3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2025-12-24 13:06:51 +00:00
yosys/kernel/scopeinfo.h
Robert O'Callahan 46cb05c471 Pass IdString by value instead of by const reference.
When IdString refcounting was expensive, it made sense to pass it by const reference
instead of by value, to avoid refcount churn. Now that IdString is not refcounted,
it's slightly more efficient to pass it by value.
2025-12-22 01:52:59 +00:00

446 lines
12 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2024 Jannis Harder <jix@yosyshq.com> <me@jix.one>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#ifndef SCOPEINFO_H
#define SCOPEINFO_H
#include <vector>
#include <algorithm>
#include "kernel/yosys.h"
#include "kernel/celltypes.h"
YOSYS_NAMESPACE_BEGIN
template<typename T>
class IdTree
{
public:
struct Cursor;
protected:
IdTree *parent = nullptr;
IdString scope_name;
int depth = 0;
pool<IdString> names;
dict<IdString, T> entries;
public: // XXX
dict<IdString, std::unique_ptr<IdTree>> subtrees;
template<typename P, typename T_ref>
static Cursor do_insert(IdTree *tree, P begin, P end, T_ref &&value)
{
log_assert(begin != end && "path must be non-empty");
while (true) {
IdString name = *begin;
++begin;
log_assert(!name.empty());
tree->names.insert(name);
if (begin == end) {
tree->entries.emplace(name, std::forward<T_ref>(value));
return Cursor(tree, name);
}
auto &unique = tree->subtrees[name];
if (!unique) {
unique.reset(new IdTree);
unique->scope_name = name;
unique->parent = tree;
unique->depth = tree->depth + 1;
}
tree = unique.get();
}
}
public:
IdTree() = default;
IdTree(const IdTree &) = delete;
IdTree(IdTree &&) = delete;
// A cursor remains valid as long as the (sub-)IdTree it points at is alive
struct Cursor
{
friend class IdTree;
protected:
public:
IdTree *target;
IdString scope_name;
Cursor() : target(nullptr) {}
Cursor(IdTree *target, IdString scope_name) : target(target), scope_name(scope_name) {
if (scope_name.empty())
log_assert(target->parent == nullptr);
}
Cursor do_first_child() {
IdTree *tree = nullptr;
if (scope_name.empty()) {
tree = target;
} else {
auto found = target->subtrees.find(scope_name);
if (found != target->subtrees.end()) {
tree = found->second.get();
} else {
return Cursor();
}
}
if (tree->names.empty()) {
return Cursor();
}
return Cursor(tree, *tree->names.begin());
}
Cursor do_next_sibling() {
if (scope_name.empty())
return Cursor();
auto found = target->names.find(scope_name);
if (found == target->names.end())
return Cursor();
++found;
if (found == target->names.end())
return Cursor();
return Cursor(target, *found);
}
Cursor do_parent() {
if (scope_name.empty())
return Cursor();
if (target->parent != nullptr)
return Cursor(target->parent, target->scope_name);
return Cursor(target, IdString());
}
Cursor do_next_preorder() {
Cursor current = *this;
Cursor next = current.do_first_child();
if (next.valid())
return next;
while (current.valid()) {
if (next.valid())
return next;
next = current.do_next_sibling();
if (next.valid())
return next;
current = current.do_parent();
}
return current;
}
Cursor do_child(IdString name) {
IdTree *tree = nullptr;
if (scope_name.empty()) {
tree = target;
} else {
auto found = target->subtrees.find(scope_name);
if (found != target->subtrees.end()) {
tree = found->second.get();
} else {
return Cursor();
}
}
auto found = tree->names.find(name);
if (found == tree->names.end()) {
return Cursor();
}
return Cursor(tree, *found);
}
public:
bool operator==(const Cursor &other) const {
return target == other.target && scope_name == other.scope_name;
}
bool operator!=(const Cursor &other) const {
return !(*this == other);
}
[[nodiscard]] Hasher hash_into(Hasher h) const
{
h.eat(scope_name);
h.eat(target);
return h;
}
bool valid() const {
return target != nullptr;
}
int depth() const {
log_assert(valid());
return target->depth + !scope_name.empty();
}
bool is_root() const {
return target != nullptr && scope_name.empty();
}
bool has_entry() const {
log_assert(valid());
return !scope_name.empty() && target->entries.count(scope_name);
}
T &entry() {
log_assert(!scope_name.empty());
return target->entries.at(scope_name);
}
void assign_path_to(std::vector<IdString> &out_path) {
log_assert(valid());
out_path.clear();
if (scope_name.empty())
return;
out_path.push_back(scope_name);
IdTree *current = target;
while (current->parent) {
out_path.push_back(current->scope_name);
current = current->parent;
}
std::reverse(out_path.begin(), out_path.end());
}
std::vector<IdString> path() {
std::vector<IdString> result;
assign_path_to(result);
return result;
}
std::string path_str() {
std::string result;
for (const auto &item : path()) {
if (!result.empty())
result.push_back(' ');
result += RTLIL::unescape_id(item);
}
return result;
}
Cursor first_child() {
log_assert(valid());
return do_first_child();
}
Cursor next_preorder() {
log_assert(valid());
return do_next_preorder();
}
Cursor parent() {
log_assert(valid());
return do_parent();
}
Cursor child(IdString name) {
log_assert(valid());
return do_child(name);
}
Cursor common_ancestor(Cursor other) {
Cursor current = *this;
while (current != other) {
if (!current.valid() || !other.valid())
return Cursor();
int delta = current.depth() - other.depth();
if (delta >= 0)
current = current.do_parent();
if (delta <= 0)
other = other.do_parent();
}
return current;
}
};
template<typename P>
