mirror of
				https://github.com/YosysHQ/yosys
				synced 2025-11-04 05:19:11 +00:00 
			
		
		
		
	In particular, we make the parent links relaxed atomics so concurrent `ifind()` calls are safe. This may appear to cause a tiny performance regression but as discussed in https://yosyshq.discourse.group/t/parallel-optmergepass-implementation/87/16 this is probably just noise.
		
			
				
	
	
		
			1503 lines
		
	
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1503 lines
		
	
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// This is free and unencumbered software released into the public domain.
 | 
						|
//
 | 
						|
// Anyone is free to copy, modify, publish, use, compile, sell, or
 | 
						|
// distribute this software, either in source code form or as a compiled
 | 
						|
// binary, for any purpose, commercial or non-commercial, and by any
 | 
						|
// means.
 | 
						|
 | 
						|
// -------------------------------------------------------
 | 
						|
// Written by Claire Xenia Wolf <claire@yosyshq.com> in 2014
 | 
						|
// -------------------------------------------------------
 | 
						|
 | 
						|
#ifndef HASHLIB_H
 | 
						|
#define HASHLIB_H
 | 
						|
 | 
						|
#include <array>
 | 
						|
#include <atomic>
 | 
						|
#include <stdexcept>
 | 
						|
#include <algorithm>
 | 
						|
#include <optional>
 | 
						|
#include <string>
 | 
						|
#include <variant>
 | 
						|
#include <vector>
 | 
						|
#include <type_traits>
 | 
						|
#include <stdint.h>
 | 
						|
 | 
						|
#define YS_HASHING_VERSION 1
 | 
						|
 | 
						|
namespace hashlib {
 | 
						|
 | 
						|
/**
 | 
						|
 * HASHING
 | 
						|
 *
 | 
						|
 * Also refer to docs/source/yosys_internals/hashing.rst
 | 
						|
 *
 | 
						|
 * The Hasher knows how to hash 32 and 64-bit integers. That's it.
 | 
						|
 * In the future, it could be expanded to do vectors with SIMD.
 | 
						|
 *
 | 
						|
 * The Hasher doesn't know how to hash common standard containers
 | 
						|
 * and compositions. However, hashlib provides centralized wrappers.
 | 
						|
 *
 | 
						|
 * Hashlib doesn't know how to hash silly Yosys-specific types.
 | 
						|
 * Hashlib doesn't depend on Yosys and can be used standalone.
 | 
						|
 * Please don't use hashlib standalone for new projects.
 | 
						|
 * Never directly include kernel/hashlib.h in Yosys code.
 | 
						|
 * Instead include kernel/yosys_common.h
 | 
						|
 *
 | 
						|
 * The hash_ops type is now always left to its default value, derived
 | 
						|
 * from templated functions through SFINAE. Providing custom ops is
 | 
						|
 * still supported.
 | 
						|
 *
 | 
						|
 * HASH TABLES
 | 
						|
 *
 | 
						|
 * We implement associative data structures with separate chaining.
 | 
						|
 * Linked lists use integers into the indirection hashtable array
 | 
						|
 * instead of pointers.
 | 
						|
 */
 | 
						|
 | 
						|
const int hashtable_size_trigger = 2;
 | 
						|
const int hashtable_size_factor = 3;
 | 
						|
 | 
						|
namespace legacy {
 | 
						|
	inline uint32_t djb2_add(uint32_t a, uint32_t b) {
 | 
						|
		return ((a << 5) + a) + b;
 | 
						|
	}
 | 
						|
};
 | 
						|
 | 
						|
template<typename T>
 | 
						|
struct hash_ops;
 | 
						|
 | 
						|
inline unsigned int mkhash_xorshift(unsigned int a) {
 | 
						|
	if (sizeof(a) == 4) {
 | 
						|
		a ^= a << 13;
 | 
						|
		a ^= a >> 17;
 | 
						|
		a ^= a << 5;
 | 
						|
	} else if (sizeof(a) == 8) {
 | 
						|
		a ^= a << 13;
 | 
						|
		a ^= a >> 7;
 | 
						|
		a ^= a << 17;
 | 
						|
	} else
 | 
						|
		throw std::runtime_error("mkhash_xorshift() only implemented for 32 bit and 64 bit ints");
 | 
						|
	return a;
 | 
						|
}
 | 
						|
 | 
						|
class HasherDJB32 {
 | 
						|
public:
 | 
						|
	using hash_t = uint32_t;
 | 
						|
 | 
						|
	HasherDJB32() {
 | 
						|
		// traditionally 5381 is used as starting value for the djb2 hash
 | 
						|
		state = 5381;
 | 
						|
	}
 | 
						|
	static void set_fudge(hash_t f) {
 | 
						|
		fudge = f;
 | 
						|
	}
 | 
						|
 | 
						|
private:
 | 
						|
	uint32_t state;
 | 
						|
	static uint32_t fudge;
 | 
						|
	// The XOR version of DJB2
 | 
						|
	[[nodiscard]]
 | 
						|
	static uint32_t djb2_xor(uint32_t a, uint32_t b) {
 | 
						|
		uint32_t hash = ((a << 5) + a) ^ b;
 | 
						|
		return hash;
 | 
						|
	}
 | 
						|
public:
 | 
						|
	void hash32(uint32_t i) {
 | 
						|
		state = djb2_xor(i, state);
 | 
						|
		state = mkhash_xorshift(fudge ^ state);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	void hash64(uint64_t i) {
 | 
						|
		state = djb2_xor((uint32_t)(i & 0xFFFFFFFFULL), state);
 | 
						|
		state = djb2_xor((uint32_t)(i >> 32ULL), state);
 | 
						|
		state = mkhash_xorshift(fudge ^ state);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	[[nodiscard]]
 | 
						|
	hash_t yield() const {
 | 
						|
		return (hash_t)state;
 | 
						|
	}
 | 
						|
 | 
						|
	template<typename T>
 | 
						|
	void eat(T&& t) {
 | 
						|
		*this = hash_ops<std::remove_cv_t<std::remove_reference_t<T>>>::hash_into(std::forward<T>(t), *this);
 | 
						|
	}
 | 
						|
 | 
						|
	template<typename T>
 | 
						|
	void eat(const T& t) {
 | 
						|
		*this = hash_ops<T>::hash_into(t, *this);
 | 
						|
	}
 | 
						|
 | 
						|
	[[deprecated]]
 | 
						|
	void commutative_eat(hash_t t) {
 | 
						|
		state ^= t;
 | 
						|
	}
 | 
						|
 | 
						|
	void force(hash_t new_state) {
 | 
						|
		state = new_state;
 | 
						|
	}
 | 
						|
};
 | 
						|
 | 
						|
using Hasher = HasherDJB32;
 | 
						|
 | 
						|
// Boilerplate compressor for trivially implementing
 | 
						|
// top-level hash method with hash_into
 | 
						|
#define HASH_TOP_LOOP_FST [[nodiscard]] static inline Hasher hash
 | 
						|
#define HASH_TOP_LOOP_SND { \
 | 
						|
	Hasher h; \
 | 
						|
	h = hash_into(a, h); \
 | 
						|
	return h; \
 | 
						|
}
 | 
						|
 | 
						|
template<typename T>
 | 
						|
struct hash_ops {
 | 
						|
	static inline bool cmp(const T &a, const T &b) {
 | 
						|
		return a == b;
 | 
						|
	}
 | 
						|
	[[nodiscard]] static inline Hasher hash_into(const T &a, Hasher h) {
 | 
						|
		if constexpr (std::is_integral_v<T>) {
 | 
						|
			static_assert(sizeof(T) <= sizeof(uint64_t));
 | 
						|
			if (sizeof(T) == sizeof(uint64_t))
 | 
						|
				h.hash64(a);
 | 
						|
			else
 | 
						|
				h.hash32(a);
 | 
						|
			return h;
 | 
						|
		} else if constexpr (std::is_enum_v<T>) {
 | 
						|
			using u_type = std::underlying_type_t<T>;
 | 
						|
			return hash_ops<u_type>::hash_into((u_type) a, h);
 | 
						|
		} else if constexpr (std::is_pointer_v<T>) {
 | 
						|
			return hash_ops<uintptr_t>::hash_into((uintptr_t) a, h);
 | 
						|
		} else if constexpr (std::is_same_v<T, std::string>) {
 | 
						|
			int size = a.size();
 | 
						|
			int i = 0;
 | 
						|
			while (i + 8 < size) {
 | 
						|
				uint64_t v;
 | 
						|
				memcpy(&v, a.data() + i, 8);
 | 
						|
				h.hash64(v);
 | 
						|
				i += 8;
 | 
						|
			}
 | 
						|
			uint64_t v = 0;
 | 
						|
			memcpy(&v, a.data() + i, size - i);
 | 
						|
			h.hash64(v);
 | 
						|
			return h;
 | 
						|
		} else {
 | 
						|
			return a.hash_into(h);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	HASH_TOP_LOOP_FST (const T &a) HASH_TOP_LOOP_SND
 | 
						|
};
 | 
						|
 | 
						|
template<typename P, typename Q> struct hash_ops<std::pair<P, Q>> {
 | 
						|
	static inline bool cmp(const std::pair<P, Q> &a, const std::pair<P, Q> &b) {
 | 
						|
		return a == b;
 | 
						|
	}
 | 
						|
	[[nodiscard]] static inline Hasher hash_into(const std::pair<P, Q> &a, Hasher h) {
 | 
						|
		h = hash_ops<P>::hash_into(a.first, h);
 | 
						|
		h = hash_ops<Q>::hash_into(a.second, h);
