mirror of
				https://github.com/YosysHQ/yosys
				synced 2025-10-31 03:32:29 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1889 lines
		
	
	
	
		
			49 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1889 lines
		
	
	
	
		
			49 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  *  yosys -- Yosys Open SYnthesis Suite
 | |
|  *
 | |
|  *  Copyright (C) 2012  Claire Xenia Wolf <claire@yosyshq.com>
 | |
|  *
 | |
|  *  Permission to use, copy, modify, and/or distribute this software for any
 | |
|  *  purpose with or without fee is hereby granted, provided that the above
 | |
|  *  copyright notice and this permission notice appear in all copies.
 | |
|  *
 | |
|  *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 | |
|  *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 | |
|  *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 | |
|  *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 | |
|  *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 | |
|  *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 | |
|  *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| 
 | |
| // Currently supported SVA sequence and property syntax:
 | |
| // http://symbiyosys.readthedocs.io/en/latest/verific.html
 | |
| //
 | |
| // Next gen property syntax:
 | |
| //   basic_property
 | |
| //   [antecedent_condition] property
 | |
| //   [antecedent_condition] always.. property
 | |
| //   [antecedent_condition] eventually.. basic_property
 | |
| //   [antecedent_condition] property until.. expression
 | |
| //   [antecedent_condition] basic_property until.. basic_property      (assert/assume only)
 | |
| //
 | |
| // antecedent_condition:
 | |
| //   sequence |->
 | |
| //   sequence |=>
 | |
| //
 | |
| // basic_property:
 | |
| //   sequence
 | |
| //   not basic_property
 | |
| //   nexttime basic_property
 | |
| //   nexttime[N] basic_property
 | |
| //   sequence #-# basic_property
 | |
| //   sequence #=# basic_property
 | |
| //   basic_property or basic_property           (cover only)
 | |
| //   basic_property and basic_property          (assert/assume only)
 | |
| //   basic_property implies basic_property
 | |
| //   basic_property iff basic_property
 | |
| //
 | |
| // sequence:
 | |
| //   expression
 | |
| //   sequence ##N sequence
 | |
| //   sequence ##[*] sequence
 | |
| //   sequence ##[+] sequence
 | |
| //   sequence ##[N:M] sequence
 | |
| //   sequence ##[N:$] sequence
 | |
| //   expression [*]
 | |
| //   expression [+]
 | |
| //   expression [*N]
 | |
| //   expression [*N:M]
 | |
| //   expression [*N:$]
 | |
| //   sequence or sequence
 | |
| //   sequence and sequence
 | |
| //   expression throughout sequence
 | |
| //   sequence intersect sequence
 | |
| //   sequence within sequence
 | |
| //   first_match( sequence )
 | |
| //   expression [=N]
 | |
| //   expression [=N:M]
 | |
| //   expression [=N:$]
 | |
| //   expression [->N]
 | |
| //   expression [->N:M]
 | |
| //   expression [->N:$]
 | |
| 
 | |
| 
 | |
| #include "kernel/yosys.h"
 | |
| #include "frontends/verific/verific.h"
 | |
| 
 | |
| USING_YOSYS_NAMESPACE
 | |
| 
 | |
| #ifdef VERIFIC_NAMESPACE
 | |
| using namespace Verific;
 | |
| #endif
 | |
| 
 | |
| #ifdef VERIFIC_SYSTEMVERILOG_SUPPORT
 | |
| PRIVATE_NAMESPACE_BEGIN
 | |
| 
 | |
| // Non-deterministic FSM
 | |
| struct SvaNFsmNode
 | |
| {
 | |
| 	// Edge: Activate the target node if ctrl signal is true, consumes clock cycle
 | |
| 	// Link: Activate the target node if ctrl signal is true, doesn't consume clock cycle
 | |
| 	vector<pair<int, SigBit>> edges, links;
 | |
| 	bool is_cond_node;
 | |
| };
 | |
| 
 | |
| // Non-deterministic FSM after resolving links
 | |
| struct SvaUFsmNode
 | |
| {
 | |
| 	// Edge: Activate the target node if all bits in ctrl signal are true, consumes clock cycle
 | |
| 	// Accept: This node functions as an accept node if all bits in ctrl signal are true
 | |
| 	vector<pair<int, SigSpec>> edges;
 | |
| 	vector<SigSpec> accept, cond;
 | |
| 	bool reachable;
 | |
| };
 | |
| 
 | |
| // Deterministic FSM
 | |
| struct SvaDFsmNode
 | |
| {
 | |
| 	// A DFSM state corresponds to a set of NFSM states. We represent DFSM states as sorted vectors
 | |
| 	// of NFSM state node ids. Edge/accept controls are constants matched against the ctrl sigspec.
