mirror of
https://github.com/YosysHQ/yosys
synced 2025-04-07 09:55:20 +00:00
1228 lines
33 KiB
C++
1228 lines
33 KiB
C++
/*
|
|
* yosys -- Yosys Open SYnthesis Suite
|
|
*
|
|
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
|
|
// SVA Properties Simplified Syntax:
|
|
//
|
|
// prop:
|
|
// not prop
|
|
// prop or prop
|
|
// prop and prop
|
|
// seq |=> prop
|
|
// if (expr) prop [else prop]
|
|
// prop until prop
|
|
// prop implies prop
|
|
// prop iff prop
|
|
// accept_on (expr) prop
|
|
// reject_on (expr) prop
|
|
//
|
|
// seq:
|
|
// expr
|
|
// expr ##[N:M] seq
|
|
// seq or seq
|
|
// seq and seq
|
|
// seq intersect seq
|
|
// first_match (seq)
|
|
// expr throughout seq
|
|
// seq within seq
|
|
// seq [*N:M]
|
|
// expr [=N:M]
|
|
// expr [->N:M]
|
|
//
|
|
// Notes:
|
|
// |=> is a placeholder for |-> and |=>
|
|
// "until" is a placeholder for all until operators
|
|
// ##[N:M], [*N:M], [=N:M], [->N:M] includes ##N, [*N], [=N], [->N]
|
|
//
|
|
// Currently supported property styles:
|
|
// not seq
|
|
// seq |=> seq
|
|
// seq |=> seq until seq
|
|
//
|
|
// Currently supported sequence operators:
|
|
// ##[N:M]
|
|
// [*N:M]
|
|
// throughout
|
|
|
|
|
|
#include "kernel/yosys.h"
|
|
#include "frontends/verific/verific.h"
|
|
|
|
USING_YOSYS_NAMESPACE
|
|
|
|
#ifdef VERIFIC_NAMESPACE
|
|
using namespace Verific;
|
|
#endif
|
|
|
|
PRIVATE_NAMESPACE_BEGIN
|
|
|
|
struct SvaFsmNode
|
|
{
|
|
vector<pair<int, SigBit>> edges, links;
|
|
};
|
|
|
|
struct SvaFsm
|
|
{
|
|
Module *module;
|
|
SigBit clock;
|
|
bool clockpol;
|
|
|
|
SigBit trigger_sig = State::S1, disable_sig;
|
|
SigBit accept_sig = State::Sz, reject_sig = State::Sz;
|
|
SigBit throughout_sig = State::S1;
|
|
bool materialized = false;
|
|
|
|
vector<SigBit> disable_stack;
|
|
vector<SigBit> throughout_stack;
|
|
|
|
int startNode, acceptNode, rejectNode;
|
|
vector<SvaFsmNode> nodes;
|
|
|
|
SvaFsm(Module *mod, SigBit clk, bool clkpol, SigBit dis = State::S0, SigBit trig = State::S1)
|
|
{
|
|
module = mod;
|
|
clock = clk;
|
|
clockpol = clkpol;
|
|
disable_sig = dis;
|
|
trigger_sig = trig;
|
|
|
|
startNode = createNode();
|
|
acceptNode = createNode();
|
|
rejectNode = createNode();
|
|
}
|
|
|
|
void pushDisable(SigBit sig)
|
|
{
|
|
log_assert(!materialized);
|
|
|
|
disable_stack.push_back(disable_sig);
|
|
|
|
if (disable_sig == State::S0)
|
|
disable_sig = sig;
|
|
else
|
|
disable_sig = module->Or(NEW_ID, disable_sig, sig);
|
|
}
|
|
|
|
void popDisable()
|
|
{
|
|
log_assert(!materialized);
|
|
log_assert(!disable_stack.empty());
|
|
|
|
disable_sig = disable_stack.back();
|
|
disable_stack.pop_back();
|
|
}
|
|
|
|
void pushThroughout(SigBit sig)
|
|
{
|
|
log_assert(!materialized);
|
|
|
|
throughout_stack.push_back(throughout_sig);
|
|
|
|
if (throughout_sig == State::S1)
|
|
throughout_sig = sig;
|
|
else
|
|
throughout_sig = module->And(NEW_ID, throughout_sig, sig);
|
|
}
|
|
|
|
void popThroughout()
|
|
{
|
|
log_assert(!materialized);
|
|
log_assert(!throughout_stack.empty());
|
|
|
|
throughout_sig = throughout_stack.back();
|
|
throughout_stack.pop_back();
|
|
}
|
|
|
|
SigBit getAccept()
|
|
{
|
|
if (accept_sig != State::Sz)
|
|
return accept_sig;
|
|
|
|
log_assert(!materialized);
|
|
accept_sig = module->addWire(NEW_ID);
|
|
return accept_sig;
|
|
}
|
|
|
|
SigBit getReject()
|
|
{
|
|
if (reject_sig != State::Sz)
|
|
return reject_sig;
|
|
|
|
log_assert(!materialized);
|
|
reject_sig = module->addWire(NEW_ID);
|
|
return reject_sig;
|
|
}
|
|
|
|
int createNode()
|
|
{
|
|
log_assert(!materialized);
|
|
|
|
int idx = GetSize(nodes);
|
|
nodes.push_back(SvaFsmNode());
|
|
return idx;
|
|
}
|
|
|
|
void createEdge(int from_node, int to_node, SigBit ctrl = State::S1)
|
|
{
|
|
log_assert(!materialized);
|
|
log_assert(0 <= from_node && from_node < GetSize(nodes));
|
|
log_assert(0 <= to_node && to_node < GetSize(nodes));
|
|
|
|
if (throughout_sig != State::S1) {
|
|
if (ctrl != State::S1)
|
|
ctrl = module->And(NEW_ID, throughout_sig, ctrl);
|
|
else
|
|
ctrl = throughout_sig;
|
|
}
|
|
|
|
nodes[from_node].edges.push_back(make_pair(to_node, ctrl));
|
|
}
|
|
|
|
void createLink(int from_node, int to_node, SigBit ctrl = State::S1)
|
|
{
|
|
log_assert(!materialized);
|
|
log_assert(0 <= from_node && from_node < GetSize(nodes));
|
|
log_assert(0 <= to_node && to_node < GetSize(nodes));
|
|
|
|
if (throughout_sig != State::S1) {
|
|
if (ctrl != State::S1)
|
|