 | 
						|
		return h;
 | 
						|
	}
 | 
						|
	HASH_TOP_LOOP_FST (const std::pair<P, Q> &a) HASH_TOP_LOOP_SND
 | 
						|
	[[nodiscard]] static inline Hasher hash(const P &p, const Q &q) {
 | 
						|
		Hasher h;
 | 
						|
		h = hash_ops<P>::hash_into(p, h);
 | 
						|
		h = hash_ops<Q>::hash_into(q, h);
 | 
						|
		return h;
 | 
						|
	}
 | 
						|
};
 | 
						|
 | 
						|
template<typename... T> struct hash_ops<std::tuple<T...>> {
 | 
						|
	static inline bool cmp(const std::tuple<T...> &a, const std::tuple<T...> &b) {
 | 
						|
		return a == b;
 | 
						|
	}
 | 
						|
	template<size_t I = 0>
 | 
						|
	static inline typename std::enable_if<I == sizeof...(T), Hasher>::type hash_into(const std::tuple<T...> &, Hasher h) {
 | 
						|
		return h;
 | 
						|
	}
 | 
						|
	template<size_t I = 0>
 | 
						|
	static inline typename std::enable_if<I != sizeof...(T), Hasher>::type hash_into(const std::tuple<T...> &a, Hasher h) {
 | 
						|
		typedef hash_ops<typename std::tuple_element<I, std::tuple<T...>>::type> element_ops_t;
 | 
						|
		h = hash_into<I+1>(a, h);
 | 
						|
		h = element_ops_t::hash_into(std::get<I>(a), h);
 | 
						|
		return h;
 | 
						|
	}
 | 
						|
	HASH_TOP_LOOP_FST (const std::tuple<T...> &a) HASH_TOP_LOOP_SND
 | 
						|
};
 | 
						|
 | 
						|
template<typename T> struct hash_ops<std::vector<T>> {
 | 
						|
	static inline bool cmp(const std::vector<T> &a, const std::vector<T> &b) {
 | 
						|
		return a == b;
 | 
						|
	}
 | 
						|
	[[nodiscard]] static inline Hasher hash_into(const std::vector<T> &a, Hasher h) {
 | 
						|
		h.eat((uint32_t)a.size());
 | 
						|
		for (auto k : a)
 | 
						|
			h.eat(k);
 | 
						|
		return h;
 | 
						|
	}
 | 
						|
	HASH_TOP_LOOP_FST (const std::vector<T> &a) HASH_TOP_LOOP_SND
 | 
						|
};
 | 
						|
 | 
						|
template<typename T, size_t N> struct hash_ops<std::array<T, N>> {
 | 
						|
    static inline bool cmp(const std::array<T, N> &a, const std::array<T, N> &b) {
 | 
						|
        return a == b;
 | 
						|
    }
 | 
						|
    [[nodiscard]] static inline Hasher hash_into(const std::array<T, N> &a, Hasher h) {
 | 
						|
        for (const auto& k : a)
 | 
						|
            h = hash_ops<T>::hash_into(k, h);
 | 
						|
        return h;
 | 
						|
    }
 | 
						|
	HASH_TOP_LOOP_FST (const std::array<T, N> &a) HASH_TOP_LOOP_SND
 | 
						|
};
 | 
						|
 | 
						|
struct hash_cstr_ops {
 | 
						|
	static inline bool cmp(const char *a, const char *b) {
 | 
						|
		return strcmp(a, b) == 0;
 | 
						|
	}
 | 
						|
	[[nodiscard]] static inline Hasher hash_into(const char *a, Hasher h) {
 | 
						|
		while (*a)
 | 
						|
			h.hash32(*(a++));
 | 
						|
		return h;
 | 
						|
	}
 | 
						|
	HASH_TOP_LOOP_FST (const char *a) HASH_TOP_LOOP_SND
 | 
						|
};
 | 
						|
 | 
						|
template <> struct hash_ops<char*> : hash_cstr_ops {};
 | 
						|
 | 
						|
struct hash_ptr_ops {
 | 
						|
	static inline bool cmp(const void *a, const void *b) {
 | 
						|
		return a == b;
 | 
						|
	}
 | 
						|
	[[nodiscard]] static inline Hasher hash_into(const void *a, Hasher h) {
 | 
						|
		return hash_ops<uintptr_t>::hash_into((uintptr_t)a, h);
 | 
						|
	}
 | 
						|
	HASH_TOP_LOOP_FST (const void *a) HASH_TOP_LOOP_SND
 | 
						|
};
 | 
						|
 | 
						|
struct hash_obj_ops {
 | 
						|
	static inline bool cmp(const void *a, const void *b) {
 | 
						|
		return a == b;
 | 
						|
	}
 | 
						|
	template<typename T>
 | 
						|
	[[nodiscard]] static inline Hasher hash_into(const T *a, Hasher h) {
 | 
						|
		if (a)
 | 
						|
			h = a->hash_into(h);
 | 
						|
		else
 | 
						|
			h.eat(0);
 | 
						|
		return h;
 | 
						|
	}
 | 
						|
	template<typename T>
 | 
						|
	HASH_TOP_LOOP_FST (const T *a) HASH_TOP_LOOP_SND
 | 
						|
};
 | 
						|
/**
 | 
						|
 * If you find yourself using this function, think hard
 | 
						|
 * about if it's the right thing to do. Mixing finalized
 | 
						|
 * hashes together with XORs or worse can destroy
 | 
						|
 * desirable qualities of the hash function
 | 
						|
 */
 | 
						|
template<typename T>
 | 
						|
[[nodiscard]]
 | 
						|
Hasher::hash_t run_hash(const T& obj) {
 | 
						|
	return hash_ops<T>::hash(obj).yield();
 | 
						|
}
 | 
						|
 | 
						|
/** Refer to docs/source/yosys_internals/hashing.rst */
 | 
						|
template<typename T>
 | 
						|
[[nodiscard]]
 | 
						|
[[deprecated]]
 | 
						|
inline unsigned int mkhash(const T &v) {
 | 
						|
	return (unsigned int) run_hash<T>(v);
 | 
						|
}
 | 
						|
 | 
						|
template<> struct hash_ops<std::monostate> {
 | 
						|
	static inline bool cmp(std::monostate a, std::monostate b) {
 | 
						|
		return a == b;
 | 
						|
	}
 | 
						|
	[[nodiscard]] static inline Hasher hash_into(std::monostate, Hasher h) {
 | 
						|
		return h;
 | 
						|
	}
 | 
						|
};
 | 
						|
 | 
						|
template<typename... T> struct hash_ops<std::variant<T...>> {
 | 
						|
	static inline bool cmp(const std::variant<T...> &a, const std::variant<T...> &b) {
 | 
						|
		return a == b;
 | 
						|
	}
 | 
						|
	[[nodiscard]] static inline Hasher hash_into(const std::variant<T...> &a, Hasher h) {
 | 
						|
		std::visit([& h](const auto &v) { h.eat(v); }, a);
 | 
						|
		h.eat(a.index());
 | 
						|
		return h;
 | 
						|
	}
 | 
						|
};
 | 
						|
 | 
						|
template<typename T> struct hash_ops<std::optional<T>> {
 | 
						|
	static inline bool cmp(const std::optional<T> &a, const std::optional<T> &b) {
 | 
						|
		return a == b;
 | 
						|
	}
 | 
						|
	[[nodiscard]] static inline Hasher hash_into(const std::optional<T> &a, Hasher h) {
 | 
						|
		if(a.has_value())
 | 
						|
			h.eat(*a);
 | 
						|
		else
 | 
						|
			h.eat(0);
 | 
						|
		return h;
 | 
						|
	}
 | 
						|
};
 | 
						|
 | 
						|
inline unsigned int hashtable_size(unsigned int min_size)
 | 
						|
{
 | 
						|
	// Primes as generated by https://oeis.org/A175953
 | 
						|
	static std::vector<unsigned int> zero_and_some_primes = {
 | 
						|
		0, 23, 29, 37, 47, 59, 79, 101, 127, 163, 211, 269, 337, 431, 541, 677,
 | 
						|
		853, 1069, 1361, 1709, 2137, 2677, 3347, 4201, 5261, 6577, 8231, 10289,
 | 
						|
		12889, 16127, 20161, 25219, 31531, 39419, 49277, 61603, 77017, 96281,
 | 
						|
		120371, 150473, 188107, 235159, 293957, 367453, 459317, 574157, 717697,
 | 
						|
		897133, 1121423, 1401791, 1752239, 2190299, 2737937, 3422429, 4278037,
 | 
						|
		5347553, 6684443, 8355563, 10444457, 13055587, 16319519, 20399411,
 | 
						|
		25499291, 31874149, 39842687, 49803361, 62254207, 77817767, 97272239,
 | 
						|
		121590311, 151987889, 189984863, 237481091, 296851369, 371064217,
 | 
						|
		463830313, 579787991, 724735009, 905918777, 1132398479, 1415498113,
 | 
						|
		1769372713, 2211715897, 2764644887, 3455806139
 | 
						|
	};
 | 
						|
 | 
						|
	for (auto p : zero_and_some_primes)
 | 
						|
		if (p >= min_size) return p;
 | 
						|
 | 
						|
	if (sizeof(unsigned int) == 4)
 | 
						|
		throw std::length_error("hash table exceeded maximum size.\nDesign is likely too large for yosys to handle, if possible try not to flatten the design.");
 | 
						|
 | 
						|
	for (auto p : zero_and_some_primes)
 | 
						|
		if (100129 * p > min_size) return 100129 * p;
 | 
						|
 | 
						|
	throw std::length_error("hash table exceeded maximum size.");
 | 
						|
}
 | 
						|
 | 
						|
template<typename K, typename T, typename OPS = hash_ops<K>> class dict;
 | 
						|
template<typename K, int offset = 0, typename OPS = hash_ops<K>> class idict;
 | 
						|
template<typename K, typename OPS = hash_ops<K>> class pool;
 | 
						|
template<typename K, typename OPS = hash_ops<K>> class mfp;
 | 
						|
 | 
						|
// Computes the hash value of an unordered set of elements.