 | |
| 	SigSpec ctrl;
 | |
| 	vector<pair<vector<int>, Const>> edges;
 | |
| 	vector<Const> accept, reject;
 | |
| 
 | |
| 	// additional temp data for getReject()
 | |
| 	Wire *ffoutwire;
 | |
| 	SigBit statesig;
 | |
| 	SigSpec nextstate;
 | |
| 
 | |
| 	// additional temp data for getDFsm()
 | |
| 	int outnode;
 | |
| };
 | |
| 
 | |
| struct SvaFsm
 | |
| {
 | |
| 	Module *module;
 | |
| 	VerificClocking clocking;
 | |
| 
 | |
| 	SigBit trigger_sig = State::S1, disable_sig;
 | |
| 	SigBit throughout_sig = State::S1;
 | |
| 	bool in_cond_mode = false;
 | |
| 
 | |
| 	vector<SigBit> disable_stack;
 | |
| 	vector<SigBit> throughout_stack;
 | |
| 
 | |
| 	int startNode, acceptNode, condNode;
 | |
| 	vector<SvaNFsmNode> nodes;
 | |
| 
 | |
| 	vector<SvaUFsmNode> unodes;
 | |
| 	dict<vector<int>, SvaDFsmNode> dnodes;
 | |
| 	dict<pair<SigSpec, SigSpec>, SigBit> cond_eq_cache;
 | |
| 	bool materialized = false;
 | |
| 
 | |
| 	SigBit final_accept_sig = State::Sx;
 | |
| 	SigBit final_reject_sig = State::Sx;
 | |
| 
 | |
| 	SvaFsm(const VerificClocking &clking, SigBit trig = State::S1)
 | |
| 	{
 | |
| 		module = clking.module;
 | |
| 		clocking = clking;
 | |
| 		trigger_sig = trig;
 | |
| 
 | |
| 		startNode = createNode();
 | |
| 		acceptNode = createNode();
 | |
| 
 | |
| 		in_cond_mode = true;
 | |
| 		condNode = createNode();
 | |
| 		in_cond_mode = false;
 | |
| 	}
 | |
| 
 | |
| 	void pushDisable(SigBit sig)
 | |
| 	{
 | |
| 		log_assert(!materialized);
 | |
| 
 | |
| 		disable_stack.push_back(disable_sig);
 | |
| 
 | |
| 		if (disable_sig == State::S0)
 | |
| 			disable_sig = sig;
 | |
| 		else
 | |
| 			disable_sig = module->Or(NEW_ID, disable_sig, sig);
 | |
| 	}
 | |
| 
 | |
| 	void popDisable()
 | |
| 	{
 | |
| 		log_assert(!materialized);
 | |
| 		log_assert(!disable_stack.empty());
 | |
| 
 | |
| 		disable_sig = disable_stack.back();
 | |
| 		disable_stack.pop_back();
 | |
| 	}
 | |
| 
 | |
| 	void pushThroughout(SigBit sig)
 | |
| 	{
 | |
| 		log_assert(!materialized);
 | |
| 
 | |
| 		throughout_stack.push_back(throughout_sig);
 | |
| 
 | |
| 		if (throughout_sig == State::S1)
 | |
| 			throughout_sig = sig;
 | |
| 		else
 | |
| 			throughout_sig = module->And(NEW_ID, throughout_sig, sig);
 | |
| 	}
 | |
| 
 | |
| 	void popThroughout()
 | |
| 	{
 | |
| 		log_assert(!materialized);
 | |
| 		log_assert(!throughout_stack.empty());
 | |
| 
 | |
| 		throughout_sig = throughout_stack.back();
 | |
| 		throughout_stack.pop_back();
 | |
| 	}
 | |
| 
 | |
| 	int createNode(int link_node = -1)
 | |
| 	{
 | |
| 		log_assert(!materialized);
 | |
| 
 | |
| 		int idx = GetSize(nodes);
 | |
| 		nodes.push_back(SvaNFsmNode());
 | |
| 		nodes.back().is_cond_node = in_cond_mode;
 | |
| 		if (link_node >= 0)
 | |
| 			createLink(link_node, idx);
 | |
| 		return idx;
 | |
| 	}
 | |
| 
 | |
| 	int createStartNode()
 | |
| 	{
 | |
| 		return createNode(startNode);
 | |
| 	}
 | |
| 
 | |
| 	void createEdge(int from_node, int to_node, SigBit ctrl = State::S1)
 | |
| 	{
 | |
| 		log_assert(!materialized);
 | |
| 		log_assert(0 <= from_node && from_node < GetSize(nodes));
 | |
| 		log_assert(0 <= to_node && to_node < GetSize(nodes));
 | |
| 		log_assert(from_node != acceptNode);
 | |
| 		log_assert(to_node != acceptNode);
 | |
| 		log_assert(from_node != condNode);
 | |
| 		log_assert(to_node != condNode);
 | |
| 		log_assert(to_node != startNode);
 | |
| 
 | |
| 		if (from_node != startNode)
 | |
| 			log_assert(nodes.at(from_node).is_cond_node == nodes.at(to_node).is_cond_node);
 | |
| 
 | |
| 		if (throughout_sig != State::S1) {
 | |
| 			if (ctrl != State::S1)
 | |
| 				ctrl = module->And(NEW_ID, throughout_sig, ctrl);
 | |
| 			else
 | |
| 				ctrl = throughout_sig;
 | |
| 		}
 | |
| 
 | |
| 		nodes[from_node].edges.push_back(make_pair(to_node, ctrl));
 | |
| 	}
 | |
| 
 | |
| 	void createLink(int from_node, int to_node, SigBit ctrl = State::S1)
 | |
| 	{
 | |
| 		log_assert(!materialized);
 | |
| 		log_assert(0 <= from_node && from_node < GetSize(nodes));
 | |
| 		log_assert(0 <= to_node && to_node < GetSize(nodes));
 | |
| 		log_assert(from_node != acceptNode);
 | |
| 		log_assert(from_node != condNode);
 | |
| 		log_assert(to_node != startNode);
 | |
| 
 | |
| 		if (from_node != startNode)
 | |
| 			log_assert(nodes.at(from_node).is_cond_node == nodes.at(to_node).is_cond_node);
 | |
| 
 | |
| 		if (throughout_sig != State::S1) {
 | |
| 			if (ctrl != State::S1)
 | |
