3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2025-04-07 09:55:20 +00:00
yosys/techlibs/quicklogic/qlf_k6n10f/brams_final_map.v

1464 lines
35 KiB
Verilog

// Copyright 2020-2022 F4PGA Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// SPDX-License-Identifier: Apache-2.0
module BRAM2x18_SP (
RESET_ni,
WEN1_i,
REN1_i,
WR1_CLK_i,
RD1_CLK_i,
WR1_BE_i,
WR1_ADDR_i,
RD1_ADDR_i,
WDATA1_i,
RDATA1_o,
WEN2_i,
REN2_i,
WR2_CLK_i,
RD2_CLK_i,
WR2_BE_i,
WR2_ADDR_i,
RD2_ADDR_i,
WDATA2_i,
RDATA2_o
);
parameter WR1_ADDR_WIDTH = 10;
parameter RD1_ADDR_WIDTH = 10;
parameter WR1_DATA_WIDTH = 18;
parameter RD1_DATA_WIDTH = 18;
parameter BE1_WIDTH = 2;
parameter WR2_ADDR_WIDTH = 10;
parameter RD2_ADDR_WIDTH = 10;
parameter WR2_DATA_WIDTH = 18;
parameter RD2_DATA_WIDTH = 18;
parameter BE2_WIDTH = 2;
input wire RESET_ni;
input wire WEN1_i;
input wire REN1_i;
input wire WR1_CLK_i;
input wire RD1_CLK_i;
input wire [BE1_WIDTH-1:0] WR1_BE_i;
input wire [WR1_ADDR_WIDTH-1 :0] WR1_ADDR_i;
input wire [RD1_ADDR_WIDTH-1 :0] RD1_ADDR_i;
input wire [WR1_DATA_WIDTH-1 :0] WDATA1_i;
output wire [RD1_DATA_WIDTH-1 :0] RDATA1_o;
input wire WEN2_i;
input wire REN2_i;
input wire WR2_CLK_i;
input wire RD2_CLK_i;
input wire [BE2_WIDTH-1:0] WR2_BE_i;
input wire [WR2_ADDR_WIDTH-1 :0] WR2_ADDR_i;
input wire [RD2_ADDR_WIDTH-1 :0] RD2_ADDR_i;
input wire [WR2_DATA_WIDTH-1 :0] WDATA2_i;
output wire [RD2_DATA_WIDTH-1 :0] RDATA2_o;
// Fixed mode settings
localparam [ 0:0] SYNC_FIFO1_i = 1'd0;
localparam [ 0:0] FMODE1_i = 1'd0;
localparam [ 0:0] POWERDN1_i = 1'd0;
localparam [ 0:0] SLEEP1_i = 1'd0;
localparam [ 0:0] PROTECT1_i = 1'd0;
localparam [11:0] UPAE1_i = 12'd10;
localparam [11:0] UPAF1_i = 12'd10;
localparam [ 0:0] SYNC_FIFO2_i = 1'd0;
localparam [ 0:0] FMODE2_i = 1'd0;
localparam [ 0:0] POWERDN2_i = 1'd0;
localparam [ 0:0] SLEEP2_i = 1'd0;
localparam [ 0:0] PROTECT2_i = 1'd0;
localparam [10:0] UPAE2_i = 11'd10;
localparam [10:0] UPAF2_i = 11'd10;
// Width mode function
function [2:0] mode;
input integer width;
case (width)
1: mode = 3'b101;
2: mode = 3'b110;
4: mode = 3'b100;
8,9: mode = 3'b001;
16, 18: mode = 3'b010;
32, 36: mode = 3'b011;
default: mode = 3'b000;
endcase
endfunction
function integer rwmode;
input integer rwwidth;
case (rwwidth)
1: rwmode = 1;
2: rwmode = 2;
4: rwmode = 4;
8,9: rwmode = 9;
16, 18: rwmode = 18;
default: rwmode = 18;
endcase
endfunction
wire REN_A1_i;
wire REN_A2_i;
wire REN_B1_i;
wire REN_B2_i;
wire WEN_A1_i;
wire WEN_A2_i;
wire WEN_B1_i;
wire WEN_B2_i;
wire [1:0] BE_A1_i;
wire [1:0] BE_A2_i;
wire [1:0] BE_B1_i;
wire [1:0] BE_B2_i;
wire [14:0] ADDR_A1_i;
wire [13:0] ADDR_A2_i;
wire [14:0] ADDR_B1_i;
wire [13:0] ADDR_B2_i;
wire [17:0] WDATA_A1_i;
wire [17:0] WDATA_A2_i;
wire [17:0] WDATA_B1_i;
wire [17:0] WDATA_B2_i;
wire [17:0] RDATA_A1_o;
wire [17:0] RDATA_A2_o;
wire [17:0] RDATA_B1_o;
wire [17:0] RDATA_B2_o;
wire [1:0] WR1_BE;
wire [1:0] WR2_BE;
wire [17:0] PORT_B1_RDATA;
wire [17:0] PORT_A1_WDATA;
wire [17:0] PORT_B2_RDATA;
wire [17:0] PORT_A2_WDATA;
wire [13:0] WR1_ADDR_INT;
wire [13:0] RD1_ADDR_INT;
wire [13:0] WR2_ADDR_INT;
wire [13:0] RD2_ADDR_INT;
wire [13:0] PORT_A1_ADDR;
wire [13:0] PORT_B1_ADDR;
wire [13:0] PORT_A2_ADDR;
wire [13:0] PORT_B2_ADDR;
// Set port width mode (In non-split mode A2/B2 is not active. Set same values anyway to match previous behavior.)