ctrl = module->And(NEW_ID, throughout_sig, ctrl);
|
|
else
|
|
ctrl = throughout_sig;
|
|
}
|
|
|
|
nodes[from_node].links.push_back(make_pair(to_node, ctrl));
|
|
}
|
|
|
|
void make_link_order(vector<int> &order, int node, int min)
|
|
{
|
|
order[node] = std::max(order[node], min);
|
|
for (auto &it : nodes[node].links)
|
|
make_link_order(order, it.first, order[node]+1);
|
|
}
|
|
|
|
void materialize_ndfsm()
|
|
{
|
|
log_assert(!materialized);
|
|
materialized = true;
|
|
|
|
vector<SigBit> next_state_sig(GetSize(nodes));
|
|
vector<SigBit> state_sig(GetSize(nodes));
|
|
|
|
// Create state FFs
|
|
|
|
{
|
|
SigBit not_disable = State::S1;
|
|
|
|
if (disable_sig != State::S0)
|
|
not_disable = module->Not(NEW_ID, disable_sig);
|
|
|
|
for (int i = 0; i < GetSize(nodes); i++)
|
|
{
|
|
next_state_sig[i] = module->addWire(NEW_ID);
|
|
|
|
Wire *w = module->addWire(NEW_ID);
|
|
w->attributes["\\init"] = Const(0, 1);
|
|
state_sig[i] = w;
|
|
|
|
module->addDff(NEW_ID, clock, next_state_sig[i], state_sig[i], clockpol);
|
|
|
|
if (i == startNode)
|
|
state_sig[i] = module->Or(NEW_ID, state_sig[i], trigger_sig);
|
|
|
|
if (disable_sig != State::S0)
|
|
state_sig[i] = module->And(NEW_ID, state_sig[i], not_disable);
|
|
}
|
|
}
|
|
|
|
// Follow Links
|
|
|
|
{
|
|
vector<int> node_order(GetSize(nodes));
|
|
vector<vector<int>> order_to_nodes;
|
|
|
|
for (int i = 0; i < GetSize(nodes); i++)
|
|
make_link_order(node_order, i, 0);
|
|
|
|
for (int i = 0; i < GetSize(nodes); i++) {
|
|
if (node_order[i] >= GetSize(order_to_nodes))
|
|
order_to_nodes.resize(node_order[i]+1);
|
|
order_to_nodes[node_order[i]].push_back(i);
|
|
}
|
|
|
|
for (int order = 0; order < GetSize(order_to_nodes); order++)
|
|
for (int node : order_to_nodes[order])
|
|
{
|
|
for (auto &it : nodes[node].links)
|
|
{
|
|
int target = it.first;
|
|
SigBit ctrl = state_sig[node];
|
|
|
|
if (it.second != State::S1)
|
|
ctrl = module->And(NEW_ID, ctrl, it.second);
|
|
|
|
state_sig[target] = module->Or(NEW_ID, state_sig[target], ctrl);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Construct activations
|
|
|
|
{
|
|
vector<SigSpec> activate_sig(GetSize(nodes));
|
|
vector<SigBit> activate_bit(GetSize(nodes));
|
|
|
|
for (int i = 0; i < GetSize(nodes); i++) {
|
|
for (auto &it : nodes[i].edges)
|
|
activate_sig[it.first].append(module->And(NEW_ID, state_sig[i], it.second));
|
|
}
|
|
|
|
for (int i = 0; i < GetSize(nodes); i++) {
|
|
if (GetSize(activate_sig[i]) == 0)
|
|
activate_bit[i] = State::S0;
|
|
else if (GetSize(activate_sig[i]) == 1)
|
|
activate_bit[i] = activate_sig[i];
|
|
else
|
|
activate_bit[i] = module->ReduceOr(NEW_ID, activate_sig[i]);
|
|
}
|
|
|
|
if (activate_bit[rejectNode] != State::S0)
|
|
{
|
|
SigBit not_rej = module->Not(NEW_ID, next_state_sig[rejectNode]);
|
|
for (int i = 0; i < GetSize(nodes); i++)
|
|
if (i != rejectNode && activate_bit[i] != State::S0)
|
|
activate_bit[i] = module->And(NEW_ID, activate_bit[i], not_rej);
|
|
activate_bit[rejectNode] = State::S0;
|
|
}
|
|
|
|
for (int i = 0; i < GetSize(nodes); i++) {
|
|
module->connect(next_state_sig[i], activate_bit[i]);
|
|
}
|
|
}
|
|
|
|
// Construct output signals
|
|
|
|
if (accept_sig != State::Sz) {
|
|
module->connect(accept_sig, state_sig[acceptNode]);
|
|
}
|
|
|
|
if (reject_sig != State::Sz)
|
|
{
|
|
SigBit fsm_active = module->ReduceOr(NEW_ID, state_sig);
|
|
SigBit fsm_next_active = module->ReduceOr(NEW_ID, next_state_sig);
|
|
module->addEq(NEW_ID, {state_sig[acceptNode], fsm_next_active, fsm_active}, SigSpec(1, 3), reject_sig);
|
|
}
|
|
}
|
|
|
|
void materialize_dfsm()
|
|
{
|
|
// FIXME
|
|
log_abort();
|
|
}
|
|
|
|
bool is_linear()
|
|
{
|
|
for (int i = 0; i < GetSize(nodes); i++)
|
|
if (GetSize(nodes[i].edges) + GetSize(nodes[i].links) > 1)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
void dump()
|
|
{
|
|
log("-----------\n");
|
|
for (int i = 0; i < GetSize(nodes); i++)
|
|
{
|
|
log("node %d:\n", i);
|
|
|
|
if (i == startNode)
|
|
log(" startNode\n");
|
|
|
|
if (i == rejectNode)
|
|
log(" rejectNode\n");
|
|
|
|
if (i == acceptNode)
|
|
log(" acceptNode\n");
|
|
|
|
for (auto &it : nodes[i].edges) {
|
|
if (it.second != State::S1)
|
|
log(" egde %s -> %d\n", log_signal(it.second), it.first);
|
|
else
|
|
log(" egde -> %d\n", it.first);
|
|
}
|
|
|
|
for (auto &it : nodes[i].links) {
|
|
if (it.second != State::S1)
|
|
log(" link %s -> %d\n", log_signal(it.second), it.first);