 | 
						|
// See https://www.preprints.org/manuscript/201710.0192/v1/download.
 | 
						|
// This is the Sum(4) algorithm from that paper, which has good collision resistance,
 | 
						|
// much better than Sum(1) or Xor(1) (and somewhat better than Xor(4)).
 | 
						|
class commutative_hash {
 | 
						|
public:
 | 
						|
	commutative_hash() {
 | 
						|
		buckets.fill(0);
 | 
						|
	}
 | 
						|
	template <typename T>
 | 
						|
	void eat(const T &obj) {
 | 
						|
		eat(hash_ops<T>::hash(obj));
 | 
						|
	}
 | 
						|
	void eat(const Hasher &h) {
 | 
						|
		Hasher::hash_t v = h.yield();
 | 
						|
		size_t index = v & (buckets.size() - 1);
 | 
						|
		buckets[index] += v;
 | 
						|
	}
 | 
						|
	[[nodiscard]] Hasher hash_into(Hasher h) const {
 | 
						|
		for (auto b : buckets)
 | 
						|
			h.eat(b);
 | 
						|
		return h;
 | 
						|
	}
 | 
						|
private:
 | 
						|
	std::array<Hasher::hash_t, 4> buckets;
 | 
						|
};
 | 
						|
 | 
						|
template<typename K, typename T, typename OPS>
 | 
						|
class dict {
 | 
						|
	struct entry_t
 | 
						|
	{
 | 
						|
		std::pair<K, T> udata;
 | 
						|
		int next;
 | 
						|
 | 
						|
		entry_t() { }
 | 
						|
		entry_t(const std::pair<K, T> &udata, int next) : udata(udata), next(next) { }
 | 
						|
		entry_t(std::pair<K, T> &&udata, int next) : udata(std::move(udata)), next(next) { }
 | 
						|
		bool operator<(const entry_t &other) const { return udata.first < other.udata.first; }
 | 
						|
	};
 | 
						|
 | 
						|
	std::vector<int> hashtable;
 | 
						|
	std::vector<entry_t> entries;
 | 
						|
	OPS ops;
 | 
						|
 | 
						|
#ifdef NDEBUG
 | 
						|
	static inline void do_assert(bool) { }
 | 
						|
#else
 | 
						|
	static inline void do_assert(bool cond) {
 | 
						|
		if (!cond) throw std::runtime_error("dict<> assert failed.");
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	Hasher::hash_t do_hash(const K &key) const
 | 
						|
	{
 | 
						|
		Hasher::hash_t hash = 0;
 | 
						|
		if (!hashtable.empty())
 | 
						|
			hash = ops.hash(key).yield() % (unsigned int)(hashtable.size());
 | 
						|
		return hash;
 | 
						|
	}
 | 
						|
 | 
						|
	void do_rehash()
 | 
						|
	{
 | 
						|
		hashtable.clear();
 | 
						|
		hashtable.resize(hashtable_size(entries.capacity() * hashtable_size_factor), -1);
 | 
						|
 | 
						|
		for (int i = 0; i < int(entries.size()); i++) {
 | 
						|
			do_assert(-1 <= entries[i].next && entries[i].next < int(entries.size()));
 | 
						|
			Hasher::hash_t hash = do_hash(entries[i].udata.first);
 | 
						|
			entries[i].next = hashtable[hash];
 | 
						|
			hashtable[hash] = i;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	int do_erase(int index, Hasher::hash_t hash)
 | 
						|
	{
 | 
						|
		do_assert(index < int(entries.size()));
 | 
						|
		if (hashtable.empty() || index < 0)
 | 
						|
			return 0;
 | 
						|
 | 
						|
		int k = hashtable[hash];
 | 
						|
		do_assert(0 <= k && k < int(entries.size()));
 | 
						|
 | 
						|
		if (k == index) {
 | 
						|
			hashtable[hash] = entries[index].next;
 | 
						|
		} else {
 | 
						|
			while (entries[k].next != index) {
 | 
						|
				k = entries[k].next;
 | 
						|
				do_assert(0 <= k && k < int(entries.size()));
 | 
						|
			}
 | 
						|
			entries[k].next = entries[index].next;
 | 
						|
		}
 | 
						|
 | 
						|
		int back_idx = entries.size()-1;
 | 
						|
 | 
						|
		if (index != back_idx)
 | 
						|
		{
 | 
						|
			Hasher::hash_t back_hash = do_hash(entries[back_idx].udata.first);
 | 
						|
 | 
						|
			k = hashtable[back_hash];
 | 
						|
			do_assert(0 <= k && k < int(entries.size()));
 | 
						|
 | 
						|
			if (k == back_idx) {
 | 
						|
				hashtable[back_hash] = index;
 | 
						|
			} else {
 | 
						|
				while (entries[k].next != back_idx) {
 | 
						|
					k = entries[k].next;
 | 
						|
					do_assert(0 <= k && k < int(entries.size()));
 | 
						|
				}
 | 
						|
				entries[k].next = index;
 | 
						|
			}
 | 
						|
 | 
						|
			entries[index] = std::move(entries[back_idx]);
 | 
						|
		}
 | 
						|
 | 
						|
		entries.pop_back();
 | 
						|
 | 
						|
		if (entries.empty())
 | 
						|
			hashtable.clear();
 | 
						|
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	int do_lookup(const K &key, Hasher::hash_t &hash)
 | 
						|
	{
 | 
						|
		if (hashtable.empty())
 | 
						|
			return -1;
 | 
						|
 | 
						|
		if (entries.size() * hashtable_size_trigger > hashtable.size()) {
 | 
						|
			do_rehash();
 | 
						|
			hash = do_hash(key);
 | 
						|
		}
 | 
						|
 | 
						|
		return do_lookup_internal(key, hash);
 | 
						|
	}
 | 
						|
 | 
						|
	int do_lookup_internal(const K &key, Hasher::hash_t hash) const
 | 
						|
	{
 | 
						|
		int index = hashtable[hash];
 | 
						|
 | 
						|
		while (index >= 0 && !ops.cmp(entries[index].udata.first, key)) {
 | 
						|
			index = entries[index].next;
 | 
						|
			do_assert(-1 <= index && index < int(entries.size()));
 | 
						|
		}
 | 
						|
 | 
						|
		return index;
 | 
						|
	}
 | 
						|
 | 
						|
	int do_lookup_no_rehash(const K &key, Hasher::hash_t hash) const
 | 
						|
	{
 | 
						|
		if (hashtable.empty())
 | 
						|
			return -1;
 | 
						|
 | 
						|
		return do_lookup_internal(key, hash);
 | 
						|
	}
 | 
						|
 | 
						|
	int do_insert(const K &key, const Hasher::hash_t &hash)
 | 
						|
	{
 | 
						|
		if (hashtable.empty()) {
 | 
						|
			entries.emplace_back(std::pair<K, T>(key, T()), -1);
 | 
						|
			do_rehash();
 | 
						|
		} else {
 | 
						|
			entries.emplace_back(std::pair<K, T>(key, T()), hashtable[hash]);
 | 
						|
			hashtable[hash] = entries.size() - 1;
 | 
						|
		}
 | 
						|
		return entries.size() - 1;
 | 
						|
	}
 | 
						|
 | 
						|
	int do_insert(const std::pair<K, T> &value, const Hasher::hash_t &hash)
 | 
						|
	{
 | 
						|
		if (hashtable.empty()) {
 | 
						|
			entries.emplace_back(value, -1);
 | 
						|
			do_rehash();
 | 
						|
		} else {
 | 
						|
			entries.emplace_back(value, hashtable[hash]);
 | 
						|
			hashtable[hash] = entries.size() - 1;
 | 
						|
		}
 | 
						|
		return entries.size() - 1;
 | 
						|
	}
 | 
						|
 | 
						|
	int do_insert(std::pair<K, T> &&rvalue, const Hasher::hash_t &hash)
 | 
						|
	{
 | 
						|
		if (hashtable.empty()) {
 | 
						|
			entries.emplace_back(std::forward<std::pair<K, T>>(rvalue), -1);
 | 
						|
			do_rehash();
 | 
						|
		} else {
 | 
						|
			entries.emplace_back(std::forward<std::pair<K, T>>(rvalue), hashtable[hash]);
 | 
						|
			hashtable[hash] = entries.size() - 1;
 | 
						|
		}
 | 
						|
		return entries.size() - 1;
 | 
						|
	}
 | 
						|
 | 
						|
public:
 | 
						|
	class const_iterator
 | 
						|
	{
 | 
						|
		friend class dict;
 | 
						|
	protected:
 | 
						|
		const dict *ptr;
 | 
						|
		int index;
 | 
						|