localparam [ 2:0] RMODE_A1_i = mode(WR1_DATA_WIDTH);
localparam [ 2:0] WMODE_A1_i = mode(WR1_DATA_WIDTH);
localparam [ 2:0] RMODE_A2_i = mode(WR2_DATA_WIDTH);
localparam [ 2:0] WMODE_A2_i = mode(WR2_DATA_WIDTH);
localparam [ 2:0] RMODE_B1_i = mode(RD1_DATA_WIDTH);
localparam [ 2:0] WMODE_B1_i = mode(RD1_DATA_WIDTH);
localparam [ 2:0] RMODE_B2_i = mode(RD2_DATA_WIDTH);
localparam [ 2:0] WMODE_B2_i = mode(RD2_DATA_WIDTH);
localparam PORT_A1_WRWIDTH = rwmode(WR1_DATA_WIDTH);
localparam PORT_B1_WRWIDTH = rwmode(RD1_DATA_WIDTH);
localparam PORT_A2_WRWIDTH = rwmode(WR2_DATA_WIDTH);
localparam PORT_B2_WRWIDTH = rwmode(RD2_DATA_WIDTH);
generate
if (WR1_ADDR_WIDTH == 14) begin
assign WR1_ADDR_INT = WR1_ADDR_i;
end else begin
assign WR1_ADDR_INT[13:WR1_ADDR_WIDTH] = 0;
assign WR1_ADDR_INT[WR1_ADDR_WIDTH-1:0] = WR1_ADDR_i;
end
endgenerate
case (WR1_DATA_WIDTH)
1: begin
assign PORT_A1_ADDR = WR1_ADDR_INT;
end
2: begin
assign PORT_A1_ADDR = WR1_ADDR_INT << 1;
end
4: begin
assign PORT_A1_ADDR = WR1_ADDR_INT << 2;
end
8, 9: begin
assign PORT_A1_ADDR = WR1_ADDR_INT << 3;
end
16, 18: begin
assign PORT_A1_ADDR = WR1_ADDR_INT << 4;
end
default: begin
assign PORT_A1_ADDR = WR1_ADDR_INT;
end
endcase
generate
if (RD1_ADDR_WIDTH == 14) begin
assign RD1_ADDR_INT = RD1_ADDR_i;
end else begin
assign RD1_ADDR_INT[13:RD1_ADDR_WIDTH] = 0;
assign RD1_ADDR_INT[RD1_ADDR_WIDTH-1:0] = RD1_ADDR_i;
end
endgenerate
case (RD1_DATA_WIDTH)
1: begin
assign PORT_B1_ADDR = RD1_ADDR_INT;
end
2: begin
assign PORT_B1_ADDR = RD1_ADDR_INT << 1;
end
4: begin
assign PORT_B1_ADDR = RD1_ADDR_INT << 2;
end
8, 9: begin
assign PORT_B1_ADDR = RD1_ADDR_INT << 3;
end
16, 18: begin
assign PORT_B1_ADDR = RD1_ADDR_INT << 4;
end
default: begin
assign PORT_B1_ADDR = RD1_ADDR_INT;
end
endcase
generate
if (WR2_ADDR_WIDTH == 14) begin
assign WR2_ADDR_INT = WR2_ADDR_i;
end else begin
assign WR2_ADDR_INT[13:WR2_ADDR_WIDTH] = 0;
assign WR2_ADDR_INT[WR2_ADDR_WIDTH-1:0] = WR2_ADDR_i;
end
endgenerate
case (WR2_DATA_WIDTH)
1: begin
assign PORT_A2_ADDR = WR2_ADDR_INT;
end
2: begin
assign PORT_A2_ADDR = WR2_ADDR_INT << 1;
end
4: begin
assign PORT_A2_ADDR = WR2_ADDR_INT << 2;
end
8, 9: begin
assign PORT_A2_ADDR = WR2_ADDR_INT << 3;
end
16, 18: begin
assign PORT_A2_ADDR = WR2_ADDR_INT << 4;
end
default: begin
assign PORT_A2_ADDR = WR2_ADDR_INT;
end
endcase
generate
if (RD2_ADDR_WIDTH == 14) begin
assign RD2_ADDR_INT = RD2_ADDR_i;
end else begin
assign RD2_ADDR_INT[13:RD2_ADDR_WIDTH] = 0;
assign RD2_ADDR_INT[RD2_ADDR_WIDTH-1:0] = RD2_ADDR_i;
end
endgenerate
case (RD2_DATA_WIDTH)
1: begin
assign PORT_B2_ADDR = RD2_ADDR_INT;
end
2: begin
assign PORT_B2_ADDR = RD2_ADDR_INT << 1;
end
4: begin
assign PORT_B2_ADDR = RD2_ADDR_INT << 2;
end
8, 9: begin
assign PORT_B2_ADDR = RD2_ADDR_INT << 3;
end
16, 18: begin
assign PORT_B2_ADDR = RD2_ADDR_INT << 4;
end
default: begin
assign PORT_B2_ADDR = RD2_ADDR_INT;
end
endcase
case (BE1_WIDTH)
2: begin
assign WR1_BE = WR1_BE_i[BE1_WIDTH-1 :0];
end
default: begin
assign WR1_BE[1:BE1_WIDTH] = 0;
assign WR1_BE[BE1_WIDTH-1 :0] = WR1_BE_i[BE1_WIDTH-1 :0];
end
endcase
case (BE2_WIDTH)
2: begin
assign WR2_BE = WR2_BE_i[BE2_WIDTH-1 :0];
end
default: begin
assign WR2_BE[1:BE2_WIDTH] = 0;
assign WR2_BE[BE2_WIDTH-1 :0] = WR2_BE_i[BE2_WIDTH-1 :0];
end
endcase
assign REN_A1_i = 1'b0;
assign WEN_A1_i = WEN1_i;
assign BE_A1_i = WR1_BE;
assign REN_A2_i = 1'b0;
assign WEN_A2_i = WEN2_i;
assign BE_A2_i = WR2_BE;
assign REN_B1_i = REN1_i;
assign WEN_B1_i = 1'b0;
assign BE_B1_i = 4'h0;
assign REN_B2_i = REN2_i;
assign WEN_B2_i = 1'b0;
assign BE_B2_i = 4'h0;
generate
if (WR1_DATA_WIDTH == 18) begin
assign PORT_A1_WDATA[WR1_DATA_WIDTH-1:0] = WDATA1_i[WR1_DATA_WIDTH-1:0];
end else if (WR1_DATA_WIDTH == 9) begin
assign PORT_A1_WDATA = {1'b0, WDATA1_i[8], 8'h0, WDATA1_i[7:0]};
end else begin
assign PORT_A1_WDATA[17:WR1_DATA_WIDTH] = 0;
assign PORT_A1_WDATA[WR1_DATA_WIDTH-1:0] = WDATA1_i[WR1_DATA_WIDTH-1:0];
end
endgenerate
assign WDATA_A1_i = PORT_A1_WDATA[17:0];
assign WDATA_B1_i = 18'h0;
generate
if (RD1_DATA_WIDTH == 9) begin
assign PORT_B1_RDATA = { 9'h0, RDATA_B1_o[16], RDATA_B1_o[7:0]};
end else begin
assign PORT_B1_RDATA = RDATA_B1_o;
end
endgenerate
assign RDATA1_o = PORT_B1_RDATA[RD1_DATA_WIDTH-1:0];
generate
if (WR2_DATA_WIDTH == 18) begin
assign PORT_A2_WDATA[WR2_DATA_WIDTH-1:0] = WDATA2_i[WR2_DATA_WIDTH-1:0];
end else if (WR2_DATA_WIDTH == 9) begin
assign PORT_A2_WDATA = {1'b0, WDATA2_i[8], 8'h0, WDATA2_i[7:0]};
end else begin
assign PORT_A2_WDATA[17:WR2_DATA_WIDTH] = 0;
assign PORT_A2_WDATA[WR2_DATA_WIDTH-1:0] = WDATA2_i[WR2_DATA_WIDTH-1:0];
end
endgenerate
assign WDATA_A2_i = PORT_A2_WDATA[17:0];
assign WDATA_B2_i = 18'h0;
generate
if (RD2_DATA_WIDTH == 9) begin
assign PORT_B2_RDATA = { 9'h0, RDATA_B2_o[16], RDATA_B2_o[7:0]};
end else begin
assign PORT_B2_RDATA = RDATA_B2_o;
end
endgenerate
assign RDATA2_o = PORT_B2_RDATA[RD2_DATA_WIDTH-1:0];
defparam _TECHMAP_REPLACE_.MODE_BITS = { 1'b1,
UPAF2_i, UPAE2_i, PROTECT2_i, SLEEP2_i, POWERDN2_i, FMODE2_i, WMODE_B2_i, WMODE_A2_i, RMODE_B2_i, RMODE_A2_i, SYNC_FIFO2_i,