| 				ctrl = module->And(NEW_ID, throughout_sig, ctrl);
 | |
| 			else
 | |
| 				ctrl = throughout_sig;
 | |
| 		}
 | |
| 
 | |
| 		nodes[from_node].links.push_back(make_pair(to_node, ctrl));
 | |
| 	}
 | |
| 
 | |
| 	void make_link_order(vector<int> &order, int node, int min)
 | |
| 	{
 | |
| 		order[node] = std::max(order[node], min);
 | |
| 		for (auto &it : nodes[node].links)
 | |
| 			make_link_order(order, it.first, order[node]+1);
 | |
| 	}
 | |
| 
 | |
| 	// ----------------------------------------------------
 | |
| 	// Generating NFSM circuit to acquire accept signal
 | |
| 
 | |
| 	SigBit getAccept()
 | |
| 	{
 | |
| 		log_assert(!materialized);
 | |
| 		materialized = true;
 | |
| 
 | |
| 		vector<Wire*> state_wire(GetSize(nodes));
 | |
| 		vector<SigBit> state_sig(GetSize(nodes));
 | |
| 		vector<SigBit> next_state_sig(GetSize(nodes));
 | |
| 
 | |
| 		// Create state signals
 | |
| 
 | |
| 		{
 | |
| 			SigBit not_disable = State::S1;
 | |
| 
 | |
| 			if (disable_sig != State::S0)
 | |
| 				not_disable = module->Not(NEW_ID, disable_sig);
 | |
| 
 | |
| 			for (int i = 0; i < GetSize(nodes); i++)
 | |
| 			{
 | |
| 				Wire *w = module->addWire(NEW_ID);
 | |
| 				state_wire[i] = w;
 | |
| 				state_sig[i] = w;
 | |
| 
 | |
| 				if (i == startNode)
 | |
| 					state_sig[i] = module->Or(NEW_ID, state_sig[i], trigger_sig);
 | |
| 
 | |
| 				if (disable_sig != State::S0)
 | |
| 					state_sig[i] = module->And(NEW_ID, state_sig[i], not_disable);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Follow Links
 | |
| 
 | |
| 		{
 | |
| 			vector<int> node_order(GetSize(nodes));
 | |
| 			vector<vector<int>> order_to_nodes;
 | |
| 
 | |
| 			for (int i = 0; i < GetSize(nodes); i++)
 | |
| 				make_link_order(node_order, i, 0);
 | |
| 
 | |
| 			for (int i = 0; i < GetSize(nodes); i++) {
 | |
| 				if (node_order[i] >= GetSize(order_to_nodes))
 | |
| 					order_to_nodes.resize(node_order[i]+1);
 | |
| 				order_to_nodes[node_order[i]].push_back(i);
 | |
| 			}
 | |
| 
 | |
| 			for (int order = 0; order < GetSize(order_to_nodes); order++)
 | |
| 			for (int node : order_to_nodes[order])
 | |
| 			{
 | |
| 				for (auto &it : nodes[node].links)
 | |
| 				{
 | |
| 					int target = it.first;
 | |
| 					SigBit ctrl = state_sig[node];
 | |
| 
 | |
| 					if (it.second != State::S1)
 | |
| 						ctrl = module->And(NEW_ID, ctrl, it.second);
 | |
| 
 | |
| 					state_sig[target] = module->Or(NEW_ID, state_sig[target], ctrl);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Construct activations
 | |
| 
 | |
| 		{
 | |
| 			vector<SigSpec> activate_sig(GetSize(nodes));
 | |
| 			vector<SigBit> activate_bit(GetSize(nodes));
 | |
| 
 | |
| 			for (int i = 0; i < GetSize(nodes); i++) {
 | |
| 				for (auto &it : nodes[i].edges)
 | |
| 					activate_sig[it.first].append(module->And(NEW_ID, state_sig[i], it.second));
 | |
| 			}
 | |
| 
 | |
| 			for (int i = 0; i < GetSize(nodes); i++) {
 | |
| 				if (GetSize(activate_sig[i]) == 0)
 | |
| 					next_state_sig[i] = State::S0;
 | |
| 				else if (GetSize(activate_sig[i]) == 1)
 | |
| 					next_state_sig[i] = activate_sig[i];
 | |
| 				else
 | |
| 					next_state_sig[i] = module->ReduceOr(NEW_ID, activate_sig[i]);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Create state FFs
 | |
| 
 | |
| 		for (int i = 0; i < GetSize(nodes); i++)
 | |
| 		{
 | |
| 			if (next_state_sig[i] != State::S0) {
 | |
| 				clocking.addDff(NEW_ID, next_state_sig[i], state_wire[i], State::S0);
 | |
| 			} else {
 | |
| 				module->connect(state_wire[i], State::S0);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		final_accept_sig = state_sig[acceptNode];
 | |
| 		return final_accept_sig;
 | |
| 	}
 | |
| 
 | |
| 	// ----------------------------------------------------
 | |
| 	// Generating quantifier-based NFSM circuit to acquire reject signal
 | |
| 
 | |
| 	SigBit getAnyAllRejectWorker(bool /* allMode */)
 | |
| 	{
 | |
| 		// FIXME
 | |
| 		log_abort();
 | |
| 	}
 | |
| 
 | |
| 	SigBit getAnyReject()
 | |
| 	{
 | |
| 		return getAnyAllRejectWorker(false);
 | |
| 	}
 | |
| 
 | |
| 	SigBit getAllReject()
 | |
| 	{
 | |
| 		return getAnyAllRejectWorker(true);
 | |
| 	}
 | |
| 
 | |
| 	// ----------------------------------------------------
 | |
| 	// Generating DFSM circuit to acquire reject signal
 | |
| 
 | |
| 	void node_to_unode(int node, int unode, SigSpec ctrl)
 | |
| 	{
 | |
| 		if (node == acceptNode)
 | |
