state_sig[rejectNode]);
for (int i = 0; i < GetSize(nodes); i++)
if (i != rejectNode && activate_bit[i] != State::S0)
activate_bit[i] = module->And(NEW_ID, activate_bit[i], not_rej);
activate_bit[rejectNode] = State::S0;
}
for (int i = 0; i < GetSize(nodes); i++) {
module->connect(next_state_sig[i], activate_bit[i]);
}
}
// Construct output signals
if (accept_sig != State::Sz) {
module->connect(accept_sig, state_sig[acceptNode]);
}
if (reject_sig != State::Sz)
{
SigBit fsm_active = module->ReduceOr(NEW_ID, state_sig);
SigBit fsm_next_active = module->ReduceOr(NEW_ID, next_state_sig);
module->addEq(NEW_ID, {state_sig[acceptNode], fsm_next_active, fsm_active}, SigSpec(1, 3), reject_sig);
}
}
void materialize_dfsm()
{
// FIXME
log_abort();
}
bool is_linear()
{
for (int i = 0; i < GetSize(nodes); i++)
if (GetSize(nodes[i].edges) + GetSize(nodes[i].links) > 1)
return false;
return true;
}
void dump()
{
log("-----------\n");
for (int i = 0; i < GetSize(nodes); i++)
{
log("node %d:\n", i);
if (i == startNode)
log(" startNode\n");
if (i == rejectNode)
log(" rejectNode\n");
if (i == acceptNode)
log(" acceptNode\n");
for (auto &it : nodes[i].edges) {
if (it.second != State::S1)
log(" egde %s -> %d\n", log_signal(it.second), it.first);
else
log(" egde -> %d\n", it.first);
}
for (auto &it : nodes[i].links) {
if (it.second != State::S1)
log(" link %s -> %d\n", log_signal(it.second), it.first);
else
log(" link -> %d\n", it.first);
}
}
log("-----------\n");
}
};
PRIVATE_NAMESPACE_END
YOSYS_NAMESPACE_BEGIN
pool<int> verific_sva_prims = {
// Copy&paste from Verific 3.16_484_32_170630 Netlist.h
PRIM_SVA_IMMEDIATE_ASSERT, PRIM_SVA_ASSERT, PRIM_SVA_COVER, PRIM_SVA_ASSUME,
PRIM_SVA_EXPECT, PRIM_SVA_POSEDGE, PRIM_SVA_NOT, PRIM_SVA_FIRST_MATCH,
PRIM_SVA_ENDED, PRIM_SVA_MATCHED, PRIM_SVA_CONSECUTIVE_REPEAT,
PRIM_SVA_NON_CONSECUTIVE_REPEAT, PRIM_SVA_GOTO_REPEAT,
PRIM_SVA_MATCH_ITEM_TRIGGER, PRIM_SVA_AND, PRIM_SVA_OR, PRIM_SVA_SEQ_AND,
PRIM_SVA_SEQ_OR, PRIM_SVA_EVENT_OR, PRIM_SVA_OVERLAPPED_IMPLICATION,
PRIM_SVA_NON_OVERLAPPED_IMPLICATION, PRIM_SVA_OVERLAPPED_FOLLOWED_BY,
PRIM_SVA_NON_OVERLAPPED_FOLLOWED_BY, PRIM_SVA_INTERSECT, PRIM_SVA_THROUGHOUT,
PRIM_SVA_WITHIN, PRIM_SVA_AT, PRIM_SVA_DISABLE_IFF, PRIM_SVA_SAMPLED,
PRIM_SVA_ROSE, PRIM_SVA_FELL, PRIM_SVA_STABLE, PRIM_SVA_PAST,
PRIM_SVA_MATCH_ITEM_ASSIGN, PRIM_SVA_SEQ_CONCAT, PRIM_SVA_IF,
PRIM_SVA_RESTRICT, PRIM_SVA_TRIGGERED, PRIM_SVA_STRONG, PRIM_SVA_WEAK,
PRIM_SVA_NEXTTIME, PRIM_SVA_S_NEXTTIME, PRIM_SVA_ALWAYS, PRIM_SVA_S_ALWAYS,
PRIM_SVA_S_EVENTUALLY, PRIM_SVA_EVENTUALLY, PRIM_SVA_UNTIL, PRIM_SVA_S_UNTIL,
PRIM_SVA_UNTIL_WITH, PRIM_SVA_S_UNTIL_WITH, PRIM_SVA_IMPLIES, PRIM_SVA_IFF,
PRIM_SVA_ACCEPT_ON, PRIM_SVA_REJECT_ON, PRIM_SVA_SYNC_ACCEPT_ON,
PRIM_SVA_SYNC_REJECT_ON, PRIM_SVA_GLOBAL_CLOCKING_DEF,
PRIM_SVA_GLOBAL_CLOCKING_REF, PRIM_SVA_IMMEDIATE_ASSUME,
PRIM_SVA_IMMEDIATE_COVER, OPER_SVA_SAMPLED, OPER_SVA_STABLE
};
struct VerificSvaImporter
{
VerificImporter *importer = nullptr;
Module *module = nullptr;
Netlist *netlist = nullptr;
Instance *root = nullptr;
SigBit clock = State::Sx;