UPAF1_i, UPAE1_i, PROTECT1_i, SLEEP1_i, POWERDN1_i, FMODE1_i, WMODE_B1_i, WMODE_A1_i, RMODE_B1_i, RMODE_A1_i, SYNC_FIFO1_i
};
(* is_inferred = 0 *)
(* is_split = 0 *)
(* is_fifo = 0 *)
(* port_a_dwidth = PORT_A1_WRWIDTH *)
(* port_b_dwidth = PORT_B1_WRWIDTH *)
TDP36K _TECHMAP_REPLACE_ (
.RESET_ni(1'b1),
.CLK_A1_i(WR1_CLK_i),
.ADDR_A1_i({1'b0,PORT_A1_ADDR}),
.WEN_A1_i(WEN_A1_i),
.BE_A1_i(BE_A1_i),
.WDATA_A1_i(WDATA_A1_i),
.REN_A1_i(REN_A1_i),
.RDATA_A1_o(RDATA_A1_o),
.CLK_A2_i(WR2_CLK_i),
.ADDR_A2_i(PORT_A2_ADDR),
.WEN_A2_i(WEN_A2_i),
.BE_A2_i(BE_A2_i),
.WDATA_A2_i(WDATA_A2_i),
.REN_A2_i(REN_A2_i),
.RDATA_A2_o(RDATA_A2_o),
.CLK_B1_i(RD1_CLK_i),
.ADDR_B1_i({1'b0,PORT_B1_ADDR}),
.WEN_B1_i(WEN_B1_i),
.BE_B1_i(BE_B1_i),
.WDATA_B1_i(WDATA_B1_i),
.REN_B1_i(REN_B1_i),
.RDATA_B1_o(RDATA_B1_o),
.CLK_B2_i(RD2_CLK_i),
.ADDR_B2_i(PORT_B2_ADDR),
.WEN_B2_i(WEN_B2_i),
.BE_B2_i(BE_B2_i),
.WDATA_B2_i(WDATA_B2_i),
.REN_B2_i(REN_B2_i),
.RDATA_B2_o(RDATA_B2_o),
.FLUSH1_i(1'b0),
.FLUSH2_i(1'b0)
);
endmodule
module BRAM2x18_dP (
PORT_A1_CLK_i,
PORT_A1_WEN_i,
PORT_A1_WR_BE_i,
PORT_A1_REN_i,
PORT_A1_ADDR_i,
PORT_A1_WR_DATA_i,
PORT_A1_RD_DATA_o,
PORT_B1_CLK_i,
PORT_B1_WEN_i,
PORT_B1_WR_BE_i,
PORT_B1_REN_i,
PORT_B1_ADDR_i,
PORT_B1_WR_DATA_i,
PORT_B1_RD_DATA_o,
PORT_A2_CLK_i,
PORT_A2_WEN_i,
PORT_A2_WR_BE_i,
PORT_A2_REN_i,
PORT_A2_ADDR_i,
PORT_A2_WR_DATA_i,
PORT_A2_RD_DATA_o,
PORT_B2_CLK_i,
PORT_B2_WEN_i,
PORT_B2_WR_BE_i,
PORT_B2_REN_i,
PORT_B2_ADDR_i,
PORT_B2_WR_DATA_i,
PORT_B2_RD_DATA_o
);
parameter PORT_A1_AWIDTH = 10;
parameter PORT_A1_DWIDTH = 18;
parameter PORT_A1_WR_BE_WIDTH = 2;
parameter PORT_B1_AWIDTH = 10;
parameter PORT_B1_DWIDTH = 18;
parameter PORT_B1_WR_BE_WIDTH = 2;
parameter PORT_A2_AWIDTH = 10;
parameter PORT_A2_DWIDTH = 18;
parameter PORT_A2_WR_BE_WIDTH = 2;
parameter PORT_B2_AWIDTH = 10;
parameter PORT_B2_DWIDTH = 18;
parameter PORT_B2_WR_BE_WIDTH = 2;
input PORT_A1_CLK_i;
input [PORT_A1_AWIDTH-1:0] PORT_A1_ADDR_i;
input [PORT_A1_DWIDTH-1:0] PORT_A1_WR_DATA_i;
input PORT_A1_WEN_i;
input [PORT_A1_WR_BE_WIDTH-1:0] PORT_A1_WR_BE_i;
input PORT_A1_REN_i;
output [PORT_A1_DWIDTH-1:0] PORT_A1_RD_DATA_o;
input PORT_B1_CLK_i;
input [PORT_B1_AWIDTH-1:0] PORT_B1_ADDR_i;
input [PORT_B1_DWIDTH-1:0] PORT_B1_WR_DATA_i;
input PORT_B1_WEN_i;
input [PORT_B1_WR_BE_WIDTH-1:0] PORT_B1_WR_BE_i;
input PORT_B1_REN_i;
output [PORT_B1_DWIDTH-1:0] PORT_B1_RD_DATA_o;
input PORT_A2_CLK_i;
input [PORT_A2_AWIDTH-1:0] PORT_A2_ADDR_i;
input [PORT_A2_DWIDTH-1:0] PORT_A2_WR_DATA_i;
input PORT_A2_WEN_i;
input [PORT_A2_WR_BE_WIDTH-1:0] PORT_A2_WR_BE_i;
input PORT_A2_REN_i;
output [PORT_A2_DWIDTH-1:0] PORT_A2_RD_DATA_o;
input PORT_B2_CLK_i;
input [PORT_B2_AWIDTH-1:0] PORT_B2_ADDR_i;
input [PORT_B2_DWIDTH-1:0] PORT_B2_WR_DATA_i;
input PORT_B2_WEN_i;
input [PORT_B2_WR_BE_WIDTH-1:0] PORT_B2_WR_BE_i;
input PORT_B2_REN_i;
output [PORT_B2_DWIDTH-1:0] PORT_B2_RD_DATA_o;
// Fixed mode settings
localparam [ 0:0] SYNC_FIFO1_i = 1'd0;
localparam [ 0:0] FMODE1_i = 1'd0;
localparam [ 0:0] POWERDN1_i = 1'd0;
localparam [ 0:0] SLEEP1_i = 1'd0;
localparam [ 0:0] PROTECT1_i = 1'd0;
localparam [11:0] UPAE1_i = 12'd10;
localparam [11:0] UPAF1_i = 12'd10;
localparam [ 0:0] SYNC_FIFO2_i = 1'd0;
localparam [ 0:0] FMODE2_i = 1'd0;
localparam [ 0:0] POWERDN2_i = 1'd0;
localparam [ 0:0] SLEEP2_i = 1'd0;
localparam [ 0:0] PROTECT2_i = 1'd0;
localparam [10:0] UPAE2_i = 11'd10;
localparam [10:0] UPAF2_i = 11'd10;
// Width mode function
function [2:0] mode;
input integer width;
case (width)
1: mode = 3'b101;
2: mode = 3'b110;
4: mode = 3'b100;
8,9: mode = 3'b001;
16, 18: mode = 3'b010;
32, 36: mode = 3'b011;
default: mode = 3'b000;
endcase
endfunction
function integer rwmode;
input integer rwwidth;
case (rwwidth)
1: rwmode = 1;
2: rwmode = 2;
4: rwmode = 4;
8,9: rwmode = 9;
16, 18: rwmode = 18;
default: rwmode = 18;
endcase
endfunction
wire REN_A1_i;
wire REN_A2_i;
wire REN_B1_i;
wire REN_B2_i;
wire WEN_A1_i;
wire WEN_A2_i;
wire WEN_B1_i;
wire WEN_B2_i;
wire [1:0] BE_A1_i;
wire [1:0] BE_A2_i;
wire [1:0] BE_B1_i;
wire [1:0] BE_B2_i;
wire [14:0] ADDR_A1_i;
wire [13:0] ADDR_A2_i;
wire [14:0] ADDR_B1_i;
wire [13:0] ADDR_B2_i;
wire [17:0] WDATA_A1_i;
wire [17:0] WDATA_A2_i;
wire [17:0] WDATA_B1_i;
wire [17:0] WDATA_B2_i;
wire [17:0] RDATA_A1_o;
wire [17:0] RDATA_A2_o;
wire [17:0] RDATA_B1_o;
wire [17:0] RDATA_B2_o;
wire [1:0] PORT_A1_WR_BE;
wire [1:0] PORT_B1_WR_BE;
wire [1:0] PORT_A2_WR_BE;
wire [1:0] PORT_B2_WR_BE;
wire [17:0] PORT_B1_WDATA;
wire [17:0] PORT_B1_RDATA;
wire [17:0] PORT_A1_WDATA;
wire [17:0] PORT_A1_RDATA;
wire [17:0] PORT_B2_WDATA;
wire [17:0] PORT_B2_RDATA;
wire [17:0] PORT_A2_WDATA;
wire [17:0] PORT_A2_RDATA;
wire [13:0] PORT_A1_ADDR_INT;
wire [13:0] PORT_B1_ADDR_INT;
wire [13:0] PORT_A2_ADDR_INT;
wire [13:0] PORT_B2_ADDR_INT;
wire [13:0] PORT_A1_ADDR;
wire [13:0] PORT_B1_ADDR;
wire [13:0] PORT_A2_ADDR;
wire [13:0] PORT_B2_ADDR;
wire PORT_A1_CLK;
wire PORT_B1_CLK;
wire PORT_A2_CLK;
wire PORT_B2_CLK;
// Set port width mode (In non-split mode A2/B2 is not active. Set same values anyway to match previous behavior.)