|
|
else
|
|
log(" link -> %d\n", it.first);
|
|
}
|
|
}
|
|
log("-----------\n");
|
|
}
|
|
};
|
|
|
|
PRIVATE_NAMESPACE_END
|
|
|
|
YOSYS_NAMESPACE_BEGIN
|
|
|
|
pool<int> verific_sva_prims = {
|
|
// Copy&paste from Verific 3.16_484_32_170630 Netlist.h
|
|
PRIM_SVA_IMMEDIATE_ASSERT, PRIM_SVA_ASSERT, PRIM_SVA_COVER, PRIM_SVA_ASSUME,
|
|
PRIM_SVA_EXPECT, PRIM_SVA_POSEDGE, PRIM_SVA_NOT, PRIM_SVA_FIRST_MATCH,
|
|
PRIM_SVA_ENDED, PRIM_SVA_MATCHED, PRIM_SVA_CONSECUTIVE_REPEAT,
|
|
PRIM_SVA_NON_CONSECUTIVE_REPEAT, PRIM_SVA_GOTO_REPEAT,
|
|
PRIM_SVA_MATCH_ITEM_TRIGGER, PRIM_SVA_AND, PRIM_SVA_OR, PRIM_SVA_SEQ_AND,
|
|
PRIM_SVA_SEQ_OR, PRIM_SVA_EVENT_OR, PRIM_SVA_OVERLAPPED_IMPLICATION,
|
|
PRIM_SVA_NON_OVERLAPPED_IMPLICATION, PRIM_SVA_OVERLAPPED_FOLLOWED_BY,
|
|
PRIM_SVA_NON_OVERLAPPED_FOLLOWED_BY, PRIM_SVA_INTERSECT, PRIM_SVA_THROUGHOUT,
|
|
PRIM_SVA_WITHIN, PRIM_SVA_AT, PRIM_SVA_DISABLE_IFF, PRIM_SVA_SAMPLED,
|
|
PRIM_SVA_ROSE, PRIM_SVA_FELL, PRIM_SVA_STABLE, PRIM_SVA_PAST,
|
|
PRIM_SVA_MATCH_ITEM_ASSIGN, PRIM_SVA_SEQ_CONCAT, PRIM_SVA_IF,
|
|
PRIM_SVA_RESTRICT, PRIM_SVA_TRIGGERED, PRIM_SVA_STRONG, PRIM_SVA_WEAK,
|
|
PRIM_SVA_NEXTTIME, PRIM_SVA_S_NEXTTIME, PRIM_SVA_ALWAYS, PRIM_SVA_S_ALWAYS,
|
|
PRIM_SVA_S_EVENTUALLY, PRIM_SVA_EVENTUALLY, PRIM_SVA_UNTIL, PRIM_SVA_S_UNTIL,
|
|
PRIM_SVA_UNTIL_WITH, PRIM_SVA_S_UNTIL_WITH, PRIM_SVA_IMPLIES, PRIM_SVA_IFF,
|
|
PRIM_SVA_ACCEPT_ON, PRIM_SVA_REJECT_ON, PRIM_SVA_SYNC_ACCEPT_ON,
|
|
PRIM_SVA_SYNC_REJECT_ON, PRIM_SVA_GLOBAL_CLOCKING_DEF,
|
|
PRIM_SVA_GLOBAL_CLOCKING_REF, PRIM_SVA_IMMEDIATE_ASSUME,
|
|
PRIM_SVA_IMMEDIATE_COVER, OPER_SVA_SAMPLED, OPER_SVA_STABLE
|
|
};
|
|
|
|
struct VerificSvaImporter
|
|
{
|
|
VerificImporter *importer = nullptr;
|
|
Module *module = nullptr;
|
|
|
|
Netlist *netlist = nullptr;
|
|
Instance *root = nullptr;
|
|
|
|
SigBit clock = State::Sx;
|
|
bool clock_posedge = false;
|
|
|
|
SigBit disable_iff = State::S0;
|
|
|
|
bool mode_assert = false;
|
|
bool mode_assume = false;
|
|
bool mode_cover = false;
|
|
bool eventually = false;
|
|
bool did_something = false;
|
|
|
|
Instance *net_to_ast_driver(Net *n)
|
|
{
|
|
if (n == nullptr)
|
|
return nullptr;
|
|
|
|
if (n->IsMultipleDriven())
|
|
return nullptr;
|
|
|
|
Instance *inst = n->Driver();
|
|
|
|
if (inst == nullptr)
|
|
return nullptr;
|
|
|
|
if (!verific_sva_prims.count(inst->Type()))
|
|
return nullptr;
|
|
|
|
if (inst->Type() == PRIM_SVA_ROSE || inst->Type() == PRIM_SVA_FELL ||
|
|
inst->Type() == PRIM_SVA_STABLE || inst->Type() == OPER_SVA_STABLE || inst->Type() == PRIM_SVA_PAST)
|
|
return nullptr;
|
|
|
|
return inst;
|
|
}
|
|
|
|
Instance *get_ast_input(Instance *inst) { return net_to_ast_driver(inst->GetInput()); }
|
|
Instance *get_ast_input1(Instance *inst) { return net_to_ast_driver(inst->GetInput1()); }
|
|
Instance *get_ast_input2(Instance *inst) { return net_to_ast_driver(inst->GetInput2()); }
|
|
Instance *get_ast_input3(Instance *inst) { return net_to_ast_driver(inst->GetInput3()); }
|
|
Instance *get_ast_control(Instance *inst) { return net_to_ast_driver(inst->GetControl()); }
|
|
|
|
// ----------------------------------------------------------
|
|
// SVA AST Types
|
|
|
|
struct svatype_t
|
|
{
|
|
bool flag_linear = true;
|
|
};
|
|
|
|
std::map<Instance*, svatype_t> svatype_cache;
|
|
|
|
void svatype_visit_child(svatype_t &entry, Instance *inst)
|
|
{
|
|
if (inst == nullptr)
|
|
return;
|
|
|
|
const svatype_t &child_entry = svatype(inst);
|
|
entry.flag_linear &= child_entry.flag_linear;
|
|
}
|
|
|
|
const svatype_t &svatype(Instance *inst)
|
|
{
|
|
if (svatype_cache.count(inst) != 0)
|
|
return svatype_cache.at(inst);
|
|
|
|
svatype_t &entry = svatype_cache[inst];
|
|
|
|
if (inst == nullptr)
|
|
return entry;
|
|
|
|
if (inst->Type() == PRIM_SVA_SEQ_CONCAT || inst->Type() == PRIM_SVA_CONSECUTIVE_REPEAT)
|
|
{
|
|
const char *sva_low_s = inst->GetAttValue("sva:low");
|
|
const char *sva_high_s = inst->GetAttValue("sva:high");
|
|
|
|
int sva_low = atoi(sva_low_s);
|
|
int sva_high = atoi(sva_high_s);
|
|
bool sva_inf = !strcmp(sva_high_s, "$");
|
|
|
|
if (sva_inf || sva_low != sva_high)
|
|
entry.flag_linear = false;
|
|
}
|
|
|
|
svatype_visit_child(entry, get_ast_input(inst));
|
|
svatype_visit_child(entry, get_ast_input1(inst));
|
|
svatype_visit_child(entry, get_ast_input2(inst));
|
|
svatype_visit_child(entry, get_ast_input3(inst));
|
|
svatype_visit_child(entry, get_ast_control(inst));
|
|
|
|
return entry;