| 			unodes[unode].accept.push_back(ctrl);
 | |
| 
 | |
| 		if (node == condNode)
 | |
| 			unodes[unode].cond.push_back(ctrl);
 | |
| 
 | |
| 		for (auto &it : nodes[node].edges) {
 | |
| 			if (it.second != State::S1) {
 | |
| 				SigSpec s = {ctrl, it.second};
 | |
| 				s.sort_and_unify();
 | |
| 				unodes[unode].edges.push_back(make_pair(it.first, s));
 | |
| 			} else {
 | |
| 				unodes[unode].edges.push_back(make_pair(it.first, ctrl));
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		for (auto &it : nodes[node].links) {
 | |
| 			if (it.second != State::S1) {
 | |
| 				SigSpec s = {ctrl, it.second};
 | |
| 				s.sort_and_unify();
 | |
| 				node_to_unode(it.first, unode, s);
 | |
| 			} else {
 | |
| 				node_to_unode(it.first, unode, ctrl);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	void mark_reachable_unode(int unode)
 | |
| 	{
 | |
| 		if (unodes[unode].reachable)
 | |
| 			return;
 | |
| 
 | |
| 		unodes[unode].reachable = true;
 | |
| 		for (auto &it : unodes[unode].edges)
 | |
| 			mark_reachable_unode(it.first);
 | |
| 	}
 | |
| 
 | |
| 	void usortint(vector<int> &vec)
 | |
| 	{
 | |
| 		vector<int> newvec;
 | |
| 		std::sort(vec.begin(), vec.end());
 | |
| 		for (int i = 0; i < GetSize(vec); i++)
 | |
| 			if (i == GetSize(vec)-1 || vec[i] != vec[i+1])
 | |
| 				newvec.push_back(vec[i]);
 | |
| 		vec.swap(newvec);
 | |
| 	}
 | |
| 
 | |
| 	bool cmp_ctrl(const pool<SigBit> &ctrl_bits, const SigSpec &ctrl)
 | |
| 	{
 | |
| 		for (int i = 0; i < GetSize(ctrl); i++)
 | |
| 			if (ctrl_bits.count(ctrl[i]) == 0)
 | |
| 				return false;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	void create_dnode(const vector<int> &state, bool firstmatch, bool condaccept)
 | |
| 	{
 | |
| 		if (dnodes.count(state) != 0)
 | |
| 			return;
 | |
| 
 | |
| 		SvaDFsmNode dnode;
 | |
| 		dnodes[state] = SvaDFsmNode();
 | |
| 
 | |
| 		for (int unode : state) {
 | |
| 			log_assert(unodes[unode].reachable);
 | |
| 			for (auto &it : unodes[unode].edges)
 | |
| 				dnode.ctrl.append(it.second);
 | |
| 			for (auto &it : unodes[unode].accept)
 | |
| 				dnode.ctrl.append(it);
 | |
| 			for (auto &it : unodes[unode].cond)
 | |
| 				dnode.ctrl.append(it);
 | |
| 		}
 | |
| 
 | |
| 		dnode.ctrl.sort_and_unify();
 | |
| 
 | |
| 		if (GetSize(dnode.ctrl) > verific_sva_fsm_limit) {
 | |
| 			if (verific_verbose >= 2) {
 | |
| 				log("    detected state explosion in DFSM generation:\n");
 | |
| 				dump();
 | |
| 				log("      ctrl signal: %s\n", log_signal(dnode.ctrl));
 | |
| 			}
 | |
| 			log_error("SVA DFSM state ctrl signal has %d (>%d) bits. Stopping to prevent exponential design size explosion.\n",
 | |
| 					GetSize(dnode.ctrl), verific_sva_fsm_limit);
 | |
| 		}
 | |
| 
 | |
| 		for (unsigned long long i = 0; i < (1ull << GetSize(dnode.ctrl)); i++)
 | |
| 		{
 | |
| 			Const ctrl_val(i, GetSize(dnode.ctrl));
 | |
| 			pool<SigBit> ctrl_bits;
 | |
| 
 | |
| 			for (int j = 0; j < GetSize(dnode.ctrl); j++)
 | |
| 				if (ctrl_val[j] == State::S1)
 | |
| 					ctrl_bits.insert(dnode.ctrl[j]);
 | |
| 
 | |
| 			vector<int> new_state;
 | |
| 			bool accept = false, cond = false;
 | |
| 
 | |
| 			for (int unode : state) {
 | |
| 				for (auto &it : unodes[unode].accept)
 | |
| 					if (cmp_ctrl(ctrl_bits, it))
 | |
| 						accept = true;
 | |
| 				for (auto &it : unodes[unode].cond)
 | |
| 					if (cmp_ctrl(ctrl_bits, it))
 | |
| 						cond = true;
 | |
| 			}
 | |
| 
 | |
| 			bool new_state_cond = false;
 | |
| 			bool new_state_noncond = false;
 | |
| 
 | |
| 			if (accept && condaccept)
 | |
| 				accept = cond;
 | |
| 
 | |
| 			if (!accept || !firstmatch) {
 | |
| 				for (int unode : state)
 | |
| 				for (auto &it : unodes[unode].edges)
 | |
| 					if (cmp_ctrl(ctrl_bits, it.second)) {
 | |
| 						if (nodes.at(it.first).is_cond_node)
 | |
| 							new_state_cond = true;
 | |
| 						else
 | |
| 							new_state_noncond = true;
 | |
| 						new_state.push_back(it.first);
 | |
| 					}
 | |
| 			}
 | |
| 
 | |
| 			if (accept)
 | |
| 				dnode.accept.push_back(ctrl_val);
 | |
| 
 | |
| 			if (condaccept && (!new_state_cond || !new_state_noncond))
 | |
| 				new_state.clear();
 | |
| 
 | |
| 			if (new_state.empty()) {
 | |
| 				if (!accept)
 | |
| 					dnode.reject.push_back(ctrl_val);
 | |
| 			} else {
 | |
| 				usortint(new_state);
 | |
| 				dnode.edges.push_back(make_pair(new_state, ctrl_val));
 | |