localparam [ 2:0] RMODE_A1_i = mode(PORT_A1_DWIDTH);
localparam [ 2:0] WMODE_A1_i = mode(PORT_A1_DWIDTH);
localparam [ 2:0] RMODE_A2_i = mode(PORT_A2_DWIDTH);
localparam [ 2:0] WMODE_A2_i = mode(PORT_A2_DWIDTH);
localparam [ 2:0] RMODE_B1_i = mode(PORT_B1_DWIDTH);
localparam [ 2:0] WMODE_B1_i = mode(PORT_B1_DWIDTH);
localparam [ 2:0] RMODE_B2_i = mode(PORT_B2_DWIDTH);
localparam [ 2:0] WMODE_B2_i = mode(PORT_B2_DWIDTH);
localparam PORT_A1_WRWIDTH = rwmode(PORT_A1_DWIDTH);
localparam PORT_B1_WRWIDTH = rwmode(PORT_B1_DWIDTH);
localparam PORT_A2_WRWIDTH = rwmode(PORT_A2_DWIDTH);
localparam PORT_B2_WRWIDTH = rwmode(PORT_B2_DWIDTH);
assign PORT_A1_CLK = PORT_A1_CLK_i;
assign PORT_B1_CLK = PORT_B1_CLK_i;
assign PORT_A2_CLK = PORT_A2_CLK_i;
assign PORT_B2_CLK = PORT_B2_CLK_i;
generate
if (PORT_A1_AWIDTH == 14) begin
assign PORT_A1_ADDR_INT = PORT_A1_ADDR_i;
end else begin
assign PORT_A1_ADDR_INT[13:PORT_A1_AWIDTH] = 0;
assign PORT_A1_ADDR_INT[PORT_A1_AWIDTH-1:0] = PORT_A1_ADDR_i;
end
endgenerate
case (PORT_A1_DWIDTH)
1: begin
assign PORT_A1_ADDR = PORT_A1_ADDR_INT;
end
2: begin
assign PORT_A1_ADDR = PORT_A1_ADDR_INT << 1;
end
4: begin
assign PORT_A1_ADDR = PORT_A1_ADDR_INT << 2;
end
8, 9: begin
assign PORT_A1_ADDR = PORT_A1_ADDR_INT << 3;
end
16, 18: begin
assign PORT_A1_ADDR = PORT_A1_ADDR_INT << 4;
end
default: begin
assign PORT_A1_ADDR = PORT_A1_ADDR_INT;
end
endcase
generate
if (PORT_B1_AWIDTH == 14) begin
assign PORT_B1_ADDR_INT = PORT_B1_ADDR_i;
end else begin
assign PORT_B1_ADDR_INT[13:PORT_B1_AWIDTH] = 0;
assign PORT_B1_ADDR_INT[PORT_B1_AWIDTH-1:0] = PORT_B1_ADDR_i;
end
endgenerate
case (PORT_B1_DWIDTH)
1: begin
assign PORT_B1_ADDR = PORT_B1_ADDR_INT;
end
2: begin
assign PORT_B1_ADDR = PORT_B1_ADDR_INT << 1;
end
4: begin
assign PORT_B1_ADDR = PORT_B1_ADDR_INT << 2;
end
8, 9: begin
assign PORT_B1_ADDR = PORT_B1_ADDR_INT << 3;
end
16, 18: begin
assign PORT_B1_ADDR = PORT_B1_ADDR_INT << 4;
end
default: begin
assign PORT_B1_ADDR = PORT_B1_ADDR_INT;
end
endcase
generate
if (PORT_A2_AWIDTH == 14) begin
assign PORT_A2_ADDR_INT = PORT_A2_ADDR_i;
end else begin
assign PORT_A2_ADDR_INT[13:PORT_A2_AWIDTH] = 0;
assign PORT_A2_ADDR_INT[PORT_A2_AWIDTH-1:0] = PORT_A2_ADDR_i;
end
endgenerate
case (PORT_A2_DWIDTH)
1: begin
assign PORT_A2_ADDR = PORT_A2_ADDR_INT;
end
2: begin
assign PORT_A2_ADDR = PORT_A2_ADDR_INT << 1;
end
4: begin
assign PORT_A2_ADDR = PORT_A2_ADDR_INT << 2;
end
8, 9: begin
assign PORT_A2_ADDR = PORT_A2_ADDR_INT << 3;
end
16, 18: begin
assign PORT_A2_ADDR = PORT_A2_ADDR_INT << 4;
end
default: begin
assign PORT_A2_ADDR = PORT_A2_ADDR_INT;
end
endcase
generate
if (PORT_B2_AWIDTH == 14) begin
assign PORT_B2_ADDR_INT = PORT_B2_ADDR_i;
end else begin
assign PORT_B2_ADDR_INT[13:PORT_B2_AWIDTH] = 0;
assign PORT_B2_ADDR_INT[PORT_B2_AWIDTH-1:0] = PORT_B2_ADDR_i;
end
endgenerate
case (PORT_B2_DWIDTH)
1: begin
assign PORT_B2_ADDR = PORT_B2_ADDR_INT;
end
2: begin
assign PORT_B2_ADDR = PORT_B2_ADDR_INT << 1;
end
4: begin
assign PORT_B2_ADDR = PORT_B2_ADDR_INT << 2;
end
8, 9: begin
assign PORT_B2_ADDR = PORT_B2_ADDR_INT << 3;
end
16, 18: begin
assign PORT_B2_ADDR = PORT_B2_ADDR_INT << 4;
end
default: begin
assign PORT_B2_ADDR = PORT_B2_ADDR_INT;
end
endcase
case (PORT_A1_WR_BE_WIDTH)
2: begin
assign PORT_A1_WR_BE = PORT_A1_WR_BE_i[PORT_A1_WR_BE_WIDTH-1 :0];
end
default: begin
assign PORT_A1_WR_BE[1:PORT_A1_WR_BE_WIDTH] = 0;
assign PORT_A1_WR_BE[PORT_A1_WR_BE_WIDTH-1 :0] = PORT_A1_WR_BE_i[PORT_A1_WR_BE_WIDTH-1 :0];
end
endcase
case (PORT_B1_WR_BE_WIDTH)
2: begin
assign PORT_B1_WR_BE = PORT_B1_WR_BE_i[PORT_B1_WR_BE_WIDTH-1 :0];
end
default: begin
assign PORT_B1_WR_BE[1:PORT_B1_WR_BE_WIDTH] = 0;
assign PORT_B1_WR_BE[PORT_B1_WR_BE_WIDTH-1 :0] = PORT_B1_WR_BE_i[PORT_B1_WR_BE_WIDTH-1 :0];
end
endcase
case (PORT_A2_WR_BE_WIDTH)
2: begin
assign PORT_A2_WR_BE = PORT_A2_WR_BE_i[PORT_A2_WR_BE_WIDTH-1 :0];
end
default: begin
assign PORT_A2_WR_BE[1:PORT_A2_WR_BE_WIDTH] = 0;
assign PORT_A2_WR_BE[PORT_A2_WR_BE_WIDTH-1 :0] = PORT_A2_WR_BE_i[PORT_A2_WR_BE_WIDTH-1 :0];