|
|
}
|
|
|
|
// ----------------------------------------------------------
|
|
// SVA Preprocessor
|
|
|
|
Net *rewrite_input(Instance *inst) { return rewrite(get_ast_input(inst), inst->GetInput()); }
|
|
Net *rewrite_input1(Instance *inst) { return rewrite(get_ast_input1(inst), inst->GetInput1()); }
|
|
Net *rewrite_input2(Instance *inst) { return rewrite(get_ast_input2(inst), inst->GetInput2()); }
|
|
Net *rewrite_input3(Instance *inst) { return rewrite(get_ast_input3(inst), inst->GetInput3()); }
|
|
Net *rewrite_control(Instance *inst) { return rewrite(get_ast_control(inst), inst->GetControl()); }
|
|
|
|
Net *rewrite(Instance *inst, Net *default_net = nullptr)
|
|
{
|
|
if (inst == nullptr)
|
|
return default_net;
|
|
|
|
if (inst->Type() == PRIM_SVA_ASSERT || inst->Type() == PRIM_SVA_COVER || inst->Type() == PRIM_SVA_ASSUME ||
|
|
inst->Type() == PRIM_SVA_IMMEDIATE_ASSERT || inst->Type() == PRIM_SVA_IMMEDIATE_COVER || inst->Type() == PRIM_SVA_IMMEDIATE_ASSUME) {
|
|
Net *new_net = rewrite(get_ast_input(inst));
|
|
if (new_net) {
|
|
inst->Disconnect(inst->View()->GetInput());
|
|
inst->Connect(inst->View()->GetInput(), new_net);
|
|
}
|
|
return default_net;
|
|
}
|
|
|
|
if (inst->Type() == PRIM_SVA_AT || inst->Type() == PRIM_SVA_DISABLE_IFF) {
|
|
Net *new_net = rewrite(get_ast_input2(inst));
|
|
if (new_net) {
|
|
inst->Disconnect(inst->View()->GetInput2());
|
|
inst->Connect(inst->View()->GetInput2(), new_net);
|
|
}
|
|
return default_net;
|
|
}
|
|
|
|
if (inst->Type() == PRIM_SVA_NON_OVERLAPPED_IMPLICATION)
|
|
{
|
|
if (mode_cover) {
|
|
did_something = true;
|
|
Net *new_in1 = rewrite_input1(inst);
|
|
Net *new_in2 = rewrite_input2(inst);
|
|
return netlist->SvaBinary(PRIM_SVA_SEQ_CONCAT, new_in1, new_in2, inst->Linefile());
|
|
}
|
|
return default_net;
|
|
}
|
|
|
|
if (inst->Type() == PRIM_SVA_NOT)
|
|
{
|
|
if (mode_assert || mode_assume) {
|
|
did_something = true;
|
|
Net *new_in = rewrite_input(inst);
|
|
Net *net_zero = netlist->Gnd(inst->Linefile());
|
|
return netlist->SvaBinary(PRIM_SVA_OVERLAPPED_IMPLICATION, new_in, net_zero, inst->Linefile());
|
|
}
|
|
return default_net;
|
|
}
|
|
|
|
return default_net;
|
|
}
|
|
|
|
void rewrite()
|
|
{
|
|
netlist = root->Owner();
|
|
do {
|
|
did_something = false;
|
|
rewrite(root);
|
|
} while (did_something);
|
|
}
|
|
|
|
// ----------------------------------------------------------
|
|
// SVA Importer
|
|
|
|
int parse_sequence(SvaFsm *fsm, int start_node, Net *net)
|
|
{
|
|
Instance *inst = net_to_ast_driver(net);
|
|
|
|
if (inst == nullptr) {
|
|
int node = fsm->createNode();
|
|
fsm->createLink(start_node, node, importer->net_map_at(net));
|
|
return node;
|
|
}
|
|
|
|
if (inst->Type() == PRIM_SVA_SEQ_CONCAT)
|
|
{
|
|
const char *sva_low_s = inst->GetAttValue("sva:low");
|
|
const char *sva_high_s = inst->GetAttValue("sva:high");
|
|
|
|
int sva_low = atoi(sva_low_s);
|
|
int sva_high = atoi(sva_high_s);
|
|
bool sva_inf = !strcmp(sva_high_s, "$");
|
|
|
|
int node = parse_sequence(fsm, start_node, inst->GetInput1());
|
|
|
|
for (int i = 0; i < sva_low; i++) {
|
|
int next_node = fsm->createNode();
|
|
fsm->createEdge(node, next_node);
|
|
node = next_node;
|
|
}
|
|
|
|
if (sva_inf)
|
|
{
|
|
fsm->createEdge(node, node);
|
|
}
|
|
else
|
|
{
|
|
for (int i = sva_low; i < sva_high; i++)
|
|
{
|
|
int next_node = fsm->createNode();
|
|
fsm->createEdge(node, next_node);
|
|
fsm->createLink(node, next_node);
|
|
node = next_node;
|
|
}
|
|
}
|
|
|
|
node = parse_sequence(fsm, node, inst->GetInput2());
|
|
|
|
return node;
|
|
}
|
|
|
|
if (inst->Type() == PRIM_SVA_CONSECUTIVE_REPEAT)
|
|
{
|
|
const char *sva_low_s = inst->GetAttValue("sva:low");
|
|
const char *sva_high_s = inst->GetAttValue("sva:high");
|
|
|
|
int sva_low = atoi(sva_low_s);
|
|
int sva_high = atoi(sva_high_s);
|
|
bool sva_inf = !strcmp(sva_high_s, "$");
|
|
|
|
int node = parse_sequence(fsm, start_node, inst->GetInput());
|
|
|
|
for (int i = 1; i < sva_low; i++)
|
|
{
|
|
int next_node = fsm->createNode();
|
|
fsm->createEdge(node, next_node);
|
|
node = parse_sequence(fsm, next_node, inst->GetInput());
|
|
}
|
|
|
|
if (sva_inf)
|
|
{
|
|
int next_node = fsm->createNode();
|
|
fsm->createEdge(node, next_node);
|
|
next_node = parse_sequence(fsm, next_node, inst->GetInput());
|
|
fsm->createLink(next_node, node);
|
|
}
|
|
else
|
|
{
|
|
for (int i = sva_low; i < sva_high; i++)
|
|
{
|
|
int next_node = fsm->createNode();