		const_iterator(const dict *ptr, int index) : ptr(ptr), index(index) { }
 | 
						|
	public:
 | 
						|
		typedef std::bidirectional_iterator_tag iterator_category;
 | 
						|
		typedef std::pair<K, T> value_type;
 | 
						|
		typedef ptrdiff_t difference_type;
 | 
						|
		typedef const std::pair<K, T>* pointer;
 | 
						|
		typedef const std::pair<K, T>& reference;
 | 
						|
		const_iterator() { }
 | 
						|
		const_iterator operator++() { index--; return *this; }
 | 
						|
		const_iterator operator++(int) { const_iterator tmp = *this; index--; return tmp; }
 | 
						|
		const_iterator operator--() { index++; return *this; }
 | 
						|
		const_iterator operator--(int) { const_iterator tmp = *this; index++; return tmp; }
 | 
						|
		const_iterator operator+=(int amt) { index -= amt; return *this; }
 | 
						|
		bool operator<(const const_iterator &other) const { return index > other.index; }
 | 
						|
		bool operator==(const const_iterator &other) const { return index == other.index; }
 | 
						|
		bool operator!=(const const_iterator &other) const { return index != other.index; }
 | 
						|
		const std::pair<K, T> &operator*() const { return ptr->entries[index].udata; }
 | 
						|
		const std::pair<K, T> *operator->() const { return &ptr->entries[index].udata; }
 | 
						|
	};
 | 
						|
 | 
						|
	class iterator
 | 
						|
	{
 | 
						|
		friend class dict;
 | 
						|
	protected:
 | 
						|
		dict *ptr;
 | 
						|
		int index;
 | 
						|
		iterator(dict *ptr, int index) : ptr(ptr), index(index) { }
 | 
						|
	public:
 | 
						|
		typedef std::forward_iterator_tag iterator_category;
 | 
						|
		typedef std::pair<K, T> value_type;
 | 
						|
		typedef ptrdiff_t difference_type;
 | 
						|
		typedef std::pair<K, T>* pointer;
 | 
						|
		typedef std::pair<K, T>& reference;
 | 
						|
		iterator() { }
 | 
						|
		iterator operator++() { index--; return *this; }
 | 
						|
		iterator operator+=(int amt) { index -= amt; return *this; }
 | 
						|
		bool operator<(const iterator &other) const { return index > other.index; }
 | 
						|
		bool operator==(const iterator &other) const { return index == other.index; }
 | 
						|
		bool operator!=(const iterator &other) const { return index != other.index; }
 | 
						|
		std::pair<K, T> &operator*() { return ptr->entries[index].udata; }
 | 
						|
		std::pair<K, T> *operator->() { return &ptr->entries[index].udata; }
 | 
						|
		const std::pair<K, T> &operator*() const { return ptr->entries[index].udata; }
 | 
						|
		const std::pair<K, T> *operator->() const { return &ptr->entries[index].udata; }
 | 
						|
		operator const_iterator() const { return const_iterator(ptr, index); }
 | 
						|
	};
 | 
						|
	using reverse_iterator = std::reverse_iterator<const_iterator>;
 | 
						|
	reverse_iterator rbegin() const {
 | 
						|
		return std::make_reverse_iterator(end());
 | 
						|
	}
 | 
						|
	reverse_iterator rend() const {
 | 
						|
		return std::make_reverse_iterator(begin());
 | 
						|
	}
 | 
						|
 | 
						|
	constexpr dict()
 | 
						|
	{
 | 
						|
	}
 | 
						|
 | 
						|
	dict(const dict &other)
 | 
						|
	{
 | 
						|
		entries = other.entries;
 | 
						|
		do_rehash();
 | 
						|
	}
 | 
						|
 | 
						|
	dict(dict &&other)
 | 
						|
	{
 | 
						|
		swap(other);
 | 
						|
	}
 | 
						|
 | 
						|
	dict &operator=(const dict &other) {
 | 
						|
		entries = other.entries;
 | 
						|
		do_rehash();
 | 
						|
		return *this;
 | 
						|
	}
 | 
						|
 | 
						|
	dict &operator=(dict &&other) {
 | 
						|
		clear();
 | 
						|
		swap(other);
 | 
						|
		return *this;
 | 
						|
	}
 | 
						|
 | 
						|
	dict(const std::initializer_list<std::pair<K, T>> &list)
 | 
						|
	{
 | 
						|
		for (auto &it : list)
 | 
						|
			insert(it);
 | 
						|
	}
 | 
						|
 | 
						|
	template<class InputIterator>
 | 
						|
	dict(InputIterator first, InputIterator last)
 | 
						|
	{
 | 
						|
		insert(first, last);
 | 
						|
	}
 | 
						|
 | 
						|
	template<class InputIterator>
 | 
						|
	void insert(InputIterator first, InputIterator last)
 | 
						|
	{
 | 
						|
		for (; first != last; ++first)
 | 
						|
			insert(*first);
 | 
						|
	}
 | 
						|
 | 
						|
	std::pair<iterator, bool> insert(const K &key)
 | 
						|
	{
 | 
						|
		Hasher::hash_t hash = do_hash(key);
 | 
						|
		int i = do_lookup(key, hash);
 | 
						|
		if (i >= 0)
 | 
						|
			return std::pair<iterator, bool>(iterator(this, i), false);
 | 
						|
		i = do_insert(key, hash);
 | 
						|
		return std::pair<iterator, bool>(iterator(this, i), true);
 | 
						|
	}
 | 
						|
 | 
						|
	std::pair<iterator, bool> insert(const std::pair<K, T> &value)
 | 
						|
	{
 | 
						|
		Hasher::hash_t hash = do_hash(value.first);
 | 
						|
		int i = do_lookup(value.first, hash);
 | 
						|
		if (i >= 0)
 | 
						|
			return std::pair<iterator, bool>(iterator(this, i), false);
 | 
						|
		i = do_insert(value, hash);
 | 
						|
		return std::pair<iterator, bool>(iterator(this, i), true);
 | 
						|
	}
 | 
						|
 | 
						|
	std::pair<iterator, bool> insert(std::pair<K, T> &&rvalue)
 | 
						|
	{
 | 
						|
		Hasher::hash_t hash = do_hash(rvalue.first);
 | 
						|
		int i = do_lookup(rvalue.first, hash);
 | 
						|
		if (i >= 0)
 | 
						|
			return std::pair<iterator, bool>(iterator(this, i), false);
 | 
						|
		i = do_insert(std::forward<std::pair<K, T>>(rvalue), hash);
 | 
						|
		return std::pair<iterator, bool>(iterator(this, i), true);
 | 
						|
	}
 | 
						|
 | 
						|
	std::pair<iterator, bool> emplace(K const &key, T const &value)
 | 
						|
	{
 | 
						|
		Hasher::hash_t hash = do_hash(key);
 | 
						|
		int i = do_lookup(key, hash);
 | 
						|
		if (i >= 0)
 | 
						|
			return std::pair<iterator, bool>(iterator(this, i), false);
 | 
						|
		i = do_insert(std::make_pair(key, value), hash);
 | 
						|
		return std::pair<iterator, bool>(iterator(this, i), true);
 | 
						|
	}
 | 
						|
 | 
						|
	std::pair<iterator, bool> emplace(K const &key, T &&rvalue)
 | 
						|
	{
 | 
						|
		Hasher::hash_t hash = do_hash(key);
 | 
						|
		int i = do_lookup(key, hash);
 | 
						|
		if (i >= 0)
 | 
						|
			return std::pair<iterator, bool>(iterator(this, i), false);
 | 
						|
		i = do_insert(std::make_pair(key, std::forward<T>(rvalue)), hash);
 | 
						|
		return std::pair<iterator, bool>(iterator(this, i), true);
 | 
						|
	}
 | 
						|
 | 
						|
	std::pair<iterator, bool> emplace(K &&rkey, T const &value)
 | 
						|
	{
 | 
						|
		Hasher::hash_t hash = do_hash(rkey);
 | 
						|
		int i = do_lookup(rkey, hash);
 | 
						|
		if (i >= 0)
 | 
						|
			return std::pair<iterator, bool>(iterator(this, i), false);
 | 
						|
		i = do_insert(std::make_pair(std::forward<K>(rkey), value), hash);
 | 
						|
		return std::pair<iterator, bool>(iterator(this, i), true);
 | 
						|
	}
 | 
						|
 | 
						|