end
endcase
case (PORT_B2_WR_BE_WIDTH)
2: begin
assign PORT_B2_WR_BE = PORT_B2_WR_BE_i[PORT_B2_WR_BE_WIDTH-1 :0];
end
default: begin
assign PORT_B2_WR_BE[1:PORT_B2_WR_BE_WIDTH] = 0;
assign PORT_B2_WR_BE[PORT_B2_WR_BE_WIDTH-1 :0] = PORT_B2_WR_BE_i[PORT_B2_WR_BE_WIDTH-1 :0];
end
endcase
assign REN_A1_i = PORT_A1_REN_i;
assign WEN_A1_i = PORT_A1_WEN_i;
assign BE_A1_i = PORT_A1_WR_BE;
assign REN_A2_i = PORT_A2_REN_i;
assign WEN_A2_i = PORT_A2_WEN_i;
assign BE_A2_i = PORT_A2_WR_BE;
assign REN_B1_i = PORT_B1_REN_i;
assign WEN_B1_i = PORT_B1_WEN_i;
assign BE_B1_i = PORT_B1_WR_BE;
assign REN_B2_i = PORT_B2_REN_i;
assign WEN_B2_i = PORT_B2_WEN_i;
assign BE_B2_i = PORT_B2_WR_BE;
generate
if (PORT_A1_DWIDTH == 18) begin
assign PORT_A1_WDATA[PORT_A1_DWIDTH-1:0] = PORT_A1_WR_DATA_i[PORT_A1_DWIDTH-1:0];
end else if (PORT_A1_DWIDTH == 9) begin
assign PORT_A1_WDATA = {1'b0, PORT_A1_WR_DATA_i[8], 8'h0, PORT_A1_WR_DATA_i[7:0]};
end else begin
assign PORT_A1_WDATA[17:PORT_A1_DWIDTH] = 0;
assign PORT_A1_WDATA[PORT_A1_DWIDTH-1:0] = PORT_A1_WR_DATA_i[PORT_A1_DWIDTH-1:0];
end
endgenerate
assign WDATA_A1_i = PORT_A1_WDATA;
generate
if (PORT_A2_DWIDTH == 18) begin
assign PORT_A2_WDATA[PORT_A2_DWIDTH-1:0] = PORT_A2_WR_DATA_i[PORT_A2_DWIDTH-1:0];
end else if (PORT_A2_DWIDTH == 9) begin
assign PORT_A2_WDATA = {1'b0, PORT_A2_WR_DATA_i[8], 8'h0, PORT_A2_WR_DATA_i[7:0]};
end else begin
assign PORT_A2_WDATA[17:PORT_A2_DWIDTH] = 0;
assign PORT_A2_WDATA[PORT_A2_DWIDTH-1:0] = PORT_A2_WR_DATA_i[PORT_A2_DWIDTH-1:0];
end
endgenerate
assign WDATA_A2_i = PORT_A2_WDATA;
generate
if (PORT_A1_DWIDTH == 9) begin
assign PORT_A1_RDATA = { 9'h0, RDATA_A1_o[16], RDATA_A1_o[7:0]};
end else begin
assign PORT_A1_RDATA = RDATA_A1_o;
end
endgenerate
assign PORT_A1_RD_DATA_o = PORT_A1_RDATA[PORT_A1_DWIDTH-1:0];
generate
if (PORT_A2_DWIDTH == 9) begin
assign PORT_A2_RDATA = { 9'h0, RDATA_A2_o[16], RDATA_A2_o[7:0]};
end else begin
assign PORT_A2_RDATA = RDATA_A2_o;
end
endgenerate
assign PORT_A2_RD_DATA_o = PORT_A2_RDATA[PORT_A2_DWIDTH-1:0];
generate
if (PORT_B1_DWIDTH == 18) begin
assign PORT_B1_WDATA[PORT_B1_DWIDTH-1:0] = PORT_B1_WR_DATA_i[PORT_B1_DWIDTH-1:0];
end else if (PORT_B1_DWIDTH == 9) begin
assign PORT_B1_WDATA = {1'b0, PORT_B1_WR_DATA_i[8], 8'h0, PORT_B1_WR_DATA_i[7:0]};
end else begin
assign PORT_B1_WDATA[17:PORT_B1_DWIDTH] = 0;
assign PORT_B1_WDATA[PORT_B1_DWIDTH-1:0] = PORT_B1_WR_DATA_i[PORT_B1_DWIDTH-1:0];
end
endgenerate
assign WDATA_B1_i = PORT_B1_WDATA;
generate
if (PORT_B2_DWIDTH == 18) begin
assign PORT_B2_WDATA[PORT_B2_DWIDTH-1:0] = PORT_B2_WR_DATA_i[PORT_B2_DWIDTH-1:0];
end else if (PORT_B2_DWIDTH == 9) begin
assign PORT_B2_WDATA = {1'b0, PORT_B2_WR_DATA_i[8], 8'h0, PORT_B2_WR_DATA_i[7:0]};
end else begin
assign PORT_B2_WDATA[17:PORT_B2_DWIDTH] = 0;
assign PORT_B2_WDATA[PORT_B2_DWIDTH-1:0] = PORT_B2_WR_DATA_i[PORT_B2_DWIDTH-1:0];
end
endgenerate
assign WDATA_B2_i = PORT_B2_WDATA;
generate
if (PORT_B1_DWIDTH == 9) begin
assign PORT_B1_RDATA = { 9'h0, RDATA_B1_o[16], RDATA_B1_o[7:0]};
end else begin
assign PORT_B1_RDATA = RDATA_B1_o;
end
endgenerate
assign PORT_B1_RD_DATA_o = PORT_B1_RDATA[PORT_B1_DWIDTH-1:0];
generate
if (PORT_B2_DWIDTH == 9) begin
assign PORT_B2_RDATA = { 9'h0, RDATA_B2_o[16], RDATA_B2_o[7:0]};
end else begin
assign PORT_B2_RDATA = RDATA_B2_o;
end
endgenerate
assign PORT_B2_RD_DATA_o = PORT_B2_RDATA[PORT_B2_DWIDTH-1:0];
defparam _TECHMAP_REPLACE_.MODE_BITS = { 1'b1,
UPAF2_i, UPAE2_i, PROTECT2_i, SLEEP2_i, POWERDN2_i, FMODE2_i, WMODE_B2_i, WMODE_A2_i, RMODE_B2_i, RMODE_A2_i, SYNC_FIFO2_i,
UPAF1_i, UPAE1_i, PROTECT1_i, SLEEP1_i, POWERDN1_i, FMODE1_i, WMODE_B1_i, WMODE_A1_i, RMODE_B1_i, RMODE_A1_i, SYNC_FIFO1_i
};
(* is_inferred = 0 *)
(* is_split = 0 *)
(* is_fifo = 0 *)
(* port_a_dwidth = PORT_A1_WRWIDTH *)
(* port_b_dwidth = PORT_B1_WRWIDTH *)
TDP36K _TECHMAP_REPLACE_ (
.RESET_ni(1'b1),
.CLK_A1_i(PORT_A1_CLK),
.ADDR_A1_i({1'b0,PORT_A1_ADDR}),
.WEN_A1_i(WEN_A1_i),
.BE_A1_i(BE_A1_i),
.WDATA_A1_i(WDATA_A1_i),
.REN_A1_i(REN_A1_i),
.RDATA_A1_o(RDATA_A1_o),