|
|
fsm->createEdge(node, next_node);
|
|
next_node = parse_sequence(fsm, next_node, inst->GetInput());
|
|
fsm->createLink(node, next_node);
|
|
node = next_node;
|
|
}
|
|
}
|
|
|
|
return node;
|
|
}
|
|
|
|
if (inst->Type() == PRIM_SVA_THROUGHOUT)
|
|
{
|
|
log_assert(get_ast_input1(inst) == nullptr);
|
|
SigBit expr = importer->net_map_at(inst->GetInput1());
|
|
|
|
fsm->pushThroughout(expr);
|
|
int node = parse_sequence(fsm, start_node, inst->GetInput2());
|
|
fsm->popThroughout();
|
|
|
|
return node;
|
|
}
|
|
|
|
// Handle unsupported primitives
|
|
|
|
if (!importer->mode_keep)
|
|
log_error("Verific SVA primitive %s (%s) is currently unsupported in this context.\n", inst->View()->Owner()->Name(), inst->Name());
|
|
log_warning("Verific SVA primitive %s (%s) is currently unsupported in this context.\n", inst->View()->Owner()->Name(), inst->Name());
|
|
|
|
return start_node;
|
|
}
|
|
|
|
void import()
|
|
{
|
|
module = importer->module;
|
|
netlist = root->Owner();
|
|
|
|
RTLIL::IdString root_name = module->uniquify(importer->mode_names || root->IsUserDeclared() ? RTLIL::escape_id(root->Name()) : NEW_ID);
|
|
|
|
// parse SVA property clock event
|
|
|
|
Instance *at_node = get_ast_input(root);
|
|
|
|
// asynchronous immediate assertion/assumption/cover
|
|
if (at_node == nullptr && (root->Type() == PRIM_SVA_IMMEDIATE_ASSERT ||
|
|
root->Type() == PRIM_SVA_IMMEDIATE_COVER || root->Type() == PRIM_SVA_IMMEDIATE_ASSUME))
|
|
{
|
|
SigSpec sig_a = importer->net_map_at(root->GetInput());
|
|
RTLIL::Cell *c = nullptr;
|
|
|
|
if (eventually) {
|
|
if (mode_assert) c = module->addLive(root_name, sig_a, State::S1);
|
|
if (mode_assume) c = module->addFair(root_name, sig_a, State::S1);
|
|
} else {
|
|
if (mode_assert) c = module->addAssert(root_name, sig_a, State::S1);
|
|
if (mode_assume) c = module->addAssume(root_name, sig_a, State::S1);
|
|
if (mode_cover) c = module->addCover(root_name, sig_a, State::S1);
|
|
}
|
|
|
|
importer->import_attributes(c->attributes, root);
|
|
return;
|
|
}
|
|
|
|
log_assert(at_node && at_node->Type() == PRIM_SVA_AT);
|
|
|
|
VerificClockEdge clock_edge(importer, get_ast_input1(at_node));
|
|
clock = clock_edge.clock_sig;
|
|
clock_posedge = clock_edge.posedge;
|
|
|
|
// parse disable_iff expression
|
|
|
|
Net *sequence_net = at_node->GetInput2();
|
|
|
|
while (1)
|
|
{
|
|
Instance *sequence_node = net_to_ast_driver(sequence_net);
|
|
|
|
if (sequence_node && sequence_node->Type() == PRIM_SVA_S_EVENTUALLY) {
|
|
eventually = true;
|
|
sequence_net = sequence_node->GetInput();
|
|
continue;
|
|
}
|
|
|
|
if (sequence_node && sequence_node->Type() == PRIM_SVA_DISABLE_IFF) {
|
|
disable_iff = importer->net_map_at(sequence_node->GetInput1());
|
|
sequence_net = sequence_node->GetInput2();
|
|
continue;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
// parse SVA sequence into trigger signal
|
|
|
|
SigBit prop_okay;
|
|
Instance *inst = net_to_ast_driver(sequence_net);
|
|
|
|
if (inst == nullptr)
|
|
{
|
|
prop_okay = importer->net_map_at(sequence_net);
|
|
}
|
|
else
|
|
if (inst->Type() == PRIM_SVA_OVERLAPPED_IMPLICATION ||
|
|
inst->Type() == PRIM_SVA_NON_OVERLAPPED_IMPLICATION)
|
|
{
|
|
Net *antecedent_net = inst->GetInput1();
|
|
Net *consequent_net = inst->GetInput2();
|
|
int node;
|
|
|
|
SvaFsm antecedent_fsm(module, clock, clock_posedge, disable_iff);
|
|
node = parse_sequence(&antecedent_fsm, antecedent_fsm.startNode, antecedent_net);
|
|
if (inst->Type() == PRIM_SVA_NON_OVERLAPPED_IMPLICATION) {
|
|
int next_node = antecedent_fsm.createNode();
|
|
antecedent_fsm.createEdge(node, next_node);
|
|
node = next_node;
|
|
}
|
|
antecedent_fsm.createLink(node, antecedent_fsm.acceptNode);
|
|
|
|
SigBit antecedent_accept = antecedent_fsm.getAccept();
|
|
antecedent_fsm.materialize_ndfsm();
|
|
antecedent_fsm.dump();
|
|
|
|
SvaFsm consequent_fsm(module, clock, clock_posedge, disable_iff, antecedent_accept);
|
|
node = parse_sequence(&consequent_fsm, consequent_fsm.startNode, consequent_net);
|
|
consequent_fsm.createLink(node, consequent_fsm.acceptNode);
|
|
|
|
SigBit consequent_reject = consequent_fsm.getReject();
|
|
prop_okay = module->Not(NEW_ID, consequent_reject);
|
|
|
|
if (consequent_fsm.is_linear())
|
|
consequent_fsm.materialize_ndfsm();
|
|
else
|
|
log_error("Currently only linear sequences are allowed as impliciation consequent.\n");
|
|
}
|
|
else
|
|
{
|
|
// Handle unsupported primitives
|
|
|