| 				create_dnode(new_state, firstmatch, condaccept);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		dnodes[state] = dnode;
 | |
| 	}
 | |
| 
 | |
| 	void optimize_cond(vector<Const> &values)
 | |
| 	{
 | |
| 		bool did_something = true;
 | |
| 
 | |
| 		while (did_something)
 | |
| 		{
 | |
| 			did_something = false;
 | |
| 
 | |
| 			for (int i = 0; i < GetSize(values); i++)
 | |
| 			for (int j = 0; j < GetSize(values); j++)
 | |
| 			{
 | |
| 				if (i == j)
 | |
| 					continue;
 | |
| 
 | |
| 				log_assert(GetSize(values[i]) == GetSize(values[j]));
 | |
| 
 | |
| 				int delta_pos = -1;
 | |
| 				bool i_within_j = true;
 | |
| 				bool j_within_i = true;
 | |
| 
 | |
| 				for (int k = 0; k < GetSize(values[i]); k++) {
 | |
| 					if (values[i][k] == State::Sa && values[j][k] != State::Sa) {
 | |
| 						i_within_j = false;
 | |
| 						continue;
 | |
| 					}
 | |
| 					if (values[i][k] != State::Sa && values[j][k] == State::Sa) {
 | |
| 						j_within_i = false;
 | |
| 						continue;
 | |
| 					}
 | |
| 					if (values[i][k] == values[j][k])
 | |
| 						continue;
 | |
| 					if (delta_pos >= 0)
 | |
| 						goto next_pair;
 | |
| 					delta_pos = k;
 | |
| 				}
 | |
| 
 | |
| 				if (delta_pos >= 0 && i_within_j && j_within_i) {
 | |
| 					did_something = true;
 | |
| 					values[i].bits()[delta_pos] = State::Sa;
 | |
| 					values[j] = values.back();
 | |
| 					values.pop_back();
 | |
| 					goto next_pair;
 | |
| 				}
 | |
| 
 | |
| 				if (delta_pos < 0 && i_within_j) {
 | |
| 					did_something = true;
 | |
| 					values[i] = values.back();
 | |
| 					values.pop_back();
 | |
| 					goto next_pair;
 | |
| 				}
 | |
| 
 | |
| 				if (delta_pos < 0 && j_within_i) {
 | |
| 					did_something = true;
 | |
| 					values[j] = values.back();
 | |
| 					values.pop_back();
 | |
| 					goto next_pair;
 | |
| 				}
 | |
| 		next_pair:;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	SigBit make_cond_eq(const SigSpec &ctrl, const Const &value, SigBit enable = State::S1)
 | |
| 	{
 | |
| 		SigSpec sig_a, sig_b;
 | |
| 
 | |
| 		log_assert(GetSize(ctrl) == GetSize(value));
 | |
| 
 | |
| 		for (int i = 0; i < GetSize(ctrl); i++)
 | |
| 			if (value[i] != State::Sa) {
 | |
| 				sig_a.append(ctrl[i]);
 | |
| 				sig_b.append(value[i]);
 | |
| 			}
 | |
| 
 | |
| 		if (GetSize(sig_a) == 0)
 | |
| 			return enable;
 | |
| 
 | |
| 		if (enable != State::S1) {
 | |
| 			sig_a.append(enable);
 | |
| 			sig_b.append(State::S1);
 | |
| 		}
 | |
| 
 | |
| 		auto key = make_pair(sig_a, sig_b);
 | |
| 
 | |
| 		if (cond_eq_cache.count(key) == 0)
 | |
| 		{
 | |
| 			if (sig_b == State::S1)
 | |
| 				cond_eq_cache[key] = sig_a;
 | |
| 			else if (sig_b == State::S0)
 | |
| 				cond_eq_cache[key] = module->Not(NEW_ID, sig_a);
 | |
| 			else
 | |
| 				cond_eq_cache[key] = module->Eq(NEW_ID, sig_a, sig_b);
 | |
| 
 | |
| 			if (verific_verbose >= 2) {
 | |
| 				log("    Cond: %s := %s == %s\n", log_signal(cond_eq_cache[key]),
 | |
| 						log_signal(sig_a), log_signal(sig_b));
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		return cond_eq_cache.at(key);
 | |
| 	}
 | |
| 
 | |
| 	void getFirstAcceptReject(SigBit *accept_p, SigBit *reject_p)
 | |
| 	{
 | |
| 		log_assert(!materialized);
 | |
| 		materialized = true;
 | |
| 
 | |
| 		// Create unlinked NFSM
 | |
| 
 | |
| 		unodes.resize(GetSize(nodes));
 | |
| 
 | |
| 		for (int node = 0; node < GetSize(nodes); node++)
 | |
| 			node_to_unode(node, node, SigSpec());
 | |
| 
 | |
| 		mark_reachable_unode(startNode);
 | |
| 
 | |
| 		// Create DFSM
 | |
| 
 | |
| 		create_dnode(vector<int>{startNode}, true, false);
 | |
| 		dnodes.sort();
 | |
| 
 | |
| 		// Create DFSM Circuit
 | |
| 
 | |
| 		SigSpec accept_sig, reject_sig;
 | |
| 
 | |
| 		for (auto &it : dnodes)
 | |
| 		{
 | |
| 			SvaDFsmNode &dnode = it.second;
 | |
| 			dnode.ffoutwire = module->addWire(NEW_ID);
 | |
| 			dnode.statesig = dnode.ffoutwire;
 | |
| 
 | |
| 			if (it.first == vector<int>{startNode})
 | |
| 				dnode.statesig = module->Or(NEW_ID, dnode.statesig, trigger_sig);
 | |
| 		}
 | |
| 
 | |
| 		for (auto &it : dnodes)
 | |
| 		{
 | |
| 			SvaDFsmNode &dnode = it.second;
 | |
| 			dict<vector<int>, vector<Const>> edge_cond;
 | |
| 
 | |
| 			for (auto &edge : dnode.edges)
 | |
| 				edge_cond[edge.first].push_back(edge.second);
 | |
| 
 | |
| 			for (auto &it : edge_cond) {
 | |
| 				optimize_cond(it.second);
 | |
| 				for (auto &value : it.second)