Cursor insert(P begin, P end, const T &value) {
return do_insert(this, begin, end, value);
}
template<typename P>
Cursor insert(P begin, P end, T &&value) {
return do_insert(this, begin, end, std::move(value));
}
template<typename P>
Cursor insert(const P &path, const T &value) {
return do_insert(this, path.begin(), path.end(), value);
}
template<typename P>
Cursor insert(const P &path, T &&value) {
return do_insert(this, path.begin(), path.end(), std::move(value));
}
Cursor cursor() {
return parent ? Cursor(this->parent, this->scope_name) : Cursor(this, IdString());
}
template<typename P>
Cursor cursor(P begin, P end) {
Cursor current = cursor();
for (; begin != end; ++begin) {
current = current.do_child(*begin);
if (!current.valid())
break;
}
return current;
}
template<typename P>
Cursor cursor(const P &path) {
return cursor(path.begin(), path.end());
}
};
struct ModuleItem {
enum class Type {
Wire,
Cell,
};
Type type;
void *ptr;
ModuleItem(Wire *wire) : type(Type::Wire), ptr(wire) {}
ModuleItem(Cell *cell) : type(Type::Cell), ptr(cell) {}
bool is_wire() const { return type == Type::Wire; }
bool is_cell() const { return type == Type::Cell; }
Wire *wire() const { return type == Type::Wire ? static_cast<Wire *>(ptr) : nullptr; }
Cell *cell() const { return type == Type::Cell ? static_cast<Cell *>(ptr) : nullptr; }
bool operator==(const ModuleItem &other) const { return ptr == other.ptr && type == other.type; }
[[nodiscard]] Hasher hash_into(Hasher h) const { h.eat(ptr); return h; }
};
static inline void log_dump_val_worker(typename IdTree<ModuleItem>::Cursor cursor ) { log("%p %s", cursor.target, log_id(cursor.scope_name)); }
template<typename T>
static inline void log_dump_val_worker(const typename std::unique_ptr<T> &cursor ) { log("unique %p", cursor.get()); }
template<typename O>
std::vector<IdString> parse_hdlname(const O* object)
{
std::vector<IdString> path;
for (auto const &item : object->get_hdlname_attribute())
path.push_back("\\" + item);
if (path.empty() && object->name.isPublic())
path.push_back(object->name);
if (!path.empty() && !(object->name.isPublic() || object->name.begins_with("$paramod") || object->name.begins_with("$abstract"))) {
path.pop_back();
path.push_back(object->name);
}
return path;
}
template<typename O>
std::pair<std::vector<IdString>, IdString> parse_scopename(const O* object)
{
std::vector<IdString> path;
IdString trailing = object->name;
if (object->name.isPublic() || object->name.begins_with("$paramod") || object->name.begins_with("$abstract")) {
for (auto const &item : object->get_hdlname_attribute())
path.push_back("\\" + item);
if (!path.empty()) {
trailing = path.back();
path.pop_back();
}
} else if (object->has_attribute(ID::hdlname)) {
for (auto const &item : object->get_hdlname_attribute())
path.push_back("\\" + item);
if (!path.empty()) {
path.pop_back();
}
} else {
for (auto const &item : split_tokens(object->get_string_attribute(ID(scopename)), " "))
path.push_back("\\" + item);
}
return {path, trailing};
}
struct ModuleHdlnameIndex {
typedef IdTree<ModuleItem>::Cursor Cursor;
RTLIL::Module *module;
IdTree<ModuleItem> tree;
dict<ModuleItem, Cursor> lookup;
ModuleHdlnameIndex(RTLIL::Module *module) : module(module) {}
private:
template<typename I, typename Filter>
void index_items(I begin, I end, Filter filter);
public:
// Index all wires and cells of the module
void index();
// Index all wires of the module
void index_wires();
// Index all cells of the module
void index_cells();
// Index only the $scopeinfo cells of the module.
// This is sufficient when using `containing_scope`.
void index_scopeinfo_cells();
// Return the cursor for the containing scope of some RTLIL object (Wire/Cell/...)
template<typename O>
std::pair<Cursor, IdString> containing_scope(O *object) {
auto pair = parse_scopename(object);
return {tree.cursor(pair.first), pair.second};
}
// Return a vector of source locations starting from the indexed module to
// the scope represented by the cursor. The vector alternates module and
// module item source locations, using empty strings for missing src
// attributes.
std::vector<std::string> scope_sources(Cursor cursor);
// Return a vector of source locations starting from the indexed module to
// the passed RTLIL object (Wire/Cell/...). The vector alternates module
// and module item source locations, using empty strings for missing src
// attributes.
template<typename O>
std::vector<std::string> sources(O *object) {
auto pair = parse_scopename(object);
std::vector<std::string> result = scope_sources(tree.cursor(pair.first));
result.push_back(object->get_src_attribute());
return result;
}
};
enum class ScopeinfoAttrs {
Module,
Cell,
};
// Check whether the flattened module or flattened cell corresponding to a $scopeinfo cell had a specific attribute.
bool scopeinfo_has_attribute(const RTLIL::Cell *scopeinfo, ScopeinfoAttrs attrs, RTLIL::IdString id);
// Get a specific attribute from the flattened module or flattened cell corresponding to a $scopeinfo cell.
RTLIL::Const scopeinfo_get_attribute(const RTLIL::Cell *scopeinfo, ScopeinfoAttrs attrs, RTLIL::IdString id);
// Get all attribute from the flattened module or flattened cell corresponding to a $scopeinfo cell.
dict<RTLIL::IdString, RTLIL::Const> scopeinfo_attributes(const RTLIL::Cell *scopeinfo, ScopeinfoAttrs attrs);
YOSYS_NAMESPACE_END
#endif