bool clock_posedge = false;
SigBit disable_iff = State::S0;
bool mode_assert = false;
bool mode_assume = false;
bool mode_cover = false;
bool eventually = false;
bool did_something = false;
Instance *net_to_ast_driver(Net *n)
{
if (n == nullptr)
return nullptr;
if (n->IsMultipleDriven())
return nullptr;
Instance *inst = n->Driver();
if (inst == nullptr)
return nullptr;
if (!verific_sva_prims.count(inst->Type()))
return nullptr;
if (inst->Type() == PRIM_SVA_ROSE || inst->Type() == PRIM_SVA_FELL ||
inst->Type() == PRIM_SVA_STABLE || inst->Type() == OPER_SVA_STABLE || inst->Type() == PRIM_SVA_PAST)
return nullptr;
return inst;
}
Instance *get_ast_input(Instance *inst) { return net_to_ast_driver(inst->GetInput()); }
Instance *get_ast_input1(Instance *inst) { return net_to_ast_driver(inst->GetInput1()); }
Instance *get_ast_input2(Instance *inst) { return net_to_ast_driver(inst->GetInput2()); }
Instance *get_ast_input3(Instance *inst) { return net_to_ast_driver(inst->GetInput3()); }
Instance *get_ast_control(Instance *inst) { return net_to_ast_driver(inst->GetControl()); }
// ----------------------------------------------------------
// SVA AST Types
struct svatype_t
{
bool flag_linear = true;
};
std::map<Instance*, svatype_t> svatype_cache;
void svatype_visit_child(svatype_t &entry, Instance *inst)
{
if (inst == nullptr)
return;
const svatype_t &child_entry = svatype(inst);
entry.flag_linear &= child_entry.flag_linear;
}
const svatype_t &svatype(Instance *inst)
{
if (svatype_cache.count(inst) != 0)
return svatype_cache.at(inst);
svatype_t &entry = svatype_cache[inst];
if (inst == nullptr)
return entry;
if (inst->Type() == PRIM_SVA_SEQ_CONCAT || inst->Type() == PRIM_SVA_CONSECUTIVE_REPEAT)
{
const char *sva_low_s = inst->GetAttValue("sva:low");
const char *sva_high_s = inst->GetAttValue("sva:high");
int sva_low = atoi(sva_low_s);
int sva_high = atoi(sva_high_s);
bool sva_inf = !strcmp(sva_high_s, "$");
if (sva_inf || sva_low != sva_high)
entry.flag_linear = false;
}
svatype_visit_child(entry, get_ast_input(inst));
svatype_visit_child(entry, get_ast_input1(inst));
svatype_visit_child(entry, get_ast_input2(inst));
svatype_visit_child(entry, get_ast_input3(inst));
svatype_visit_child(entry, get_ast_control(inst));
return entry;
}
// ----------------------------------------------------------
// SVA Preprocessor
Net *rewrite_input(Instance *inst) { return rewrite(get_ast_input(inst), inst->GetInput()); }
Net *rewrite_input1(Instance *inst) { return rewrite(get_ast_input1(inst), inst->GetInput1()); }
Net *rewrite_input2(Instance *inst) { return rewrite(get_ast_input2(inst), inst->GetInput2()); }
Net *rewrite_input3(Instance *inst) { return rewrite(get_ast_input3(inst), inst->GetInput3()); }
Net *rewrite_control(Instance *inst) { return rewrite(get_ast_control(inst), inst->GetControl()); }
Net *rewrite(Instance *inst, Net *default_net = nullptr)
{
if (inst == nullptr)
return default_net;
if (inst->Type() == PRIM_SVA_ASSERT || inst->Type() == PRIM_SVA_COVER || inst->Type() == PRIM_SVA_ASSUME ||