 | |
| 					dnodes.at(it.first).nextstate.append(make_cond_eq(dnode.ctrl, value, dnode.statesig));
 | |
| 			}
 | |
| 
 | |
| 			if (accept_p) {
 | |
| 				vector<Const> accept_cond = dnode.accept;
 | |
| 				optimize_cond(accept_cond);
 | |
| 				for (auto &value : accept_cond)
 | |
| 					accept_sig.append(make_cond_eq(dnode.ctrl, value, dnode.statesig));
 | |
| 			}
 | |
| 
 | |
| 			if (reject_p) {
 | |
| 				vector<Const> reject_cond = dnode.reject;
 | |
| 				optimize_cond(reject_cond);
 | |
| 				for (auto &value : reject_cond)
 | |
| 					reject_sig.append(make_cond_eq(dnode.ctrl, value, dnode.statesig));
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		for (auto &it : dnodes)
 | |
| 		{
 | |
| 			SvaDFsmNode &dnode = it.second;
 | |
| 			if (GetSize(dnode.nextstate) == 0) {
 | |
| 				module->connect(dnode.ffoutwire, State::S0);
 | |
| 			} else
 | |
| 			if (GetSize(dnode.nextstate) == 1) {
 | |
| 				clocking.addDff(NEW_ID, dnode.nextstate, dnode.ffoutwire, State::S0);
 | |
| 			} else {
 | |
| 				SigSpec nextstate = module->ReduceOr(NEW_ID, dnode.nextstate);
 | |
| 				clocking.addDff(NEW_ID, nextstate, dnode.ffoutwire, State::S0);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (accept_p)
 | |
| 		{
 | |
| 			if (GetSize(accept_sig) == 0)
 | |
| 				final_accept_sig = State::S0;
 | |
| 			else if (GetSize(accept_sig) == 1)
 | |
| 				final_accept_sig = accept_sig;
 | |
| 			else
 | |
| 				final_accept_sig = module->ReduceOr(NEW_ID, accept_sig);
 | |
| 			*accept_p = final_accept_sig;
 | |
| 		}
 | |
| 
 | |
| 		if (reject_p)
 | |
| 		{
 | |
| 			if (GetSize(reject_sig) == 0)
 | |
| 				final_reject_sig = State::S0;
 | |
| 			else if (GetSize(reject_sig) == 1)
 | |
| 				final_reject_sig = reject_sig;
 | |
| 			else
 | |
| 				final_reject_sig = module->ReduceOr(NEW_ID, reject_sig);
 | |
| 			*reject_p = final_reject_sig;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	SigBit getFirstAccept()
 | |
| 	{
 | |
| 		SigBit accept;
 | |
| 		getFirstAcceptReject(&accept, nullptr);
 | |
| 		return accept;
 | |
| 	}
 | |
| 
 | |
| 	SigBit getReject()
 | |
| 	{
 | |
| 		SigBit reject;
 | |
| 		getFirstAcceptReject(nullptr, &reject);
 | |
| 		return reject;
 | |
| 	}
 | |
| 
 | |
| 	void getDFsm(SvaFsm &output_fsm, int output_start_node, int output_accept_node, int output_reject_node = -1, bool firstmatch = true, bool condaccept = false)
 | |
| 	{
 | |
| 		log_assert(!materialized);
 | |
| 		materialized = true;
 | |
| 
 | |
| 		// Create unlinked NFSM
 | |
| 
 | |
| 		unodes.resize(GetSize(nodes));
 | |
| 
 | |
| 		for (int node = 0; node < GetSize(nodes); node++)
 | |
| 			node_to_unode(node, node, SigSpec());
 | |
| 
 | |
| 		mark_reachable_unode(startNode);
 | |
| 
 | |
| 		// Create DFSM
 | |
| 
 | |
| 		create_dnode(vector<int>{startNode}, firstmatch, condaccept);
 | |
| 		dnodes.sort();
 | |
| 
 | |
| 		// Create DFSM Graph
 | |
| 
 | |
| 		for (auto &it : dnodes)
 | |
| 		{
 | |
| 			SvaDFsmNode &dnode = it.second;
 | |
| 			dnode.outnode = output_fsm.createNode();
 | |
| 
 | |
| 			if (it.first == vector<int>{startNode})
 | |
| 				output_fsm.createLink(output_start_node, dnode.outnode);
 | |
| 
 | |
| 			if (output_accept_node >= 0) {
 | |
| 				vector<Const> accept_cond = dnode.accept;
 | |
| 				optimize_cond(accept_cond);
 | |
| 				for (auto &value : accept_cond)
 | |
| 					output_fsm.createLink(it.second.outnode, output_accept_node, make_cond_eq(dnode.ctrl, value));
 | |
| 			}
 | |
| 
 | |
| 			if (output_reject_node >= 0) {
 | |
| 				vector<Const> reject_cond = dnode.reject;
 | |
| 				optimize_cond(reject_cond);
 | |
| 				for (auto &value : reject_cond)
 | |
| 					output_fsm.createLink(it.second.outnode, output_reject_node, make_cond_eq(dnode.ctrl, value));
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		for (auto &it : dnodes)
 | |
| 		{
 | |
| 			SvaDFsmNode &dnode = it.second;
 | |
| 			dict<vector<int>, vector<Const>> edge_cond;
 | |
| 
 | |
| 			for (auto &edge : dnode.edges)
 | |
| 				edge_cond[edge.first].push_back(edge.second);
 | |
| 
 | |
| 			for (auto &it : edge_cond) {
 | |
| 				optimize_cond(it.second);
 | |
| 				for (auto &value : it.second)
 | |
| 					output_fsm.createEdge(dnode.outnode, dnodes.at(it.first).outnode, make_cond_eq(dnode.ctrl, value));
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// ----------------------------------------------------
 | |
| 	// State dump for verbose log messages