	std::pair<iterator, bool> emplace(K &&rkey, T &&rvalue)
 | 
						|
	{
 | 
						|
		Hasher::hash_t hash = do_hash(rkey);
 | 
						|
		int i = do_lookup(rkey, hash);
 | 
						|
		if (i >= 0)
 | 
						|
			return std::pair<iterator, bool>(iterator(this, i), false);
 | 
						|
		i = do_insert(std::make_pair(std::forward<K>(rkey), std::forward<T>(rvalue)), hash);
 | 
						|
		return std::pair<iterator, bool>(iterator(this, i), true);
 | 
						|
	}
 | 
						|
 | 
						|
	int erase(const K &key)
 | 
						|
	{
 | 
						|
		Hasher::hash_t hash = do_hash(key);
 | 
						|
		int index = do_lookup(key, hash);
 | 
						|
		return do_erase(index, hash);
 | 
						|
	}
 | 
						|
 | 
						|
	iterator erase(iterator it)
 | 
						|
	{
 | 
						|
		Hasher::hash_t hash = do_hash(it->first);
 | 
						|
		do_erase(it.index, hash);
 | 
						|
		return ++it;
 | 
						|
	}
 | 
						|
 | 
						|
	int count(const K &key) const
 | 
						|
	{
 | 
						|
		Hasher::hash_t hash = do_hash(key);
 | 
						|
		int i = do_lookup_no_rehash(key, hash);
 | 
						|
		return i < 0 ? 0 : 1;
 | 
						|
	}
 | 
						|
 | 
						|
	int count(const K &key, const_iterator it) const
 | 
						|
	{
 | 
						|
		Hasher::hash_t hash = do_hash(key);
 | 
						|
		int i = do_lookup_no_rehash(key, hash);
 | 
						|
		return i < 0 || i > it.index ? 0 : 1;
 | 
						|
	}
 | 
						|
 | 
						|
	iterator find(const K &key)
 | 
						|
	{
 | 
						|
		Hasher::hash_t hash = do_hash(key);
 | 
						|
		int i = do_lookup(key, hash);
 | 
						|
		if (i < 0)
 | 
						|
			return end();
 | 
						|
		return iterator(this, i);
 | 
						|
	}
 | 
						|
 | 
						|
	const_iterator find(const K &key) const
 | 
						|
	{
 | 
						|
		Hasher::hash_t hash = do_hash(key);
 | 
						|
		int i = do_lookup_no_rehash(key, hash);
 | 
						|
		if (i < 0)
 | 
						|
			return end();
 | 
						|
		return const_iterator(this, i);
 | 
						|
	}
 | 
						|
 | 
						|
	T& at(const K &key)
 | 
						|
	{
 | 
						|
		Hasher::hash_t hash = do_hash(key);
 | 
						|
		int i = do_lookup(key, hash);
 | 
						|
		if (i < 0)
 | 
						|
			throw std::out_of_range("dict::at()");
 | 
						|
		return entries[i].udata.second;
 | 
						|
	}
 | 
						|
 | 
						|
	const T& at(const K &key) const
 | 
						|
	{
 | 
						|
		Hasher::hash_t hash = do_hash(key);
 | 
						|
		int i = do_lookup_no_rehash(key, hash);
 | 
						|
		if (i < 0)
 | 
						|
			throw std::out_of_range("dict::at()");
 | 
						|
		return entries[i].udata.second;
 | 
						|
	}
 | 
						|
 | 
						|
	const T& at(const K &key, const T &defval) const
 | 
						|
	{
 | 
						|
		Hasher::hash_t hash = do_hash(key);
 | 
						|
		int i = do_lookup_no_rehash(key, hash);
 | 
						|
		if (i < 0)
 | 
						|
			return defval;
 | 
						|
		return entries[i].udata.second;
 | 
						|
	}
 | 
						|
 | 
						|
	T& operator[](const K &key)
 | 
						|
	{
 | 
						|
		Hasher::hash_t hash = do_hash(key);
 | 
						|
		int i = do_lookup(key, hash);
 | 
						|
		if (i < 0)
 | 
						|
			i = do_insert(std::pair<K, T>(key, T()), hash);
 | 
						|
		return entries[i].udata.second;
 | 
						|
	}
 | 
						|
 | 
						|
	template<typename Compare = std::less<K>>
 | 
						|
	void sort(Compare comp = Compare())
 | 
						|
	{
 | 
						|
		std::sort(entries.begin(), entries.end(), [comp](const entry_t &a, const entry_t &b){ return comp(b.udata.first, a.udata.first); });
 | 
						|
		do_rehash();
 | 
						|
	}
 | 
						|
 | 
						|
	void swap(dict &other)
 | 
						|
	{
 | 
						|
		hashtable.swap(other.hashtable);
 | 
						|
		entries.swap(other.entries);
 | 
						|
	}
 | 
						|
 | 
						|
	bool operator==(const dict &other) const {
 | 
						|
		if (size() != other.size())
 | 
						|
			return false;
 | 
						|
		for (auto &it : entries) {
 | 
						|
			auto oit = other.find(it.udata.first);
 | 
						|
			if (oit == other.end() || !(oit->second == it.udata.second))
 | 
						|
				return false;
 | 
						|
		}
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
 | 
						|
	bool operator!=(const dict &other) const {
 | 
						|
		return !operator==(other);
 | 
						|
	}
 | 
						|
 | 
						|
	[[nodiscard]] Hasher hash_into(Hasher h) const {
 | 
						|
		commutative_hash comm;
 | 
						|
		for (auto &it : entries) {
 | 
						|
			Hasher entry_hash;
 | 
						|
			entry_hash.eat(it.udata.first);
 | 
						|
			entry_hash.eat(it.udata.second);
 | 
						|
			comm.eat(entry_hash);
 | 
						|
		}
 | 
						|
		return comm.hash_into(h);
 | 
						|
	}
 | 
						|
 | 
						|
	void reserve(size_t n) { entries.reserve(n); }
 | 
						|
	size_t size() const { return entries.size(); }
 | 
						|
	bool empty() const { return entries.empty(); }
 | 
						|
	void clear() { hashtable.clear(); entries.clear(); }
 | 
						|
 | 
						|
	iterator begin() { return iterator(this, int(entries.size())-1); }
 | 
						|
	iterator element(int n) { return iterator(this, int(entries.size())-1-n); }
 | 
						|
	iterator end() { return iterator(nullptr, -1); }
 | 
						|
 | 
						|
	const_iterator begin() const { return const_iterator(this, int(entries.size())-1); }
 | 
						|
	const_iterator element(int n) const { return const_iterator(this, int(entries.size())-1-n); }
 | 
						|
	const_iterator end() const { return const_iterator(this, -1); }
 | 
						|
};
 | 
						|
 | 
						|
template<typename K, typename OPS>
 | 
						|
class pool
 | 
						|
{
 | 
						|
	template<typename, int, typename> friend class idict;
 | 
						|
 | 
						|
protected:
 | 
						|
	struct entry_t
 | 
						|
	{
 | 
						|
		K udata;
 | 
						|
		int next;
 | 
						|
 | 
						|
		entry_t() { }
 | 
						|
		entry_t(const K &udata, int next) : udata(udata), next(next) { }
 | 
						|
		entry_t(K &&udata, int next) : udata(std::move(udata)), next(next) { }
 | 
						|
	};
 | 
						|
 | 
						|
	std::vector<int> hashtable;
 | 
						|
	std::vector<entry_t> entries;
 | 
						|
	OPS ops;
 | 
						|
 | 
						|
#ifdef NDEBUG
 | 
						|
	static inline void do_assert(bool) { }
 | 
						|
#else
 | 
						|
	static inline void do_assert(bool cond) {
 | 
						|
		if (!cond) throw std::runtime_error("pool<> assert failed.");
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	Hasher::hash_t do_hash(const K &key) const
 | 
						|
	{
 | 
						|
		Hasher::hash_t hash = 0;
 | 
						|
		if (!hashtable.empty())
 | 
						|
			hash = ops.hash(key).yield() % (unsigned int)(hashtable.size());
 | 
						|
		return hash;
 | 
						|
	}
 | 
						|
 | 
						|
	void do_rehash()
 | 
						|
	{
 | 
						|
		hashtable.clear();
 | 
						|
		hashtable.resize(hashtable_size(entries.capacity() * hashtable_size_factor), -1);
 | 
						|
 | 
						|
		for (int i = 0; i < int(entries.size()); i++) {
 | 
						|
			do_assert(-1 <= entries[i].next && entries[i].next < int(entries.size()));
 | 
						|
			Hasher::hash_t hash = do_hash(entries[i].udata);
 | 
						|
			entries[i].next = hashtable[hash];
 | 
						|