inst->Type() == PRIM_SVA_IMMEDIATE_ASSERT || inst->Type() == PRIM_SVA_IMMEDIATE_COVER || inst->Type() == PRIM_SVA_IMMEDIATE_ASSUME) {
Net *new_net = rewrite(get_ast_input(inst));
if (new_net) {
inst->Disconnect(inst->View()->GetInput());
inst->Connect(inst->View()->GetInput(), new_net);
}
return default_net;
}
if (inst->Type() == PRIM_SVA_AT || inst->Type() == PRIM_SVA_DISABLE_IFF) {
Net *new_net = rewrite(get_ast_input2(inst));
if (new_net) {
inst->Disconnect(inst->View()->GetInput2());
inst->Connect(inst->View()->GetInput2(), new_net);
}
return default_net;
}
if (inst->Type() == PRIM_SVA_NON_OVERLAPPED_IMPLICATION)
{
if (mode_cover) {
did_something = true;
Net *new_in1 = rewrite_input1(inst);
Net *new_in2 = rewrite_input2(inst);
return netlist->SvaBinary(PRIM_SVA_SEQ_CONCAT, new_in1, new_in2, inst->Linefile());
}
return default_net;
}
if (inst->Type() == PRIM_SVA_NOT)
{
if (mode_assert || mode_assume) {
did_something = true;
Net *new_in = rewrite_input(inst);
Net *net_zero = netlist->Gnd(inst->Linefile());
return netlist->SvaBinary(PRIM_SVA_OVERLAPPED_IMPLICATION, new_in, net_zero, inst->Linefile());
}
return default_net;
}
return default_net;
}
void rewrite()
{
netlist = root->Owner();
do {
did_something = false;
rewrite(root);
} while (did_something);
}
// ----------------------------------------------------------
// SVA Importer
int parse_sequence(SvaFsm *fsm, int start_node, Net *net)
{
Instance *inst = net_to_ast_driver(net);
if (inst == nullptr) {
int node = fsm->createNode();
fsm->createLink(start_node, node, importer->net_map_at(net));
return node;
}
if (inst->Type() == PRIM_SVA_SEQ_CONCAT)
{
const char *sva_low_s = inst->GetAttValue("sva:low");
const char *sva_high_s = inst->GetAttValue("sva:high");
int sva_low = atoi(sva_low_s);
int sva_high = atoi(sva_high_s);
bool sva_inf = !strcmp(sva_high_s, "$");
int node = parse_sequence(fsm, start_node, inst->GetInput1());
for (int i = 0; i < sva_low; i++) {
int next_node = fsm->createNode();
fsm->createEdge(node, next_node);
node = next_node;
}
if (sva_inf)
{
fsm->createEdge(node, node);
}
else
{
for (int i = sva_low; i < sva_high; i++)
{
int next_node = fsm->createNode();
fsm->createEdge(node, next_node);
fsm->createLink(node, next_node);
node = next_node;
}
}
node = parse_sequence(fsm, node, inst->GetInput2());
return node;
}
if (inst->Type() == PRIM_SVA_CONSECUTIVE_REPEAT)
{
const char *sva_low_s = inst->GetAttValue("sva:low");
const char *sva_high_s = inst->GetAttValue("sva:high");
int sva_low = atoi(sva_low_s);
int sva_high = atoi(sva_high_s);
bool sva_inf = !strcmp(sva_high_s, "$");
int node = parse_sequence(fsm, start_node, inst->GetInput());
for (int i = 1; i < sva_low; i++)
{
int next_node = fsm->createNode();
fsm->createEdge(node, next_node);
node = parse_sequence(fsm, next_node, inst->GetInput());
}
if (sva_inf)
{
int next_node = fsm->createNode();
fsm->createEdge(node, next_node);
next_node = parse_sequence(fsm, next_node, inst->GetInput());
fsm->createLink(next_node, node);
}
else
{
for (int i = sva_low; i < sva_high; i++)
{
int next_node = fsm->createNode();
fsm->createEdge(node, next_node);