 | |
| 
 | |
| 	void dump_nodes()
 | |
| 	{
 | |
| 		if (nodes.empty())
 | |
| 			return;
 | |
| 
 | |
| 		log("      non-deterministic encoding:\n");
 | |
| 		for (int i = 0; i < GetSize(nodes); i++)
 | |
| 		{
 | |
| 			log("        node %d:%s\n", i,
 | |
| 					i == startNode ? " [start]" :
 | |
| 					i == acceptNode ? " [accept]" :
 | |
| 					i == condNode ? " [cond]" : "");
 | |
| 
 | |
| 			for (auto &it : nodes[i].edges) {
 | |
| 				if (it.second != State::S1)
 | |
| 					log("          edge %s -> %d\n", log_signal(it.second), it.first);
 | |
| 				else
 | |
| 					log("          edge -> %d\n", it.first);
 | |
| 			}
 | |
| 
 | |
| 			for (auto &it : nodes[i].links) {
 | |
| 				if (it.second != State::S1)
 | |
| 					log("          link %s -> %d\n", log_signal(it.second), it.first);
 | |
| 				else
 | |
| 					log("          link -> %d\n", it.first);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	void dump_unodes()
 | |
| 	{
 | |
| 		if (unodes.empty())
 | |
| 			return;
 | |
| 
 | |
| 		log("      unlinked non-deterministic encoding:\n");
 | |
| 		for (int i = 0; i < GetSize(unodes); i++)
 | |
| 		{
 | |
| 			if (!unodes[i].reachable)
 | |
| 				continue;
 | |
| 
 | |
| 			log("        unode %d:%s\n", i, i == startNode ? " [start]" : "");
 | |
| 
 | |
| 			for (auto &it : unodes[i].edges) {
 | |
| 				if (!it.second.empty())
 | |
| 					log("          edge %s -> %d\n", log_signal(it.second), it.first);
 | |
| 				else
 | |
| 					log("          edge -> %d\n", it.first);
 | |
| 			}
 | |
| 
 | |
| 			for (auto &ctrl : unodes[i].accept) {
 | |
| 				if (!ctrl.empty())
 | |
| 					log("          accept %s\n", log_signal(ctrl));
 | |
| 				else
 | |
| 					log("          accept\n");
 | |
| 			}
 | |
| 
 | |
| 			for (auto &ctrl : unodes[i].cond) {
 | |
| 				if (!ctrl.empty())
 | |
| 					log("          cond %s\n", log_signal(ctrl));
 | |
| 				else
 | |
| 					log("          cond\n");
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	void dump_dnodes()
 | |
| 	{
 | |
| 		if (dnodes.empty())
 | |
| 			return;
 | |
| 
 | |
| 		log("      deterministic encoding:\n");
 | |
| 		for (auto &it : dnodes)
 | |
| 		{
 | |
| 			log("        dnode {");
 | |
| 			for (int i = 0; i < GetSize(it.first); i++)
 | |
| 				log("%s%d", i ? "," : "", it.first[i]);
 | |
| 			log("}:%s\n", GetSize(it.first) == 1 && it.first[0] == startNode ? " [start]" : "");
 | |
| 
 | |
| 			log("          ctrl %s\n", log_signal(it.second.ctrl));
 | |
| 
 | |
| 			for (auto &edge : it.second.edges) {
 | |
| 				log("          edge %s -> {", log_signal(edge.second));
 | |
| 				for (int i = 0; i < GetSize(edge.first); i++)
 | |
| 					log("%s%d", i ? "," : "", edge.first[i]);
 | |
| 				log("}\n");
 | |
| 			}
 | |
| 
 | |
| 			for (auto &value : it.second.accept)
 | |
| 				log("          accept %s\n", log_signal(value));
 | |
| 
 | |
| 			for (auto &value : it.second.reject)
 | |
| 				log("          reject %s\n", log_signal(value));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	void dump()
 | |
| 	{
 | |
| 		if (!nodes.empty())
 | |
| 			log("      number of NFSM states: %d\n", GetSize(nodes));
 | |
| 
 | |
| 		if (!unodes.empty()) {
 | |
| 			int count = 0;
 | |
| 			for (auto &unode : unodes)
 | |
| 				if (unode.reachable)
 | |
| 					count++;
 | |
| 			log("      number of reachable UFSM states: %d\n", count);
 | |
| 		}
 | |
| 
 | |
| 		if (!dnodes.empty())
 | |
| 			log("      number of DFSM states: %d\n", GetSize(dnodes));
 | |
| 
 | |
| 		if (verific_verbose >= 2) {
 | |
| 			dump_nodes();
 | |
| 			dump_unodes();
 | |
| 			dump_dnodes();
 | |
| 		}
 | |
| 
 | |
| 		if (trigger_sig != State::S1)
 | |
| 			log("      trigger signal: %s\n", log_signal(trigger_sig));
 | |
| 
 | |
| 		if (final_accept_sig != State::Sx)
 | |
| 			log("      accept signal: %s\n", log_signal(final_accept_sig));
 | |
| 
 | |
| 		if (final_reject_sig != State::Sx)
 | |
| 			log("      reject signal: %s\n", log_signal(final_reject_sig));
 | |
| 	}
 | |
| };
 | |
| 
 | |
| PRIVATE_NAMESPACE_END
 | |
| 
 | |
| YOSYS_NAMESPACE_BEGIN
 | |
| 
 | |
| pool<int> verific_sva_prims = {
 | |
| 	// Copy&paste from Verific 3.16_484_32_170630 Netlist.h
 | |
| 	PRIM_SVA_IMMEDIATE_ASSERT, PRIM_SVA_ASSERT, PRIM_SVA_COVER, PRIM_SVA_ASSUME,
 | |
| 	PRIM_SVA_EXPECT, PRIM_SVA_POSEDGE, PRIM_SVA_NOT, PRIM_SVA_FIRST_MATCH,
 | |
| 	PRIM_SVA_ENDED, PRIM_SVA_MATCHED, PRIM_SVA_CONSECUTIVE_REPEAT,
 | |