|
if (!importer->mode_keep)
|
|
log_error("Verific SVA primitive %s (%s) is currently unsupported in this context.\n", inst->View()->Owner()->Name(), inst->Name());
|
|
log_warning("Verific SVA primitive %s (%s) is currently unsupported in this context.\n", inst->View()->Owner()->Name(), inst->Name());
|
|
return;
|
|
}
|
|
|
|
// add final FF stage
|
|
|
|
Wire *prop_okay_q = module->addWire(NEW_ID);
|
|
prop_okay_q->attributes["\\init"] = Const(mode_cover ? 0 : 1, 1);
|
|
module->addDff(NEW_ID, clock, prop_okay, prop_okay_q, clock_posedge);
|
|
|
|
// generate assert/assume/cover cell
|
|
|
|
RTLIL::Cell *c = nullptr;
|
|
|
|
if (eventually) {
|
|
log_error("No support for eventually in Verific SVA bindings yet.\n");
|
|
// if (mode_assert) c = module->addLive(root_name, prop_okay_q, prop_start_q);
|
|
// if (mode_assume) c = module->addFair(root_name, prop_okay_q, prop_start_q);
|
|
} else {
|
|
if (mode_assert) c = module->addAssert(root_name, prop_okay_q, State::S1);
|
|
if (mode_assume) c = module->addAssume(root_name, prop_okay_q, State::S1);
|
|
if (mode_cover) c = module->addCover(root_name, prop_okay_q, State::S1);
|
|
}
|
|
|
|
importer->import_attributes(c->attributes, root);
|
|
}
|
|
|
|
#if 0
|
|
// ----------------------------------------------------------
|
|
// Old SVA Importer
|
|
|
|
vector<SigBit> sva_until_list_inclusive;
|
|
vector<SigBit> sva_until_list_exclusive;
|
|
vector<vector<SigBit>*> sva_sequence_alive_list;
|
|
|
|
struct sequence_t {
|
|
int length = 0;
|
|
SigBit sig_a = State::S1;
|
|
SigBit sig_en = State::S1;
|
|
};
|
|
|
|
void sequence_cond(sequence_t &seq, SigBit cond)
|
|
{
|
|
seq.sig_a = module->And(NEW_ID, seq.sig_a, cond);
|
|
}
|
|
|
|
void sequence_ff(sequence_t &seq)
|
|
{
|
|
if (disable_iff != State::S0)
|
|
seq.sig_en = module->Mux(NEW_ID, seq.sig_en, State::S0, disable_iff);
|
|
|
|
for (auto &expr : sva_until_list_exclusive)
|
|
seq.sig_a = module->LogicAnd(NEW_ID, seq.sig_a, expr);
|
|
|
|
Wire *sig_a_q = module->addWire(NEW_ID);
|
|
sig_a_q->attributes["\\init"] = Const(0, 1);
|
|
|
|
Wire *sig_en_q = module->addWire(NEW_ID);
|
|
sig_en_q->attributes["\\init"] = Const(0, 1);
|
|
|
|
for (auto list : sva_sequence_alive_list)
|
|
list->push_back(module->LogicAnd(NEW_ID, seq.sig_a, seq.sig_en));
|
|
|
|
module->addDff(NEW_ID, clock, seq.sig_a, sig_a_q, clock_posedge);
|
|
module->addDff(NEW_ID, clock, seq.sig_en, sig_en_q, clock_posedge);
|
|
|
|
if (seq.length >= 0)
|
|
seq.length++;
|
|
|
|
seq.sig_a = sig_a_q;
|
|
seq.sig_en = sig_en_q;
|
|
|
|
for (auto &expr : sva_until_list_inclusive)
|
|
seq.sig_a = module->LogicAnd(NEW_ID, seq.sig_a, expr);
|
|
}
|
|
|
|
void combine_seq(sequence_t &seq, const sequence_t &other_seq)
|
|
{
|
|
if (seq.length != other_seq.length)
|
|
seq.length = -1;
|
|
|
|
SigBit filtered_a = module->LogicAnd(NEW_ID, seq.sig_a, seq.sig_en);
|
|
SigBit other_filtered_a = module->LogicAnd(NEW_ID, other_seq.sig_a, other_seq.sig_en);
|
|
|
|
seq.sig_a = module->LogicOr(NEW_ID, filtered_a, other_filtered_a);
|
|
seq.sig_en = module->LogicOr(NEW_ID, seq.sig_en, other_seq.sig_en);
|
|
}
|
|
|
|
void combine_seq(sequence_t &seq, SigBit other_a, SigBit other_en)
|
|
{
|
|
SigBit filtered_a = module->LogicAnd(NEW_ID, seq.sig_a, seq.sig_en);
|
|
SigBit other_filtered_a = module->LogicAnd(NEW_ID, other_a, other_en);
|
|
|
|
seq.length = -1;
|
|
seq.sig_a = module->LogicOr(NEW_ID, filtered_a, other_filtered_a);
|
|
seq.sig_en = module->LogicOr(NEW_ID, seq.sig_en, other_en);
|
|
}
|
|
|
|
SigBit make_temporal_one_hot(SigBit enable = State::S1, SigBit *latched = nullptr)
|
|
{
|
|
Wire *state = module->addWire(NEW_ID);
|
|
state->attributes["\\init"] = State::S0;
|
|
|
|
SigBit any = module->Anyseq(NEW_ID);
|
|
if (enable != State::S1)
|
|
any = module->LogicAnd(NEW_ID, any, enable);
|
|
|
|
SigBit next_state = module->LogicOr(NEW_ID, state, any);
|
|
module->addDff(NEW_ID, clock, next_state, state, clock_posedge);
|
|
|
|
if (latched != nullptr)
|
|
*latched = state;
|
|
|
|
SigBit not_state = module->LogicNot(NEW_ID, state);
|
|
return module->LogicAnd(NEW_ID, next_state, not_state);
|
|
}
|
|
|
|
SigBit make_permanent_latch(SigBit enable, bool async = false)
|
|
{
|
|
Wire *state = module->addWire(NEW_ID);
|
|
state->attributes["\\init"] = State::S0;
|
|
|
|
SigBit next_state = module->LogicOr(NEW_ID, state, enable);
|
|
module->addDff(NEW_ID, clock, next_state, state, clock_posedge);
|
|
|
|