.CLK_A2_i(PORT_A2_CLK),
.ADDR_A2_i(PORT_A2_ADDR),
.WEN_A2_i(WEN_A2_i),
.BE_A2_i(BE_A2_i),
.WDATA_A2_i(WDATA_A2_i),
.REN_A2_i(REN_A2_i),
.RDATA_A2_o(RDATA_A2_o),
.CLK_B1_i(PORT_B1_CLK),
.ADDR_B1_i({1'b0,PORT_B1_ADDR}),
.WEN_B1_i(WEN_B1_i),
.BE_B1_i(BE_B1_i),
.WDATA_B1_i(WDATA_B1_i),
.REN_B1_i(REN_B1_i),
.RDATA_B1_o(RDATA_B1_o),
.CLK_B2_i(PORT_B2_CLK),
.ADDR_B2_i(PORT_B2_ADDR),
.WEN_B2_i(WEN_B2_i),
.BE_B2_i(BE_B2_i),
.WDATA_B2_i(WDATA_B2_i),
.REN_B2_i(REN_B2_i),
.RDATA_B2_o(RDATA_B2_o),
.FLUSH1_i(1'b0),
.FLUSH2_i(1'b0)
);
endmodule
module BRAM2x18_SFIFO (
DIN1,
PUSH1,
POP1,
CLK1,
Async_Flush1,
Overrun_Error1,
Full_Watermark1,
Almost_Full1,
Full1,
Underrun_Error1,
Empty_Watermark1,
Almost_Empty1,
Empty1,
DOUT1,
DIN2,
PUSH2,
POP2,
CLK2,
Async_Flush2,
Overrun_Error2,
Full_Watermark2,
Almost_Full2,
Full2,
Underrun_Error2,
Empty_Watermark2,
Almost_Empty2,
Empty2,
DOUT2
);
parameter WR1_DATA_WIDTH = 18;
parameter RD1_DATA_WIDTH = 18;
parameter WR2_DATA_WIDTH = 18;
parameter RD2_DATA_WIDTH = 18;
parameter UPAE_DBITS1 = 12'd10;
parameter UPAF_DBITS1 = 12'd10;
parameter UPAE_DBITS2 = 11'd10;
parameter UPAF_DBITS2 = 11'd10;
input CLK1;
input PUSH1, POP1;
input [WR1_DATA_WIDTH-1:0] DIN1;
input Async_Flush1;
output [RD1_DATA_WIDTH-1:0] DOUT1;
output Almost_Full1, Almost_Empty1;
output Full1, Empty1;
output Full_Watermark1, Empty_Watermark1;
output Overrun_Error1, Underrun_Error1;
input CLK2;
input PUSH2, POP2;
input [WR2_DATA_WIDTH-1:0] DIN2;
input Async_Flush2;
output [RD2_DATA_WIDTH-1:0] DOUT2;
output Almost_Full2, Almost_Empty2;
output Full2, Empty2;
output Full_Watermark2, Empty_Watermark2;
output Overrun_Error2, Underrun_Error2;
// Fixed mode settings
localparam [ 0:0] SYNC_FIFO1_i = 1'd1;
localparam [ 0:0] FMODE1_i = 1'd1;
localparam [ 0:0] POWERDN1_i = 1'd0;
localparam [ 0:0] SLEEP1_i = 1'd0;
localparam [ 0:0] PROTECT1_i = 1'd0;
localparam [11:0] UPAE1_i = UPAE_DBITS1;
localparam [11:0] UPAF1_i = UPAF_DBITS1;
localparam [ 0:0] SYNC_FIFO2_i = 1'd1;
localparam [ 0:0] FMODE2_i = 1'd1;
localparam [ 0:0] POWERDN2_i = 1'd0;
localparam [ 0:0] SLEEP2_i = 1'd0;
localparam [ 0:0] PROTECT2_i = 1'd0;
localparam [10:0] UPAE2_i = UPAE_DBITS2;
localparam [10:0] UPAF2_i = UPAF_DBITS2;
// Width mode function
function [2:0] mode;
input integer width;
case (width)
1: mode = 3'b101;
2: mode = 3'b110;
4: mode = 3'b100;
8,9: mode = 3'b001;
16, 18: mode = 3'b010;
32, 36: mode = 3'b011;
default: mode = 3'b000;
endcase
endfunction
function integer rwmode;
input integer rwwidth;
case (rwwidth)
1: rwmode = 1;
2: rwmode = 2;
4: rwmode = 4;
8,9: rwmode = 9;
16, 18: rwmode = 18;
default: rwmode = 18;
endcase
endfunction
wire [17:0] in_reg1;
wire [17:0] out_reg1;
wire [17:0] fifo1_flags;
wire [17:0] in_reg2;
wire [17:0] out_reg2;
wire [17:0] fifo2_flags;
wire Push_Clk1, Pop_Clk1;
wire Push_Clk2, Pop_Clk2;
assign Push_Clk1 = CLK1;
assign Pop_Clk1 = CLK1;
assign Push_Clk2 = CLK2;
assign Pop_Clk2 = CLK2;
assign Overrun_Error1 = fifo1_flags[0];
assign Full_Watermark1 = fifo1_flags[1];
assign Almost_Full1 = fifo1_flags[2];
assign Full1 = fifo1_flags[3];
assign Underrun_Error1 = fifo1_flags[4];
assign Empty_Watermark1 = fifo1_flags[5];
assign Almost_Empty1 = fifo1_flags[6];
assign Empty1 = fifo1_flags[7];
assign Overrun_Error2 = fifo2_flags[0];
assign Full_Watermark2 = fifo2_flags[1];
assign Almost_Full2 = fifo2_flags[2];
assign Full2 = fifo2_flags[3];
assign Underrun_Error2 = fifo2_flags[4];
assign Empty_Watermark2 = fifo2_flags[5];
assign Almost_Empty2 = fifo2_flags[6];
assign Empty2 = fifo2_flags[7];
localparam [ 2:0] RMODE_A1_i = mode(WR1_DATA_WIDTH);
localparam [ 2:0] WMODE_A1_i = mode(WR1_DATA_WIDTH);
localparam [ 2:0] RMODE_A2_i = mode(WR2_DATA_WIDTH);
localparam [ 2:0] WMODE_A2_i = mode(WR2_DATA_WIDTH);
localparam [ 2:0] RMODE_B1_i = mode(RD1_DATA_WIDTH);
localparam [ 2:0] WMODE_B1_i = mode(RD1_DATA_WIDTH);
localparam [ 2:0] RMODE_B2_i = mode(RD2_DATA_WIDTH);
localparam [ 2:0] WMODE_B2_i = mode(RD2_DATA_WIDTH);
localparam PORT_A1_WRWIDTH = rwmode(WR1_DATA_WIDTH);