next_node = parse_sequence(fsm, next_node, inst->GetInput());
fsm->createLink(node, next_node);
node = next_node;
}
}
return node;
}
if (inst->Type() == PRIM_SVA_THROUGHOUT)
{
log_assert(get_ast_input1(inst) == nullptr);
SigBit expr = importer->net_map_at(inst->GetInput1());
fsm->pushThroughout(expr);
int node = parse_sequence(fsm, start_node, inst->GetInput2());
fsm->popThroughout();
return node;
}
// Handle unsupported primitives
if (!importer->mode_keep)
log_error("Verific SVA primitive %s (%s) is currently unsupported in this context.\n", inst->View()->Owner()->Name(), inst->Name());
log_warning("Verific SVA primitive %s (%s) is currently unsupported in this context.\n", inst->View()->Owner()->Name(), inst->Name());
return start_node;
}
void import()
{
module = importer->module;
netlist = root->Owner();
RTLIL::IdString root_name = module->uniquify(importer->mode_names || root->IsUserDeclared() ? RTLIL::escape_id(root->Name()) : NEW_ID);
// parse SVA property clock event
Instance *at_node = get_ast_input(root);
// asynchronous immediate assertion/assumption/cover
if (at_node == nullptr && (root->Type() == PRIM_SVA_IMMEDIATE_ASSERT ||
root->Type() == PRIM_SVA_IMMEDIATE_COVER || root->Type() == PRIM_SVA_IMMEDIATE_ASSUME))
{
SigSpec sig_a = importer->net_map_at(root->GetInput());
RTLIL::Cell *c = nullptr;
if (eventually) {
if (mode_assert) c = module->addLive(root_name, sig_a, State::S1);
if (mode_assume) c = module->addFair(root_name, sig_a, State::S1);
} else {
if (mode_assert) c = module->addAssert(root_name, sig_a, State::S1);
if (mode_assume) c = module->addAssume(root_name, sig_a, State::S1);
if (mode_cover) c = module->addCover(root_name, sig_a, State::S1);
}
importer->import_attributes(c->attributes, root);
return;
}
log_assert(at_node && at_node->Type() == PRIM_SVA_AT);
VerificClockEdge clock_edge(importer, get_ast_input1(at_node));
clock = clock_edge.clock_sig;
clock_posedge = clock_edge.posedge;
// parse disable_iff expression
Net *sequence_net = at_node->GetInput2();
while (1)
{
Instance *sequence_node = net_to_ast_driver(sequence_net);
if (sequence_node && sequence_node->Type() == PRIM_SVA_S_EVENTUALLY) {
eventually = true;
sequence_net = sequence_node->GetInput();
continue;
}
if (sequence_node && sequence_node->Type() == PRIM_SVA_DISABLE_IFF) {
disable_iff = importer->net_map_at(sequence_node->GetInput1());
sequence_net = sequence_node->GetInput2();
continue;
}
break;
}
// parse SVA sequence into trigger signal
SigBit prop_okay;
Instance *inst = net_to_ast_driver(sequence_net);
if (inst == nullptr)
{
prop_okay = importer->net_map_at(sequence_net);
}
else
if (inst->Type() == PRIM_SVA_OVERLAPPED_IMPLICATION ||
inst->Type() == PRIM_SVA_NON_OVERLAPPED_IMPLICATION)
{
Net *antecedent_net = inst->GetInput1();
Net *consequent_net = inst->GetInput2();
int node;
SvaFsm antecedent_fsm(module, clock, clock_posedge, disable_iff);
node = parse_sequence(&antecedent_fsm, antecedent_fsm.startNode, antecedent_net);
if (inst->Type() == PRIM_SVA_NON_OVERLAPPED_IMPLICATION) {
int next_node = antecedent_fsm.createNode();