return async ? next_state : state;
|
|
}
|
|
|
|
void parse_sequence(sequence_t &seq, Net *n)
|
|
{
|
|
Instance *inst = net_to_ast_driver(n);
|
|
|
|
// Regular expression
|
|
|
|
if (inst == nullptr) {
|
|
sequence_cond(seq, importer->net_map_at(n));
|
|
return;
|
|
}
|
|
|
|
// SVA Primitives
|
|
|
|
if (inst->Type() == PRIM_SVA_OVERLAPPED_IMPLICATION ||
|
|
inst->Type() == PRIM_SVA_NON_OVERLAPPED_IMPLICATION)
|
|
{
|
|
Instance *consequent = get_ast_input2(inst);
|
|
bool linear_consequent = svatype(consequent).flag_linear;
|
|
|
|
parse_sequence(seq, inst->GetInput1());
|
|
seq.sig_en = module->And(NEW_ID, seq.sig_en, seq.sig_a);
|
|
|
|
if (inst->Type() == PRIM_SVA_NON_OVERLAPPED_IMPLICATION)
|
|
sequence_ff(seq);
|
|
|
|
if (!linear_consequent && mode_assume)
|
|
log_error("Non-linear consequent is currently not supported in SVA assumptions.\n");
|
|
|
|
if (linear_consequent)
|
|
{
|
|
parse_sequence(seq, inst->GetInput2());
|
|
}
|
|
else
|
|
{
|
|
SigBit activated;
|
|
seq.sig_en = make_temporal_one_hot(seq.sig_en, &activated);
|
|
|
|
SigBit pass_latch_en = module->addWire(NEW_ID);
|
|
SigBit pass_latch = make_permanent_latch(pass_latch_en, true);
|
|
|
|
vector<SigBit> alive_list;
|
|
sva_sequence_alive_list.push_back(&alive_list);
|
|
parse_sequence(seq, inst->GetInput2());
|
|
sva_sequence_alive_list.pop_back();
|
|
|
|
module->addLogicAnd(NEW_ID, seq.sig_a, seq.sig_en, pass_latch_en);
|
|
alive_list.push_back(pass_latch);
|
|
|
|
seq.length = -1;
|
|
seq.sig_a = module->ReduceOr(NEW_ID, SigSpec(alive_list));
|
|
seq.sig_en = module->ReduceOr(NEW_ID, activated);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if (inst->Type() == PRIM_SVA_SEQ_CONCAT)
|
|
{
|
|
const char *sva_low_s = inst->GetAttValue("sva:low");
|
|
const char *sva_high_s = inst->GetAttValue("sva:high");
|
|
|
|
int sva_low = atoi(sva_low_s);
|
|
int sva_high = atoi(sva_high_s);
|
|
bool sva_inf = !strcmp(sva_high_s, "$");
|
|
|
|
parse_sequence(seq, inst->GetInput1());
|
|
|
|
for (int i = 0; i < sva_low; i++)
|
|
sequence_ff(seq);
|
|
|
|
if (sva_inf)
|
|
{
|
|
SigBit latched_a = module->addWire(NEW_ID);
|
|
SigBit latched_en = module->addWire(NEW_ID);
|
|
combine_seq(seq, latched_a, latched_en);
|
|
|
|
sequence_t seq_latched = seq;
|
|
sequence_ff(seq_latched);
|
|
module->connect(latched_a, seq_latched.sig_a);
|
|
module->connect(latched_en, seq_latched.sig_en);
|
|
}
|
|
else
|
|
{
|
|
for (int i = sva_low; i < sva_high; i++)
|
|
{
|
|
sequence_t last_seq = seq;
|
|
sequence_ff(seq);
|
|
combine_seq(seq, last_seq);
|
|
}
|
|
}
|
|
|
|
parse_sequence(seq, inst->GetInput2());
|
|
return;
|
|
}
|
|
|
|
if (inst->Type() == PRIM_SVA_CONSECUTIVE_REPEAT)
|
|
{
|
|
const char *sva_low_s = inst->GetAttValue("sva:low");
|
|
const char *sva_high_s = inst->GetAttValue("sva:high");
|
|
|
|
int sva_low = atoi(sva_low_s);
|
|
int sva_high = atoi(sva_high_s);
|
|
bool sva_inf = !strcmp(sva_high_s, "$");
|
|
|
|
parse_sequence(seq, inst->GetInput());
|
|
|
|
for (int i = 1; i < sva_low; i++) {
|
|
sequence_ff(seq);
|
|
parse_sequence(seq, inst->GetInput());
|
|
}
|
|
|
|
if (sva_inf)
|
|
{
|
|
SigBit latched_a = module->addWire(NEW_ID);
|
|
SigBit latched_en = module->addWire(NEW_ID);
|
|
combine_seq(seq, latched_a, latched_en);
|
|
|
|
sequence_t seq_latched = seq;
|
|
sequence_ff(seq_latched);
|
|
parse_sequence(seq_latched, inst->GetInput());
|
|
module->connect(latched_a, seq_latched.sig_a);
|
|
module->connect(latched_en, seq_latched.sig_en);
|
|
}
|
|
else
|
|
{
|
|
for (int i = sva_low; i < sva_high; i++)
|
|
{
|
|
sequence_t last_seq = seq;
|
|
sequence_ff(seq);
|
|
parse_sequence(seq, inst->GetInput());
|
|
combine_seq(seq, last_seq);
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if (inst->Type() == PRIM_SVA_THROUGHOUT || inst->Type() == PRIM_SVA_UNTIL || inst->Type() == PRIM_SVA_S_UNTIL ||
|
|
inst->Type() == PRIM_SVA_UNTIL_WITH || inst->Type() == PRIM_SVA_S_UNTIL_WITH)
|
|
{
|
|
bool flag_with = inst->Type() == PRIM_SVA_THROUGHOUT || inst->Type() == PRIM_SVA_UNTIL_WITH || inst->Type() == PRIM_SVA_S_UNTIL_WITH;
|
|
|
|
if (get_ast_input1(inst) != nullptr)
|
|
log_error("Currently only simple expression properties are supported as first operand to SVA_UNTIL.\n");
|
|
|
|
SigBit expr = importer->net_map_at(inst->GetInput1());
|
|
|
|
if (flag_with)
|
|
{
|
|
seq.sig_a = module->LogicAnd(NEW_ID, seq.sig_a, expr);
|
|
sva_until_list_inclusive.push_back(expr);
|
|
parse_sequence(seq, inst->GetInput2());