			hashtable[hash] = i;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	int do_erase(int index, Hasher::hash_t hash)
 | 
						|
	{
 | 
						|
		do_assert(index < int(entries.size()));
 | 
						|
		if (hashtable.empty() || index < 0)
 | 
						|
			return 0;
 | 
						|
 | 
						|
		int k = hashtable[hash];
 | 
						|
		if (k == index) {
 | 
						|
			hashtable[hash] = entries[index].next;
 | 
						|
		} else {
 | 
						|
			while (entries[k].next != index) {
 | 
						|
				k = entries[k].next;
 | 
						|
				do_assert(0 <= k && k < int(entries.size()));
 | 
						|
			}
 | 
						|
			entries[k].next = entries[index].next;
 | 
						|
		}
 | 
						|
 | 
						|
		int back_idx = entries.size()-1;
 | 
						|
 | 
						|
		if (index != back_idx)
 | 
						|
		{
 | 
						|
			Hasher::hash_t back_hash = do_hash(entries[back_idx].udata);
 | 
						|
 | 
						|
			k = hashtable[back_hash];
 | 
						|
			if (k == back_idx) {
 | 
						|
				hashtable[back_hash] = index;
 | 
						|
			} else {
 | 
						|
				while (entries[k].next != back_idx) {
 | 
						|
					k = entries[k].next;
 | 
						|
					do_assert(0 <= k && k < int(entries.size()));
 | 
						|
				}
 | 
						|
				entries[k].next = index;
 | 
						|
			}
 | 
						|
 | 
						|
			entries[index] = std::move(entries[back_idx]);
 | 
						|
		}
 | 
						|
 | 
						|
		entries.pop_back();
 | 
						|
 | 
						|
		if (entries.empty())
 | 
						|
			hashtable.clear();
 | 
						|
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	int do_lookup(const K &key, Hasher::hash_t &hash)
 | 
						|
	{
 | 
						|
		if (hashtable.empty())
 | 
						|
			return -1;
 | 
						|
 | 
						|
		if (entries.size() * hashtable_size_trigger > hashtable.size()) {
 | 
						|
			do_rehash();
 | 
						|
			hash = do_hash(key);
 | 
						|
		}
 | 
						|
 | 
						|
		return do_lookup_internal(key, hash);
 | 
						|
	}
 | 
						|
 | 
						|
	int do_lookup_internal(const K &key, Hasher::hash_t hash) const
 | 
						|
	{
 | 
						|
		int index = hashtable[hash];
 | 
						|
 | 
						|
		while (index >= 0 && !ops.cmp(entries[index].udata, key)) {
 | 
						|
			index = entries[index].next;
 | 
						|
			do_assert(-1 <= index && index < int(entries.size()));
 | 
						|
		}
 | 
						|
 | 
						|
		return index;
 | 
						|
	}
 | 
						|
 | 
						|
	int do_lookup_no_rehash(const K &key, Hasher::hash_t hash) const
 | 
						|
	{
 | 
						|
		if (hashtable.empty())
 | 
						|
			return -1;
 | 
						|
 | 
						|
		return do_lookup_internal(key, hash);
 | 
						|
	}
 | 
						|
 | 
						|
	int do_insert(const K &value, Hasher::hash_t &hash)
 | 
						|
	{
 | 
						|
		if (hashtable.empty()) {
 | 
						|
			entries.emplace_back(value, -1);
 | 
						|
			do_rehash();
 | 
						|
			hash = do_hash(value);
 | 
						|
		} else {
 | 
						|
			entries.emplace_back(value, hashtable[hash]);
 | 
						|
			hashtable[hash] = entries.size() - 1;
 | 
						|
		}
 | 
						|
		return entries.size() - 1;
 | 
						|
	}
 | 
						|
 | 
						|
	int do_insert(K &&rvalue, Hasher::hash_t &hash)
 | 
						|
	{
 | 
						|
		if (hashtable.empty()) {
 | 
						|
			entries.emplace_back(std::forward<K>(rvalue), -1);
 | 
						|
			do_rehash();
 | 
						|
			hash = do_hash(rvalue);
 | 
						|
		} else {
 | 
						|
			entries.emplace_back(std::forward<K>(rvalue), hashtable[hash]);
 | 
						|
			hashtable[hash] = entries.size() - 1;
 | 
						|
		}
 | 
						|
		return entries.size() - 1;
 | 
						|
	}
 | 
						|
 | 
						|
public:
 | 
						|
	class const_iterator
 | 
						|
	{
 | 
						|
		friend class pool;
 | 
						|
	protected:
 | 
						|
		const pool *ptr;
 | 
						|
		int index;
 | 
						|
		const_iterator(const pool *ptr, int index) : ptr(ptr), index(index) { }
 | 
						|
	public:
 | 
						|
		typedef std::forward_iterator_tag iterator_category;
 | 
						|
		typedef K value_type;
 | 
						|
		typedef ptrdiff_t difference_type;
 | 
						|
		typedef K* pointer;
 | 
						|
		typedef K& reference;
 | 
						|
		const_iterator() { }
 | 
						|
		const_iterator operator++() { index--; return *this; }
 | 
						|
		bool operator==(const const_iterator &other) const { return index == other.index; }
 | 
						|
		bool operator!=(const const_iterator &other) const { return index != other.index; }
 | 
						|
		const K &operator*() const { return ptr->entries[index].udata; }
 | 
						|
		const K *operator->() const { return &ptr->entries[index].udata; }
 | 
						|
	};
 | 
						|
 | 
						|
	class iterator
 | 
						|
	{
 | 
						|
		friend class pool;
 | 
						|
	protected:
 | 
						|
		pool *ptr;
 | 
						|
		int index;
 | 
						|
		iterator(pool *ptr, int index) : ptr(ptr), index(index) { }
 | 
						|
	public:
 | 
						|
		typedef std::forward_iterator_tag iterator_category;
 | 
						|
		typedef K value_type;
 | 
						|
		typedef ptrdiff_t difference_type;
 | 
						|
		typedef K* pointer;
 | 
						|
		typedef K& reference;
 | 
						|
		iterator() { }
 | 
						|
		iterator operator++() { index--; return *this; }
 | 
						|
		bool operator==(const iterator &other) const { return index == other.index; }
 | 
						|
		bool operator!=(const iterator &other) const { return index != other.index; }
 | 
						|
		K &operator*() { return ptr->entries[index].udata; }
 | 
						|
		K *operator->() { return &ptr->entries[index].udata; }
 | 
						|
		const K &operator*() const { return ptr->entries[index].udata; }
 | 
						|
		const K *operator->() const { return &ptr->entries[index].udata; }
 | 
						|
		operator const_iterator() const { return const_iterator(ptr, index); }
 | 
						|
	};
 | 
						|
 | 
						|
	constexpr pool()
 | 
						|
	{
 | 
						|
	}
 | 
						|
 | 
						|
	pool(const pool &other)
 | 
						|
	{
 | 
						|
		entries = other.entries;
 | 
						|
		do_rehash();
 | 
						|
	}
 | 
						|
 | 
						|
	pool(pool &&other)
 | 
						|
	{
 | 
						|
		swap(other);
 | 
						|
	}
 | 
						|
 | 
						|
	pool &operator=(const pool &other) {
 | 
						|
		entries = other.entries;
 | 
						|
		do_rehash();
 | 
						|
		return *this;
 | 
						|
	}
 | 
						|
 | 
						|
	pool &operator=(pool &&other) {
 | 
						|
		clear();
 | 
						|
		swap(other);
 | 
						|
		return *this;
 | 
						|
	}
 | 
						|
 | 
						|
	pool(const std::initializer_list<K> &list)
 | 
						|
	{
 | 
						|
		for (auto &it : list)
 | 
						|
			insert(it);
 | 
						|
	}
 | 
						|
 | 
						|
	template<class InputIterator>
 | 
						|
	pool(InputIterator first, InputIterator last)
 | 
						|
	{
 | 
						|
		insert(first, last);
 | 
						|
	}
 | 
						|
 | 
						|
	template<class InputIterator>
 | 
						|
	void insert(InputIterator first, InputIterator last)
 | 
						|
	{
 | 
						|
		for (; first != last; ++first)
 | 
						|
			insert(*first);
 | 
						|
	}
 | 
						|
 | 
						|
	std::pair<iterator, bool> insert(const K &value)
 | 
						|
	{
 | 
						|
		Hasher::hash_t hash = do_hash(value);