antecedent_fsm.createEdge(node, next_node);
node = next_node;
}
antecedent_fsm.createLink(node, antecedent_fsm.acceptNode);
SigBit antecedent_accept = antecedent_fsm.getAccept();
antecedent_fsm.materialize_ndfsm();
antecedent_fsm.dump();
SvaFsm consequent_fsm(module, clock, clock_posedge, disable_iff, antecedent_accept);
node = parse_sequence(&consequent_fsm, consequent_fsm.startNode, consequent_net);
consequent_fsm.createLink(node, consequent_fsm.acceptNode);
SigBit consequent_reject = consequent_fsm.getReject();
prop_okay = module->Not(NEW_ID, consequent_reject);
if (consequent_fsm.is_linear())
consequent_fsm.materialize_ndfsm();
else
log_error("Currently only linear sequences are allowed as impliciation consequent.\n");
}
else
{
// Handle unsupported primitives
if (!importer->mode_keep)
log_error("Verific SVA primitive %s (%s) is currently unsupported in this context.\n", inst->View()->Owner()->Name(), inst->Name());
log_warning("Verific SVA primitive %s (%s) is currently unsupported in this context.\n", inst->View()->Owner()->Name(), inst->Name());
return;
}
// add final FF stage
Wire *prop_okay_q = module->addWire(NEW_ID);
prop_okay_q->attributes["\\init"] = Const(mode_cover ? 0 : 1, 1);
module->addDff(NEW_ID, clock, prop_okay, prop_okay_q, clock_posedge);
// generate assert/assume/cover cell
RTLIL::Cell *c = nullptr;
if (eventually) {
log_error("No support for eventually in Verific SVA bindings yet.\n");
// if (mode_assert) c = module->addLive(root_name, prop_okay_q, prop_start_q);
// if (mode_assume) c = module->addFair(root_name, prop_okay_q, prop_start_q);
} else {
if (mode_assert) c = module->addAssert(root_name, prop_okay_q, State::S1);
if (mode_assume) c = module->addAssume(root_name, prop_okay_q, State::S1);
if (mode_cover) c = module->addCover(root_name, prop_okay_q, State::S1);
}
importer->import_attributes(c->attributes, root);
}
#if 0
// ----------------------------------------------------------
// Old SVA Importer
vector<SigBit> sva_until_list_inclusive;
vector<SigBit> sva_until_list_exclusive;
vector<vector<SigBit>*> sva_sequence_alive_list;
struct sequence_t {
int length = 0;
SigBit sig_a = State::S1;
SigBit sig_en = State::S1;
};
void sequence_cond(sequence_t &seq, SigBit cond)
{
seq.sig_a = module->And(NEW_ID, seq.sig_a, cond);
}
void sequence_ff(sequence_t &seq)
{
if (disable_iff != State::S0)
seq.sig_en = module->Mux(NEW_ID, seq.sig_en, State::S0, disable_iff);
for (auto &expr : sva_until_list_exclusive)
seq.sig_a = module->LogicAnd(NEW_ID, seq.sig_a, expr);
Wire *sig_a_q = module->addWire(NEW_ID);
sig_a_q->attributes["\\init"] = Const(0, 1);
Wire *sig_en_q = module->addWire(NEW_ID);
sig_en_q->attributes["\\init"] = Const(0, 1);
for (auto list : sva_sequence_alive_list)
list->push_back(module->LogicAnd(NEW_ID, seq.sig_a, seq.sig_en));
module->addDff(NEW_ID, clock, seq.sig_a, sig_a_q, clock_posedge);
module->addDff(NEW_ID, clock, seq.sig_en, sig_en_q, clock_posedge);
if (seq.length >= 0)
seq.length++;
seq.sig_a = sig_a_q;
seq.sig_en = sig_en_q;
for (auto &expr : sva_until_list_inclusive)