|
|
sva_until_list_inclusive.pop_back();
|
|
}
|
|
else
|
|
{
|
|
sva_until_list_exclusive.push_back(expr);
|
|
parse_sequence(seq, inst->GetInput2());
|
|
sva_until_list_exclusive.pop_back();
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// Handle unsupported primitives
|
|
|
|
if (!importer->mode_keep)
|
|
log_error("Verific SVA primitive %s (%s) is currently unsupported in this context.\n", inst->View()->Owner()->Name(), inst->Name());
|
|
log_warning("Verific SVA primitive %s (%s) is currently unsupported in this context.\n", inst->View()->Owner()->Name(), inst->Name());
|
|
}
|
|
|
|
void import()
|
|
{
|
|
module = importer->module;
|
|
netlist = root->Owner();
|
|
|
|
RTLIL::IdString root_name = module->uniquify(importer->mode_names || root->IsUserDeclared() ? RTLIL::escape_id(root->Name()) : NEW_ID);
|
|
|
|
// parse SVA property clock event
|
|
|
|
Instance *at_node = get_ast_input(root);
|
|
|
|
// asynchronous immediate assertion/assumption/cover
|
|
if (at_node == nullptr && (root->Type() == PRIM_SVA_IMMEDIATE_ASSERT ||
|
|
root->Type() == PRIM_SVA_IMMEDIATE_COVER || root->Type() == PRIM_SVA_IMMEDIATE_ASSUME))
|
|
{
|
|
SigSpec sig_a = importer->net_map_at(root->GetInput());
|
|
RTLIL::Cell *c = nullptr;
|
|
|
|
if (eventually) {
|
|
if (mode_assert) c = module->addLive(root_name, sig_a, State::S1);
|
|
if (mode_assume) c = module->addFair(root_name, sig_a, State::S1);
|
|
} else {
|
|
if (mode_assert) c = module->addAssert(root_name, sig_a, State::S1);
|
|
if (mode_assume) c = module->addAssume(root_name, sig_a, State::S1);
|
|
if (mode_cover) c = module->addCover(root_name, sig_a, State::S1);
|
|
}
|
|
|
|
importer->import_attributes(c->attributes, root);
|
|
return;
|
|
}
|
|
|
|
log_assert(at_node && at_node->Type() == PRIM_SVA_AT);
|
|
|
|
VerificClockEdge clock_edge(importer, get_ast_input1(at_node));
|
|
clock = clock_edge.clock_sig;
|
|
clock_posedge = clock_edge.posedge;
|
|
|
|
// parse disable_iff expression
|
|
|
|
Net *sequence_net = at_node->GetInput2();
|
|
|
|
while (1)
|
|
{
|
|
Instance *sequence_node = net_to_ast_driver(sequence_net);
|
|
|
|
if (sequence_node && sequence_node->Type() == PRIM_SVA_S_EVENTUALLY) {
|
|
eventually = true;
|
|
sequence_net = sequence_node->GetInput();
|
|
continue;
|
|
}
|
|
|
|
if (sequence_node && sequence_node->Type() == PRIM_SVA_DISABLE_IFF) {
|
|
disable_iff = importer->net_map_at(sequence_node->GetInput1());
|
|
sequence_net = sequence_node->GetInput2();
|
|
continue;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
// parse SVA sequence into trigger signal
|
|
|
|
sequence_t seq;
|
|
parse_sequence(seq, sequence_net);
|
|
sequence_ff(seq);
|
|
|
|
// generate assert/assume/cover cell
|
|
|
|
RTLIL::Cell *c = nullptr;
|
|
|
|
if (eventually) {
|
|
if (mode_assert) c = module->addLive(root_name, seq.sig_a, seq.sig_en);
|
|
if (mode_assume) c = module->addFair(root_name, seq.sig_a, seq.sig_en);
|
|
} else {
|
|
if (mode_assert) c = module->addAssert(root_name, seq.sig_a, seq.sig_en);
|
|
if (mode_assume) c = module->addAssume(root_name, seq.sig_a, seq.sig_en);
|
|
if (mode_cover) c = module->addCover(root_name, seq.sig_a, seq.sig_en);
|
|
}
|
|
|
|
importer->import_attributes(c->attributes, root);
|
|
}
|
|
#endif
|
|
};
|
|
|
|
void svapp_assert(Instance *inst)
|
|
{
|
|
VerificSvaImporter worker;
|
|
worker.root = inst;
|
|
worker.mode_assert = true;
|
|
worker.rewrite();
|
|
}
|
|
|
|
void svapp_assume(Instance *inst)
|
|
{
|
|
VerificSvaImporter worker;
|
|
worker.root = inst;
|
|
worker.mode_assume = true;
|
|
worker.rewrite();
|
|
}
|
|
|
|
void svapp_cover(Instance *inst)
|
|
{
|
|
VerificSvaImporter worker;
|
|
worker.root = inst;
|
|
worker.mode_cover = true;
|
|
worker.rewrite();
|
|
}
|
|
|
|
void import_sva_assert(VerificImporter *importer, Instance *inst)
|
|
{
|
|
VerificSvaImporter worker;
|
|
worker.importer = importer;
|
|
worker.root = inst;
|
|
worker.mode_assert = true;
|
|
worker.import();
|
|
}
|
|
|
|
void import_sva_assume(VerificImporter *importer, Instance *inst)
|
|
{
|
|
VerificSvaImporter worker;
|
|
worker.importer = importer;
|
|
worker.root = inst;
|
|
worker.mode_assume = true;
|
|
worker.import();
|
|
}
|
|
|
|
void import_sva_cover(VerificImporter *importer, Instance *inst)
|
|
{
|
|
VerificSvaImporter worker;
|
|
worker.importer = importer;
|
|
worker.root = inst;
|
|
worker.mode_cover = true;
|
|
worker.import();
|
|
}
|
|
|
|
YOSYS_NAMESPACE_END
|