 | 
						|
		int i = do_lookup(value, hash);
 | 
						|
		if (i >= 0)
 | 
						|
			return std::pair<iterator, bool>(iterator(this, i), false);
 | 
						|
		i = do_insert(value, hash);
 | 
						|
		return std::pair<iterator, bool>(iterator(this, i), true);
 | 
						|
	}
 | 
						|
 | 
						|
	std::pair<iterator, bool> insert(K &&rvalue)
 | 
						|
	{
 | 
						|
		Hasher::hash_t hash = do_hash(rvalue);
 | 
						|
		int i = do_lookup(rvalue, hash);
 | 
						|
		if (i >= 0)
 | 
						|
			return std::pair<iterator, bool>(iterator(this, i), false);
 | 
						|
		i = do_insert(std::forward<K>(rvalue), hash);
 | 
						|
		return std::pair<iterator, bool>(iterator(this, i), true);
 | 
						|
	}
 | 
						|
 | 
						|
	template<typename... Args>
 | 
						|
	std::pair<iterator, bool> emplace(Args&&... args)
 | 
						|
	{
 | 
						|
		return insert(K(std::forward<Args>(args)...));
 | 
						|
	}
 | 
						|
 | 
						|
	int erase(const K &key)
 | 
						|
	{
 | 
						|
		Hasher::hash_t hash = do_hash(key);
 | 
						|
		int index = do_lookup(key, hash);
 | 
						|
		return do_erase(index, hash);
 | 
						|
	}
 | 
						|
 | 
						|
	iterator erase(iterator it)
 | 
						|
	{
 | 
						|
		Hasher::hash_t hash = do_hash(*it);
 | 
						|
		do_erase(it.index, hash);
 | 
						|
		return ++it;
 | 
						|
	}
 | 
						|
 | 
						|
	int count(const K &key) const
 | 
						|
	{
 | 
						|
		Hasher::hash_t hash = do_hash(key);
 | 
						|
		int i = do_lookup_no_rehash(key, hash);
 | 
						|
		return i < 0 ? 0 : 1;
 | 
						|
	}
 | 
						|
 | 
						|
	int count(const K &key, const_iterator it) const
 | 
						|
	{
 | 
						|
		Hasher::hash_t hash = do_hash(key);
 | 
						|
		int i = do_lookup_no_rehash(key, hash);
 | 
						|
		return i < 0 || i > it.index ? 0 : 1;
 | 
						|
	}
 | 
						|
 | 
						|
	iterator find(const K &key)
 | 
						|
	{
 | 
						|
		Hasher::hash_t hash = do_hash(key);
 | 
						|
		int i = do_lookup(key, hash);
 | 
						|
		if (i < 0)
 | 
						|
			return end();
 | 
						|
		return iterator(this, i);
 | 
						|
	}
 | 
						|
 | 
						|
	const_iterator find(const K &key) const
 | 
						|
	{
 | 
						|
		Hasher::hash_t hash = do_hash(key);
 | 
						|
		int i = do_lookup_no_rehash(key, hash);
 | 
						|
		if (i < 0)
 | 
						|
			return end();
 | 
						|
		return const_iterator(this, i);
 | 
						|
	}
 | 
						|
 | 
						|
	bool operator[](const K &key)
 | 
						|
	{
 | 
						|
		Hasher::hash_t hash = do_hash(key);
 | 
						|
		int i = do_lookup(key, hash);
 | 
						|
		return i >= 0;
 | 
						|
	}
 | 
						|
 | 
						|
	template<typename Compare = std::less<K>>
 | 
						|
	void sort(Compare comp = Compare())
 | 
						|
	{
 | 
						|
		std::sort(entries.begin(), entries.end(), [comp](const entry_t &a, const entry_t &b){ return comp(b.udata, a.udata); });
 | 
						|
		do_rehash();
 | 
						|
	}
 | 
						|
 | 
						|
	K pop()
 | 
						|
	{
 | 
						|
		iterator it = begin();
 | 
						|
		K ret = *it;
 | 
						|
		erase(it);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	void swap(pool &other)
 | 
						|
	{
 | 
						|
		hashtable.swap(other.hashtable);
 | 
						|
		entries.swap(other.entries);
 | 
						|
	}
 | 
						|
 | 
						|
	bool operator==(const pool &other) const {
 | 
						|
		if (size() != other.size())
 | 
						|
			return false;
 | 
						|
		for (auto &it : entries)
 | 
						|
			if (!other.count(it.udata))
 | 
						|
				return false;
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
 | 
						|
	bool operator!=(const pool &other) const {
 | 
						|
		return !operator==(other);
 | 
						|
	}
 | 
						|
 | 
						|
	[[nodiscard]] Hasher hash_into(Hasher h) const {
 | 
						|
		commutative_hash comm;
 | 
						|
		for (auto &it : entries) {
 | 
						|
			comm.eat(ops.hash(it.udata));
 | 
						|
		}
 | 
						|
		return comm.hash_into(h);
 | 
						|
	}
 | 
						|
 | 
						|
	void reserve(size_t n) { entries.reserve(n); }
 | 
						|
	size_t size() const { return entries.size(); }
 | 
						|
	bool empty() const { return entries.empty(); }
 | 
						|
	void clear() { hashtable.clear(); entries.clear(); }
 | 
						|
 | 
						|
	iterator begin() { return iterator(this, int(entries.size())-1); }
 | 
						|
	iterator element(int n) { return iterator(this, int(entries.size())-1-n); }
 | 
						|
	iterator end() { return iterator(nullptr, -1); }
 | 
						|
 | 
						|
	const_iterator begin() const { return const_iterator(this, int(entries.size())-1); }
 | 
						|
	const_iterator element(int n) const { return const_iterator(this, int(entries.size())-1-n); }
 | 
						|
	const_iterator end() const { return const_iterator(nullptr, -1); }
 | 
						|
};
 | 
						|
 | 
						|
template<typename K, int offset, typename OPS>
 | 
						|
class idict
 | 
						|
{
 | 
						|
	pool<K, OPS> database;
 | 
						|
 | 
						|
public:
 | 
						|
	class const_iterator
 | 
						|
	{
 | 
						|
		friend class idict;
 | 
						|
	protected:
 | 
						|
		const idict &container;
 | 
						|
		int index;
 | 
						|
		const_iterator(const idict &container, int index) : container(container), index(index) { }
 | 
						|
	public:
 | 
						|
		typedef std::forward_iterator_tag iterator_category;
 | 
						|
		typedef K value_type;
 | 
						|
		typedef ptrdiff_t difference_type;
 | 
						|
		typedef K* pointer;
 | 
						|
		typedef K& reference;
 | 
						|
		const_iterator() { }
 | 
						|
		const_iterator operator++() { index++; return *this; }
 | 
						|
		bool operator==(const const_iterator &other) const { return index == other.index; }
 | 
						|
		bool operator!=(const const_iterator &other) const { return index != other.index; }
 | 
						|
		const K &operator*() const { return container[index]; }
 | 
						|
		const K *operator->() const { return &container[index]; }
 | 
						|
	};
 | 
						|
 | 
						|
	constexpr idict()
 | 
						|
	{
 | 
						|
	}
 | 
						|
 | 
						|
	int operator()(const K &key)
 | 
						|
	{
 | 
						|
		Hasher::hash_t hash = database.do_hash(key);
 | 
						|
		int i = database.do_lookup(key, hash);
 | 
						|
		if (i < 0)
 | 
						|
			i = database.do_insert(key, hash);
 | 
						|
		return i + offset;
 | 
						|
	}
 | 
						|
 | 
						|
	int at(const K &key) const
 | 
						|
	{
 | 
						|
		Hasher::hash_t hash = database.do_hash(key);
 | 
						|
		int i = database.do_lookup_no_rehash(key, hash);
 | 
						|
		if (i < 0)
 | 
						|
			throw std::out_of_range("idict::at()");
 | 
						|
		return i + offset;
 | 
						|
	}
 | 
						|
 | 
						|
	int at(const K &key, int defval) const
 | 
						|
	{
 | 
						|
		Hasher::hash_t hash = database.do_hash(key);
 | 
						|
		int i = database.do_lookup_no_rehash(key, hash);
 | 
						|
		if (i < 0)
 | 
						|
			return defval;
 | 
						|
		return i + offset;
 | 
						|
	}
 | 
						|
 | 
						|
	int count(const K &key) const
 | 
						|
	{
 | 
						|
		Hasher::hash_t hash = database.do_hash(key);
