mirror of
https://github.com/YosysHQ/yosys
synced 2025-04-05 09:04:08 +00:00
179 lines
4.9 KiB
Plaintext
179 lines
4.9 KiB
Plaintext
read_verilog <<EOT
|
|
|
|
module half_clock (CLK, Q, magic);
|
|
input CLK;
|
|
output reg Q;
|
|
input magic;
|
|
always @(posedge CLK)
|
|
Q <= ~Q;
|
|
endmodule
|
|
|
|
EOT
|
|
proc
|
|
design -save half_clock
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# An empty selection causes no change
|
|
select -none
|
|
|
|
logger -expect log "Abstracted 0 stateful cells" 1
|
|
abstract -state -enablen magic
|
|
logger -check-expected
|
|
|
|
logger -expect log "Abstracted 0 init bits" 1
|
|
abstract -init
|
|
logger -check-expected
|
|
|
|
logger -expect log "Abstracted 0 driver ports" 1
|
|
abstract -value -enablen magic
|
|
logger -check-expected
|
|
|
|
select -clear
|
|
# -----------------------------------------------------------------------------
|
|
design -load half_clock
|
|
# Basic -state test
|
|
abstract -state -enablen magic
|
|
check -assert
|
|
# Connections to dff D input port
|
|
select -set conn_to_d t:$dff %x:+[D] t:$dff %d
|
|
# The D input port is fed with a mux
|
|
select -set mux @conn_to_d %ci t:$mux %i
|
|
select -assert-count 1 @mux
|
|
# The S input port is fed with the magic wire
|
|
select -assert-count 1 @mux %x:+[S] w:magic %i
|
|
# The A input port is fed with an anyseq
|
|
select -assert-count 1 @mux %x:+[A] %ci t:$anyseq %i
|
|
# The B input port is fed with the negated Q
|
|
select -set not @mux %x:+[B] %ci t:$not %i
|
|
select -assert-count 1 @not %x:+[A] o:Q %i
|
|
|
|
design -load half_clock
|
|
# Same thing, inverted polarity
|
|
abstract -state -enable magic
|
|
check -assert
|
|
select -set conn_to_d t:$dff %x:+[D] t:$dff %d
|
|
select -set mux @conn_to_d %ci t:$mux %i
|
|
select -assert-count 1 @mux
|
|
select -assert-count 1 @mux %x:+[S] w:magic %i
|
|
# so we get swapped A and B
|
|
select -assert-count 1 @mux %x:+[B] %ci t:$anyseq %i
|
|
select -set not @mux %x:+[A] %ci t:$not %i
|
|
select -assert-count 1 @not %x:+[A] o:Q %i
|
|
# -----------------------------------------------------------------------------
|
|
design -reset
|
|
read_verilog <<EOT
|
|
module wide_flop_no_q (CLK, DDD, QQQ, magic);
|
|
input CLK;
|
|
input [2:0] DDD;
|
|
output reg [2:0] QQQ;
|
|
input magic;
|
|
always @(posedge CLK)
|
|
QQQ <= DDD;
|
|
endmodule
|
|
EOT
|
|
proc
|
|
opt_expr
|
|
opt_dff
|
|
dump
|
|
abstract -state -enablen magic -slice 0 w:QQQ
|
|
check -assert
|
|
# Connections to dff D input port
|
|
select -set conn_to_d t:$dff %x:+[D] t:$dff %d
|
|
# The D input port is partially fed with a mux
|
|
select -set mux @conn_to_d %ci t:$mux %i
|
|
select -assert-count 1 @mux
|
|
# and also the DDD input
|
|
select -assert-count 1 @conn_to_d w:DDD %i
|
|
# The S input port is fed with the magic wire
|
|
select -assert-count 1 @mux %x:+[S] w:magic %i
|
|
# The A input port is fed with an anyseq
|
|
select -assert-count 1 @mux %x:+[A] %ci t:$anyseq %i
|
|
# The B input port is fed with DDD
|
|
select -assert-count 1 @mux %x:+[B] %ci w:DDD %i
|
|
# -----------------------------------------------------------------------------
|
|
# Selecting wire Q connected to bit 0 of QQQ is the same as specifying
|
|
# QQQ with the -slice 0 argument
|
|
design -reset
|
|
read_verilog <<EOT
|
|
module wide_flop (CLK, DDD, QQQ, Q, magic);
|
|
input CLK;
|
|
input [2:0] DDD;
|
|
output reg [2:0] QQQ;
|
|
output reg Q;
|
|
input magic;
|
|
always @(posedge CLK)
|
|
QQQ <= DDD;
|
|
assign Q = QQQ[0];
|
|
endmodule
|
|
EOT
|
|
proc
|
|
design -save wide_flop
|
|
# Test that abstracting an output slice muxes an input slice
|
|
abstract -state -enablen magic w:Q
|
|
check -assert
|
|
# Same testing as previous case
|
|
select -set conn_to_d t:$dff %x:+[D] t:$dff %d
|
|
select -set mux @conn_to_d %ci t:$mux %i
|
|
select -assert-count 1 @mux
|
|
select -assert-count 1 @conn_to_d w:DDD %i
|
|
select -assert-count 1 @mux %x:+[S] w:magic %i
|
|
select -assert-count 1 @mux %x:+[A] %ci t:$anyseq %i
|
|
select -assert-count 1 @mux %x:+[B] %ci w:DDD %i
|
|
# -----------------------------------------------------------------------------
|
|
design -reset
|
|
read_verilog <<EOT
|
|
module half_clock_en (CLK, E, Q, magic);
|
|
input CLK;
|
|
input E;
|
|
output reg Q;
|
|
input magic;
|
|
always @(posedge CLK)
|
|
if (E)
|
|
Q <= ~Q;
|
|
endmodule
|
|
EOT
|
|
proc
|
|
opt_expr
|
|
opt_dff
|
|
design -save half_clock_en
|
|
# Test that abstracting a $dffe unmaps the enable
|
|
select -assert-count 1 t:$dffe
|
|
abstract -state -enablen magic
|
|
check -assert
|
|
select -assert-count 0 t:$dffe
|
|
select -assert-count 1 t:$dff
|
|
# -----------------------------------------------------------------------------
|
|
design -reset
|
|
read_verilog <<EOT
|
|
module top (CLK, E, Q, Q_EN);
|
|
input CLK;
|
|
input E;
|
|
output reg Q;
|
|
output reg Q_EN;
|
|
half_clock uut (CLK, Q, 1'b0);
|
|
half_clock_en uut_en (CLK, E, Q_EN, 1'b0);
|
|
endmodule
|
|
EOT
|
|
proc
|
|
design -import half_clock
|
|
design -import half_clock_en
|
|
hierarchy -check -top top
|
|
# Test when the abstraction is disabled (enable is inactive),
|
|
# the equivalence is preserved
|
|
rename top top_gold
|
|
design -save gold
|
|
abstract -state -enable magic half_clock half_clock_en
|
|
flatten
|
|
rename top_gold top_gate
|
|
design -save gate
|
|
design -load gold
|
|
flatten
|
|
design -import gate -as top_gate
|
|
|
|
equiv_make top_gold top_gate equiv
|
|
equiv_induct equiv
|
|
equiv_status -assert equiv
|
|
# The reader may verify that this model checking is functional
|
|
# by changing -enable to -enablen in the abstract pass invocation above
|
|
# -----------------------------------------------------------------------------
|