seq.sig_a = module->LogicAnd(NEW_ID, seq.sig_a, expr);
}
void combine_seq(sequence_t &seq, const sequence_t &other_seq)
{
if (seq.length != other_seq.length)
seq.length = -1;
SigBit filtered_a = module->LogicAnd(NEW_ID, seq.sig_a, seq.sig_en);
SigBit other_filtered_a = module->LogicAnd(NEW_ID, other_seq.sig_a, other_seq.sig_en);
seq.sig_a = module->LogicOr(NEW_ID, filtered_a, other_filtered_a);
seq.sig_en = module->LogicOr(NEW_ID, seq.sig_en, other_seq.sig_en);
}
void combine_seq(sequence_t &seq, SigBit other_a, SigBit other_en)
{
SigBit filtered_a = module->LogicAnd(NEW_ID, seq.sig_a, seq.sig_en);
SigBit other_filtered_a = module->LogicAnd(NEW_ID, other_a, other_en);
seq.length = -1;
seq.sig_a = module->LogicOr(NEW_ID, filtered_a, other_filtered_a);
seq.sig_en = module->LogicOr(NEW_ID, seq.sig_en, other_en);
}
SigBit make_temporal_one_hot(SigBit enable = State::S1, SigBit *latched = nullptr)
{
Wire *state = module->addWire(NEW_ID);
state->attributes["\\init"] = State::S0;
SigBit any = module->Anyseq(NEW_ID);
if (enable != State::S1)
any = module->LogicAnd(NEW_ID, any, enable);
SigBit next_state = module->LogicOr(NEW_ID, state, any);
module->addDff(NEW_ID, clock, next_state, state, clock_posedge);
if (latched != nullptr)
*latched = state;
SigBit not_state = module->LogicNot(NEW_ID, state);
return module->LogicAnd(NEW_ID, next_state, not_state);
}
SigBit make_permanent_latch(SigBit enable, bool async = false)
{
Wire *state = module->addWire(NEW_ID);
state->attributes["\\init"] = State::S0;
SigBit next_state = module->LogicOr(NEW_ID, state, enable);
module->addDff(NEW_ID, clock, next_state, state, clock_posedge);
return async ? next_state : state;
}
void parse_sequence(sequence_t &seq, Net *n)
{
Instance *inst = net_to_ast_driver(n);
// Regular expression
if (inst == nullptr) {
sequence_cond(seq, importer->net_map_at(n));
return;
}
// SVA Primitives
if (inst->Type() == PRIM_SVA_OVERLAPPED_IMPLICATION ||
inst->Type() == PRIM_SVA_NON_OVERLAPPED_IMPLICATION)
{
Instance *consequent = get_ast_input2(inst);
bool linear_consequent = svatype(consequent).flag_linear;
parse_sequence(seq, inst->GetInput1());
seq.sig_en = module->And(NEW_ID, seq.sig_en, seq.sig_a);
if (inst->Type() == PRIM_SVA_NON_OVERLAPPED_IMPLICATION)
sequence_ff(seq);
if (!linear_consequent && mode_assume)
log_error("Non-linear consequent is currently not supported in SVA assumptions.\n");
if (linear_consequent)
{
parse_sequence(seq, inst->GetInput2());
}
else
{
SigBit activated;
seq.sig_en = make_temporal_one_hot(seq.sig_en, &activated);
SigBit pass_latch_en = module->addWire(NEW_ID);
SigBit pass_latch = make_permanent_latch(pass_latch_en, true);
vector<SigBit> alive_list;
sva_sequence_alive_list.push_back(&alive_list);
parse_sequence(seq, inst->GetInput2());
sva_sequence_alive_list.pop_back();
module->addLogicAnd(NEW_ID, seq.sig_a, seq.sig_en, pass_latch_en);
alive_list.push_back(pass_latch);
seq.length = -1;
seq.sig_a = module->ReduceOr(NEW_ID, SigSpec(alive_list));
seq.sig_en = module->ReduceOr(NEW_ID, activated);
}
return;
}
if (inst->Type() == PRIM_SVA_SEQ_CONCAT)
{