 | 
						|
		int i = database.do_lookup_no_rehash(key, hash);
 | 
						|
		return i < 0 ? 0 : 1;
 | 
						|
	}
 | 
						|
 | 
						|
	void expect(const K &key, int i)
 | 
						|
	{
 | 
						|
		int j = (*this)(key);
 | 
						|
		if (i != j)
 | 
						|
			throw std::out_of_range("idict::expect()");
 | 
						|
	}
 | 
						|
 | 
						|
	const K &operator[](int index) const
 | 
						|
	{
 | 
						|
		return database.entries.at(index - offset).udata;
 | 
						|
	}
 | 
						|
 | 
						|
	void swap(idict &other)
 | 
						|
	{
 | 
						|
		database.swap(other.database);
 | 
						|
	}
 | 
						|
 | 
						|
	void reserve(size_t n) { database.reserve(n); }
 | 
						|
	size_t size() const { return database.size(); }
 | 
						|
	bool empty() const { return database.empty(); }
 | 
						|
	void clear() { database.clear(); }
 | 
						|
 | 
						|
	const_iterator begin() const { return const_iterator(*this, offset); }
 | 
						|
	const_iterator element(int n) const { return const_iterator(*this, n); }
 | 
						|
	const_iterator end() const { return const_iterator(*this, offset + size()); }
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * Union-find data structure with a promotion method
 | 
						|
 * mfp stands for "merge, find, promote"
 | 
						|
 * i-prefixed methods operate on indices in parents
 | 
						|
*/
 | 
						|
template<typename K, typename OPS>
 | 
						|
class mfp
 | 
						|
{
 | 
						|
	idict<K, 0, OPS> database;
 | 
						|
	class AtomicParent {
 | 
						|
	public:
 | 
						|
		explicit AtomicParent(int p) : parent(p) {}
 | 
						|
		AtomicParent(const AtomicParent &other) : parent(other.get()) {}
 | 
						|
		AtomicParent &operator=(const AtomicParent &other) { set(other.get()); return *this; }
 | 
						|
		int get() const { return parent.load(std::memory_order_relaxed); }
 | 
						|
		void set(int p) { parent.store(p, std::memory_order_relaxed); }
 | 
						|
	private:
 | 
						|
		std::atomic<int> parent;
 | 
						|
	};
 | 
						|
	std::vector<AtomicParent> parents;
 | 
						|
 | 
						|
public:
 | 
						|
	typedef typename idict<K, 0>::const_iterator const_iterator;
 | 
						|
 | 
						|
	constexpr mfp()
 | 
						|
	{
 | 
						|
	}
 | 
						|
 | 
						|
	// Finds a given element's index. If it isn't in the data structure,
 | 
						|
	// it is added as its own set
 | 
						|
	int operator()(const K &key)
 | 
						|
	{
 | 
						|
		int i = database(key);
 | 
						|
		// If the lookup caused the database to grow,
 | 
						|
		// also add a corresponding entry in parents initialized to -1 (no parent)
 | 
						|
		if (parents.size() < database.size()) {
 | 
						|
			parents.emplace_back(-1);
 | 
						|
		}
 | 
						|
		return i;
 | 
						|
	}
 | 
						|
 | 
						|
	// Finds an element at given index
 | 
						|
	const K &operator[](int index) const
 | 
						|
	{
 | 
						|
		return database[index];
 | 
						|
	}
 | 
						|
 | 
						|
	// Why this method is correct for concurent ifind() calls:
 | 
						|
	// Consider the mfp state after the last non-const method call before
 | 
						|
	// a particular call to ifind(i). In this state, i's parent chain leads
 | 
						|
	// to some root R. Let S be the set of integers s such that ifind(s) = R
 | 
						|
	// in this state. Let 'orig_parents' be the value of 'parents' in this state.
 | 
						|
	//
 | 
						|
	// Now consider the concurrent calls to ifind(s), s ∈ S, before the next non-const method
 | 
						|
	// call. Consider the atomic writes performed by various ifind() calls, in any causally
 | 
						|
	// consistent order. The first atomic write can only set parents[k] to R, because the
 | 
						|
	// atomic read of parents[p] in the first while loop can only observe the value
 | 
						|
	// 'orig_parents[p]'. Subsequent writes can also only set parents[k] to R, because the
 | 
						|
	// parents[p] reads either observe 'orig_parents[p]' or R (and observing R ends the first
 | 
						|
	// while loop immediately). Thus all parents[p] reads observe either 'orig_parents[p]'
 | 
						|
	// or R, so ifind() always returns R.
 | 
						|
	int ifind(int i) const
 | 
						|
	{
 | 
						|
		int p = i, k = i;
 | 
						|
 | 
						|
		while (true) {
 | 
						|
			int pp = parents[p].get();
 | 
						|
			if (pp < 0)
 | 
						|
				break;
 | 
						|
			p = pp;
 | 
						|
		}
 | 
						|
		// p is now the representative of i
 | 
						|
		// Now we traverse from i up to the representative again
 | 
						|
		// and make p the parent of all the nodes along the way.
 | 
						|
		// This is a side effect and doesn't affect the return value.
 | 
						|
		// It speeds up future find operations
 | 
						|
		while (k != p) {
 | 
						|
			int next_k = parents[k].get();
 | 
						|
			const_cast<AtomicParent*>(&parents[k])->set(p);
 | 
						|
			k = next_k;
 | 
						|
		}
 | 
						|
 | 
						|
		return p;
 | 
						|
	}
 | 
						|
 | 
						|
	// Merge sets if the given indices belong to different sets.
 | 
						|
	// Makes ifind(j) the root of the merged set.
 | 
						|
	void imerge(int i, int j)
 | 
						|
	{
 | 
						|
		i = ifind(i);
 | 
						|
		j = ifind(j);
 | 
						|
 | 
						|
		if (i != j)
 | 
						|
			parents[i].set(j);
 | 
						|
	}
 | 
						|
 | 
						|
	void ipromote(int i)
 | 
						|
	{
 | 
						|
		int k = i;
 | 
						|
 | 
						|
		while (k != -1) {
 | 
						|
			int next_k = parents[k].get();
 | 
						|
			parents[k].set(i);
 | 
						|
			k = next_k;
 | 
						|
		}
 | 
						|
 | 
						|
		parents[i].set(-1);
 | 
						|
	}
 | 
						|
 | 
						|
	int lookup(const K &a)
 | 
						|
	{
 | 
						|
		return ifind((*this)(a));
 | 
						|
	}
 | 
						|
 | 
						|
	const K &find(const K &a) const
 | 
						|
	{
 | 
						|
		int i = database.at(a, -1);
 | 
						|
		if (i < 0)
 | 
						|
			return a;
 | 
						|
		return (*this)[ifind(i)];
 | 
						|
	}
 | 
						|
 | 
						|
	void merge(const K &a, const K &b)
 | 
						|
	{
 | 
						|
		imerge((*this)(a), (*this)(b));
 | 
						|
	}
 | 
						|
 | 
						|
	void promote(const K &a)
 | 
						|
	{
 | 
						|
		int i = database.at(a, -1);
 | 
						|
		if (i >= 0)
 | 
						|
			ipromote(i);
 | 
						|
	}
 | 
						|
 | 
						|
	void swap(mfp &other)
 | 
						|
	{
 | 
						|
		database.swap(other.database);
 | 
						|
		parents.swap(other.parents);
 | 
						|
	}
 | 
						|
 | 
						|
	void reserve(size_t n) { database.reserve(n); }
 | 
						|
	size_t size() const { return database.size(); }
 | 
						|
	bool empty() const { return database.empty(); }
 | 
						|
	void clear() { database.clear(); parents.clear(); }
 | 
						|
 | 
						|
	const_iterator begin() const { return database.begin(); }
 | 
						|
	const_iterator element(int n) const { return database.element(n); }
 | 
						|
	const_iterator end() const { return database.end(); }
 | 
						|
};
 | 
						|
 | 
						|
} /* namespace hashlib */
 | 
						|
 | 
						|
#endif
 |