localparam PORT_B1_WRWIDTH = rwmode(RD1_DATA_WIDTH);
localparam PORT_A2_WRWIDTH = rwmode(WR2_DATA_WIDTH);
localparam PORT_B2_WRWIDTH = rwmode(RD2_DATA_WIDTH);
generate
if (WR1_DATA_WIDTH == 18) begin
assign in_reg1[17:0] = DIN1[17:0];
end else if (WR1_DATA_WIDTH == 9) begin
assign in_reg1[17:0] = {1'b0, DIN1[8], 8'h0, DIN1[7:0]};
end else begin
assign in_reg1[17:WR1_DATA_WIDTH] = 0;
assign in_reg1[WR1_DATA_WIDTH-1:0] = DIN1[WR1_DATA_WIDTH-1:0];
end
endgenerate
generate
if (RD1_DATA_WIDTH == 9) begin
assign DOUT1[RD1_DATA_WIDTH-1:0] = {out_reg1[16], out_reg1[7:0]};
end else begin
assign DOUT1[RD1_DATA_WIDTH-1:0] = out_reg1[RD1_DATA_WIDTH-1:0];
end
endgenerate
generate
if (WR2_DATA_WIDTH == 18) begin
assign in_reg2[17:0] = DIN2[17:0];
end else if (WR2_DATA_WIDTH == 9) begin
assign in_reg2[17:0] = {1'b0, DIN2[8], 8'h0, DIN2[7:0]};
end else begin
assign in_reg2[17:WR2_DATA_WIDTH] = 0;
assign in_reg2[WR2_DATA_WIDTH-1:0] = DIN2[WR2_DATA_WIDTH-1:0];
end
endgenerate
generate
if (RD2_DATA_WIDTH == 9) begin
assign DOUT2[RD2_DATA_WIDTH-1:0] = {out_reg2[16], out_reg2[7:0]};
end else begin
assign DOUT2[RD2_DATA_WIDTH-1:0] = out_reg2[RD2_DATA_WIDTH-1:0];
end
endgenerate
defparam _TECHMAP_REPLACE_.MODE_BITS = { 1'b1,
UPAF2_i, UPAE2_i, PROTECT2_i, SLEEP2_i, POWERDN2_i, FMODE2_i, WMODE_B2_i, WMODE_A2_i, RMODE_B2_i, RMODE_A2_i, SYNC_FIFO2_i,
UPAF1_i, UPAE1_i, PROTECT1_i, SLEEP1_i, POWERDN1_i, FMODE1_i, WMODE_B1_i, WMODE_A1_i, RMODE_B1_i, RMODE_A1_i, SYNC_FIFO1_i
};
(* is_fifo = 1 *)
(* sync_fifo = 1 *)
(* is_split = 0 *)
(* is_inferred = 0 *)
(* port_a_dwidth = PORT_A1_WRWIDTH *)
(* port_b_dwidth = PORT_B1_WRWIDTH *)
TDP36K _TECHMAP_REPLACE_ (
.RESET_ni(1'b1),
.WDATA_A1_i(in_reg1[17:0]),
.WDATA_A2_i(in_reg2[17:0]),
.RDATA_A1_o(fifo1_flags),
.RDATA_A2_o(fifo2_flags),
.ADDR_A1_i(14'h0),
.ADDR_A2_i(14'h0),
.CLK_A1_i(Push_Clk1),
.CLK_A2_i(Push_Clk2),
.REN_A1_i(1'b1),
.REN_A2_i(1'b1),
.WEN_A1_i(PUSH1),
.WEN_A2_i(PUSH2),
.BE_A1_i(2'b11),
.BE_A2_i(2'b11),
.WDATA_B1_i(18'h0),
.WDATA_B2_i(18'h0),
.RDATA_B1_o(out_reg1[17:0]),
.RDATA_B2_o(out_reg2[17:0]),
.ADDR_B1_i(14'h0),
.ADDR_B2_i(14'h0),
.CLK_B1_i(Pop_Clk1),
.CLK_B2_i(Pop_Clk2),
.REN_B1_i(POP1),
.REN_B2_i(POP2),
.WEN_B1_i(1'b0),
.WEN_B2_i(1'b0),
.BE_B1_i(2'b11),
.BE_B2_i(2'b11),
.FLUSH1_i(Async_Flush1),
.FLUSH2_i(Async_Flush2)
);
endmodule
module BRAM2x18_AFIFO (
DIN1,
PUSH1,
POP1,
Push_Clk1,
Pop_Clk1,
Async_Flush1,
Overrun_Error1,
Full_Watermark1,
Almost_Full1,
Full1,
Underrun_Error1,
Empty_Watermark1,
Almost_Empty1,
Empty1,
DOUT1,
DIN2,
PUSH2,
POP2,
Push_Clk2,
Pop_Clk2,
Async_Flush2,
Overrun_Error2,
Full_Watermark2,
Almost_Full2,
Full2,
Underrun_Error2,
Empty_Watermark2,
Almost_Empty2,
Empty2,
DOUT2
);
parameter WR1_DATA_WIDTH = 18;
parameter RD1_DATA_WIDTH = 18;
parameter WR2_DATA_WIDTH = 18;
parameter RD2_DATA_WIDTH = 18;
parameter UPAE_DBITS1 = 12'd10;
parameter UPAF_DBITS1 = 12'd10;
parameter UPAE_DBITS2 = 11'd10;
parameter UPAF_DBITS2 = 11'd10;
input Push_Clk1, Pop_Clk1;
input PUSH1, POP1;
input [WR1_DATA_WIDTH-1:0] DIN1;
input Async_Flush1;
output [RD1_DATA_WIDTH-1:0] DOUT1;
output Almost_Full1, Almost_Empty1;
output Full1, Empty1;
output Full_Watermark1, Empty_Watermark1;
output Overrun_Error1, Underrun_Error1;
input Push_Clk2, Pop_Clk2;
input PUSH2, POP2;
input [WR2_DATA_WIDTH-1:0] DIN2;
input Async_Flush2;
output [RD2_DATA_WIDTH-1:0] DOUT2;
output Almost_Full2, Almost_Empty2;
output Full2, Empty2;
output Full_Watermark2, Empty_Watermark2;
output Overrun_Error2, Underrun_Error2;
// Fixed mode settings
localparam [ 0:0] SYNC_FIFO1_i = 1'd0;
localparam [ 0:0] FMODE1_i = 1'd1;
localparam [ 0:0] POWERDN1_i = 1'd0;
localparam [ 0:0] SLEEP1_i = 1'd0;
localparam [ 0:0] PROTECT1_i = 1'd0;
localparam [11:0] UPAE1_i = UPAE_DBITS1;
localparam [11:0] UPAF1_i = UPAF_DBITS1;
localparam [ 0:0] SYNC_FIFO2_i = 1'd0;
localparam [ 0:0] FMODE2_i = 1'd1;
localparam [ 0:0] POWERDN2_i = 1'd0;
localparam [ 0:0] SLEEP2_i = 1'd0;
localparam [ 0:0] PROTECT2_i = 1'd0;
localparam [10:0] UPAE2_i = UPAE_DBITS2;
localparam [10:0] UPAF2_i = UPAF_DBITS2;