const char *sva_low_s = inst->GetAttValue("sva:low");
const char *sva_high_s = inst->GetAttValue("sva:high");
int sva_low = atoi(sva_low_s);
int sva_high = atoi(sva_high_s);
bool sva_inf = !strcmp(sva_high_s, "$");
parse_sequence(seq, inst->GetInput1());
for (int i = 0; i < sva_low; i++)
sequence_ff(seq);
if (sva_inf)
{
SigBit latched_a = module->addWire(NEW_ID);
SigBit latched_en = module->addWire(NEW_ID);
combine_seq(seq, latched_a, latched_en);
sequence_t seq_latched = seq;
sequence_ff(seq_latched);
module->connect(latched_a, seq_latched.sig_a);
module->connect(latched_en, seq_latched.sig_en);
}
else
{
for (int i = sva_low; i < sva_high; i++)
{
sequence_t last_seq = seq;
sequence_ff(seq);
combine_seq(seq, last_seq);
}
}
parse_sequence(seq, inst->GetInput2());
return;
}
if (inst->Type() == PRIM_SVA_CONSECUTIVE_REPEAT)
{
const char *sva_low_s = inst->GetAttValue("sva:low");
const char *sva_high_s = inst->GetAttValue("sva:high");
int sva_low = atoi(sva_low_s);
int sva_high = atoi(sva_high_s);
bool sva_inf = !strcmp(sva_high_s, "$");
parse_sequence(seq, inst->GetInput());
for (int i = 1; i < sva_low; i++) {
sequence_ff(seq);
parse_sequence(seq, inst->GetInput());
}
if (sva_inf)
{
SigBit latched_a = module->addWire(NEW_ID);
SigBit latched_en = module->addWire(NEW_ID);
combine_seq(seq, latched_a, latched_en);
sequence_t seq_latched = seq;
sequence_ff(seq_latched);
parse_sequence(seq_latched, inst->GetInput());
module->connect(latched_a, seq_latched.sig_a);
module->connect(latched_en, seq_latched.sig_en);
}
else
{
for (int i = sva_low; i < sva_high; i++)
{
sequence_t last_seq = seq;
sequence_ff(seq);
parse_sequence(seq, inst->GetInput());
combine_seq(seq, last_seq);
}
}
return;
}
if (inst->Type() == PRIM_SVA_THROUGHOUT || inst->Type() == PRIM_SVA_UNTIL || inst->Type() == PRIM_SVA_S_UNTIL ||
inst->Type() == PRIM_SVA_UNTIL_WITH || inst->Type() == PRIM_SVA_S_UNTIL_WITH)
{
bool flag_with = inst->Type() == PRIM_SVA_THROUGHOUT || inst->Type() == PRIM_SVA_UNTIL_WITH || inst->Type() == PRIM_SVA_S_UNTIL_WITH;
if (get_ast_input1(inst) != nullptr)
log_error("Currently only simple expression properties are supported as first operand to SVA_UNTIL.\n");
SigBit expr = importer->net_map_at(inst->GetInput1());
if (flag_with)
{
seq.sig_a = module->LogicAnd(NEW_ID, seq.sig_a, expr);
sva_until_list_inclusive.push_back(expr);
parse_sequence(seq, inst->GetInput2());
sva_until_list_inclusive.pop_back();
}
else
{
sva_until_list_exclusive.push_back(expr);
parse_sequence(seq, inst->GetInput2());
sva_until_list_exclusive.pop_back();
}
return;
}
// Handle unsupported primitives
if (!importer->mode_keep)
log_error("Verific SVA primitive %s (%s) is currently unsupported in this context.\n", inst->View()->Owner()->Name(), inst->Name());
log_warning("Verific SVA primitive %s (%s) is currently unsupported in this context.\n", inst->View()->Owner()->Name(), inst->Name());
}
void import()
{
module = importer->module;
netlist = root->Owner();
RTLIL::IdString root_name = module->uniquify(importer->mode_names || root->IsUserDeclared() ? RTLIL::escape_id(root->Name()) : NEW_ID);
// parse SVA property clock event
Instance *at_node = get_ast_input(root);
// asynchronous immediate assertion/assumption/cover
if (at_node == nullptr && (root->Type() == PRIM_SVA_IMMEDIATE_ASSERT ||
root->Type() == PRIM_SVA_IMMEDIATE_COVER || root->Type() == PRIM_SVA_IMMEDIATE_ASSUME))
{
SigSpec sig_a = importer->net_map_at(root->GetInput());
RTLIL::Cell *c = nullptr;
if (eventually) {
if (mode_assert) c = module->addLive(root_name, sig_a, State::S1);
if (mode_assume) c = module->addFair(root_name, sig_a, State::S1);
} else {
if (mode_assert) c = module->addAssert(root_name, sig_a, State::S1);
if (mode_assume) c = module->addAssume(root_name, sig_a, State::S1);
if (mode_cover) c = module->addCover(root_name, sig_a, State::S1);
}
importer->import_attributes(c->attributes, root);
return;
}
log_assert(at_node && at_node->Type() == PRIM_SVA_AT);
VerificClockEdge clock_edge(importer, get_ast_input1(at_node));
clock = clock_edge.clock_sig;
clock_posedge = clock_edge.posedge;
// parse disable_iff expression
Net *sequence_net = at_node->GetInput2();
while (1)
{
Instance *sequence_node = net_to_ast_driver(sequence_net);
if (sequence_node && sequence_node->Type() == PRIM_SVA_S_EVENTUALLY) {
eventually = true;
sequence_net = sequence_node->GetInput();
continue;
}
if (sequence_node && sequence_node->Type() == PRIM_SVA_DISABLE_IFF) {
disable_iff = importer->net_map_at(sequence_node->GetInput1());
sequence_net = sequence_node->GetInput2();
continue;
}
break;
}
// parse SVA sequence into trigger signal
sequence_t seq;
parse_sequence(seq, sequence_net);
sequence_ff(seq);
// generate assert/assume/cover cell
RTLIL::Cell *c = nullptr;
if (eventually) {
if (mode_assert) c = module->addLive(root_name, seq.sig_a, seq.sig_en);
if (mode_assume) c = module->addFair(root_name, seq.sig_a, seq.sig_en);
} else {
if (mode_assert) c = module->addAssert(root_name, seq.sig_a, seq.sig_en);
if (mode_assume) c = module->addAssume(root_name, seq.sig_a, seq.sig_en);
if (mode_cover) c = module->addCover(root_name, seq.sig_a, seq.sig_en);
}
importer->import_attributes(c->attributes, root);
}
#endif
};
void svapp_assert(Instance *inst)
{
VerificSvaImporter worker;
worker.root = inst;
worker.mode_assert = true;
worker.rewrite();
}
void svapp_assume(Instance *inst)
{
VerificSvaImporter worker;
worker.root = inst;
worker.mode_assume = true;
worker.rewrite();
}
void svapp_cover(Instance *inst)
{
VerificSvaImporter worker;
worker.root = inst;
worker.mode_cover = true;
worker.rewrite();
}
void import_sva_assert(VerificImporter *importer, Instance *inst)
{
VerificSvaImporter worker;
worker.importer = importer;
worker.root = inst;
worker.mode_assert = true;
worker.import();
}
void import_sva_assume(VerificImporter *importer, Instance *inst)
{
VerificSvaImporter worker;
worker.importer = importer;
worker.root = inst;
worker.mode_assume = true;
worker.import();
}
void import_sva_cover(VerificImporter *importer, Instance *inst)
{
VerificSvaImporter worker;
worker.importer = importer;
worker.root = inst;
worker.mode_cover = true;
worker.import();
}
YOSYS_NAMESPACE_END