// Width mode function
function [2:0] mode;
input integer width;
case (width)
1: mode = 3'b101;
2: mode = 3'b110;
4: mode = 3'b100;
8,9: mode = 3'b001;
16, 18: mode = 3'b010;
32, 36: mode = 3'b011;
default: mode = 3'b000;
endcase
endfunction
function integer rwmode;
input integer rwwidth;
case (rwwidth)
1: rwmode = 1;
2: rwmode = 2;
4: rwmode = 4;
8,9: rwmode = 9;
16, 18: rwmode = 18;
default: rwmode = 18;
endcase
endfunction
wire [17:0] in_reg1;
wire [17:0] out_reg1;
wire [17:0] fifo1_flags;
wire [17:0] in_reg2;
wire [17:0] out_reg2;
wire [17:0] fifo2_flags;
wire Push_Clk1, Pop_Clk1;
wire Push_Clk2, Pop_Clk2;
assign Overrun_Error1 = fifo1_flags[0];
assign Full_Watermark1 = fifo1_flags[1];
assign Almost_Full1 = fifo1_flags[2];
assign Full1 = fifo1_flags[3];
assign Underrun_Error1 = fifo1_flags[4];
assign Empty_Watermark1 = fifo1_flags[5];
assign Almost_Empty1 = fifo1_flags[6];
assign Empty1 = fifo1_flags[7];
assign Overrun_Error2 = fifo2_flags[0];
assign Full_Watermark2 = fifo2_flags[1];
assign Almost_Full2 = fifo2_flags[2];
assign Full2 = fifo2_flags[3];
assign Underrun_Error2 = fifo2_flags[4];
assign Empty_Watermark2 = fifo2_flags[5];
assign Almost_Empty2 = fifo2_flags[6];
assign Empty2 = fifo2_flags[7];
localparam [ 2:0] RMODE_A1_i = mode(WR1_DATA_WIDTH);
localparam [ 2:0] WMODE_A1_i = mode(WR1_DATA_WIDTH);
localparam [ 2:0] RMODE_A2_i = mode(WR2_DATA_WIDTH);
localparam [ 2:0] WMODE_A2_i = mode(WR2_DATA_WIDTH);
localparam [ 2:0] RMODE_B1_i = mode(RD1_DATA_WIDTH);
localparam [ 2:0] WMODE_B1_i = mode(RD1_DATA_WIDTH);
localparam [ 2:0] RMODE_B2_i = mode(RD2_DATA_WIDTH);
localparam [ 2:0] WMODE_B2_i = mode(RD2_DATA_WIDTH);
localparam PORT_A1_WRWIDTH = rwmode(WR1_DATA_WIDTH);
localparam PORT_B1_WRWIDTH = rwmode(RD1_DATA_WIDTH);
localparam PORT_A2_WRWIDTH = rwmode(WR2_DATA_WIDTH);
localparam PORT_B2_WRWIDTH = rwmode(RD2_DATA_WIDTH);
generate
if (WR1_DATA_WIDTH == 18) begin
assign in_reg1[17:0] = DIN1[17:0];
end else if (WR1_DATA_WIDTH == 9) begin
assign in_reg1[17:0] = {1'b0, DIN1[8], 8'h0, DIN1[7:0]};
end else begin
assign in_reg1[17:WR1_DATA_WIDTH] = 0;
assign in_reg1[WR1_DATA_WIDTH-1:0] = DIN1[WR1_DATA_WIDTH-1:0];
end
endgenerate
generate
if (RD1_DATA_WIDTH == 9) begin
assign DOUT1[RD1_DATA_WIDTH-1:0] = {out_reg1[16], out_reg1[7:0]};
end else begin
assign DOUT1[RD1_DATA_WIDTH-1:0] = out_reg1[RD1_DATA_WIDTH-1:0];
end
endgenerate
generate
if (WR2_DATA_WIDTH == 18) begin
assign in_reg2[17:0] = DIN2[17:0];
end else if (WR2_DATA_WIDTH == 9) begin
assign in_reg2[17:0] = {1'b0, DIN2[8], 8'h0, DIN2[7:0]};
end else begin
assign in_reg2[17:WR2_DATA_WIDTH] = 0;
assign in_reg2[WR2_DATA_WIDTH-1:0] = DIN2[WR2_DATA_WIDTH-1:0];
end
endgenerate
generate
if (RD2_DATA_WIDTH == 9) begin
assign DOUT2[RD2_DATA_WIDTH-1:0] = {out_reg2[16], out_reg2[7:0]};
end else begin
assign DOUT2[RD2_DATA_WIDTH-1:0] = out_reg2[RD2_DATA_WIDTH-1:0];
end
endgenerate
defparam _TECHMAP_REPLACE_.MODE_BITS = { 1'b1,
UPAF2_i, UPAE2_i, PROTECT2_i, SLEEP2_i, POWERDN2_i, FMODE2_i, WMODE_B2_i, WMODE_A2_i, RMODE_B2_i, RMODE_A2_i, SYNC_FIFO2_i,
UPAF1_i, UPAE1_i, PROTECT1_i, SLEEP1_i, POWERDN1_i, FMODE1_i, WMODE_B1_i, WMODE_A1_i, RMODE_B1_i, RMODE_A1_i, SYNC_FIFO1_i
};
(* is_fifo = 1 *)
(* sync_fifo = 0 *)
(* is_split = 0 *)
(* is_inferred = 0 *)
(* port_a_dwidth = PORT_A1_WRWIDTH *)
(* port_b_dwidth = PORT_B1_WRWIDTH *)
TDP36K _TECHMAP_REPLACE_ (
.RESET_ni(1'b1),
.WDATA_A1_i(in_reg1[17:0]),
.WDATA_A2_i(in_reg2[17:0]),
.RDATA_A1_o(fifo1_flags),
.RDATA_A2_o(fifo2_flags),
.ADDR_A1_i(14'h0),
.ADDR_A2_i(14'h0),
.CLK_A1_i(Push_Clk1),
.CLK_A2_i(Push_Clk2),
.REN_A1_i(1'b1),
.REN_A2_i(1'b1),
.WEN_A1_i(PUSH1),
.WEN_A2_i(PUSH2),
.BE_A1_i(2'b11),
.BE_A2_i(2'b11),
.WDATA_B1_i(18'h0),
.WDATA_B2_i(18'h0),
.RDATA_B1_o(out_reg1[17:0]),
.RDATA_B2_o(out_reg2[17:0]),
.ADDR_B1_i(14'h0),
.ADDR_B2_i(14'h0),
.CLK_B1_i(Pop_Clk1),
.CLK_B2_i(Pop_Clk2),
.REN_B1_i(POP1),
.REN_B2_i(POP2),
.WEN_B1_i(1'b0),
.WEN_B2_i(1'b0),
.BE_B1_i(2'b11),
.BE_B2_i(2'b11),
.FLUSH1_i(Async_Flush1),
.FLUSH2_i(Async_Flush2)
);
endmodule