| 	PRIM_SVA_NON_CONSECUTIVE_REPEAT, PRIM_SVA_GOTO_REPEAT,
 | |
| 	PRIM_SVA_MATCH_ITEM_TRIGGER, PRIM_SVA_AND, PRIM_SVA_OR, PRIM_SVA_SEQ_AND,
 | |
| 	PRIM_SVA_SEQ_OR, PRIM_SVA_EVENT_OR, PRIM_SVA_OVERLAPPED_IMPLICATION,
 | |
| 	PRIM_SVA_NON_OVERLAPPED_IMPLICATION, PRIM_SVA_OVERLAPPED_FOLLOWED_BY,
 | |
| 	PRIM_SVA_NON_OVERLAPPED_FOLLOWED_BY, PRIM_SVA_INTERSECT, PRIM_SVA_THROUGHOUT,
 | |
| 	PRIM_SVA_WITHIN, PRIM_SVA_AT, PRIM_SVA_DISABLE_IFF, PRIM_SVA_SAMPLED,
 | |
| 	PRIM_SVA_ROSE, PRIM_SVA_FELL, PRIM_SVA_STABLE, PRIM_SVA_PAST,
 | |
| 	PRIM_SVA_MATCH_ITEM_ASSIGN, PRIM_SVA_SEQ_CONCAT, PRIM_SVA_IF,
 | |
| 	PRIM_SVA_RESTRICT, PRIM_SVA_TRIGGERED, PRIM_SVA_STRONG, PRIM_SVA_WEAK,
 | |
| 	PRIM_SVA_NEXTTIME, PRIM_SVA_S_NEXTTIME, PRIM_SVA_ALWAYS, PRIM_SVA_S_ALWAYS,
 | |
| 	PRIM_SVA_S_EVENTUALLY, PRIM_SVA_EVENTUALLY, PRIM_SVA_UNTIL, PRIM_SVA_S_UNTIL,
 | |
| 	PRIM_SVA_UNTIL_WITH, PRIM_SVA_S_UNTIL_WITH, PRIM_SVA_IMPLIES, PRIM_SVA_IFF,
 | |
| 	PRIM_SVA_ACCEPT_ON, PRIM_SVA_REJECT_ON, PRIM_SVA_SYNC_ACCEPT_ON,
 | |
| 	PRIM_SVA_SYNC_REJECT_ON, PRIM_SVA_GLOBAL_CLOCKING_DEF,
 | |
| 	PRIM_SVA_GLOBAL_CLOCKING_REF, PRIM_SVA_IMMEDIATE_ASSUME,
 | |
| 	PRIM_SVA_IMMEDIATE_COVER, OPER_SVA_SAMPLED, OPER_SVA_STABLE
 | |
| };
 | |
| 
 | |
| struct VerificSvaImporter
 | |
| {
 | |
| 	VerificImporter *importer = nullptr;
 | |
| 	Module *module = nullptr;
 | |
| 
 | |
| 	Netlist *netlist = nullptr;
 | |
| 	Instance *root = nullptr;
 | |
| 
 | |
| 	VerificClocking clocking;
 | |
| 
 | |
| 	bool mode_assert = false;
 | |
| 	bool mode_assume = false;
 | |
| 	bool mode_cover = false;
 | |
| 	bool mode_trigger = false;
 | |
| 
 | |
| 	Instance *net_to_ast_driver(Net *n)
 | |
| 	{
 | |
| 		if (n == nullptr)
 | |
| 			return nullptr;
 | |
| 
 | |
| 		if (n->IsMultipleDriven())
 | |
| 			return nullptr;
 | |
| 
 | |
| 		Instance *inst = n->Driver();
 | |
| 
 | |
| 		if (inst == nullptr)
 | |
| 			return nullptr;
 | |
| 
 | |
| 		if (!verific_sva_prims.count(inst->Type()))
 | |
| 			return nullptr;
 | |
| 
 | |
| 		if (inst->Type() == PRIM_SVA_ROSE || inst->Type() == PRIM_SVA_FELL ||
 | |
| 				inst->Type() == PRIM_SVA_STABLE || inst->Type() == OPER_SVA_STABLE ||
 | |
| 				inst->Type() == PRIM_SVA_PAST || inst->Type() == PRIM_SVA_TRIGGERED)
 | |
| 			return nullptr;
 | |
| 
 | |
| 		return inst;
 | |
| 	}
 | |
| 
 | |
| 	Instance *get_ast_input(Instance *inst) { return net_to_ast_driver(inst->GetInput()); }
 | |
| 	Instance *get_ast_input1(Instance *inst) { return net_to_ast_driver(inst->GetInput1()); }
 | |
| 	Instance *get_ast_input2(Instance *inst) { return net_to_ast_driver(inst->GetInput2()); }
 | |
| 	Instance *get_ast_input3(Instance *inst) { return net_to_ast_driver(inst->GetInput3()); }
 | |
| 	Instance *get_ast_control(Instance *inst) { return net_to_ast_driver(inst->GetControl()); }
 | |
| 
 | |
| 	// ----------------------------------------------------------
 | |
| 	// SVA Importer
 | |
| 
 | |
| 	struct ParserErrorException {
 | |
| 	};
 | |
| 
 | |
| 	[[noreturn]] void parser_error(std::string errmsg)
 | |
| 	{
 | |
| 		if (!importer->mode_keep)
 | |
| 			log_error("%s", errmsg);
 | |
| 		log_warning("%s", errmsg);
 | |
| 		throw ParserErrorException();
 | |
| 	}
 | |
| 
 | |
| 	[[noreturn]] void parser_error(std::string errmsg, linefile_type loc)
 | |
| 	{
 | |
| 		parser_error(stringf("%s at %s:%d.\n", errmsg, LineFile::GetFileName(loc), LineFile::GetLineNo(loc)));
 | |
| 	}
 | |
| 
 | |
| 	[[noreturn]] void parser_error(std::string errmsg, Instance *inst)
 | |
| 	{
 | |
| 		parser_error(stringf("%s at %s (%s)", errmsg, inst->View()->Owner()->Name(), inst->Name()), inst->Linefile());
 | |
| 	}
 | |
| 
 | |
| 	[[noreturn]] void parser_error(Instance *inst)
 | |
| 	{
 | |
| 		std::string msg;
 | |
| 		if (inst->Type() == PRIM_SVA_MATCH_ITEM_TRIGGER || inst->Type() == PRIM_SVA_MATCH_ITEM_ASSIGN)
 | |
| 		{
 | |
| 			msg = "SVA sequences with local variable assignments are currently not supported.\n";
 | |
| 		}
 | |
| 
 | |
| 		parser_error(stringf("%sVerific SVA primitive %s (%s) is currently unsupported in this context",
 | |
| 				msg.c_str(), inst->View()->Owner()->Name(), inst->Name()), inst->Linefile());
 | |
| 	}
 | |
| 
 | |
| 	dict<Net*, bool> check_expression_cache;
 | |
| 
 | |
| 	bool check_expression(Net *net, bool raise_error = false)
 | |
| 	{
 | |
| 		while (!check_expression_cache.count(net))
 | |
| 		{
 | |
| 			Instance *inst = net_to_ast_driver(net);
 | |
| 
 | |
| 			if (inst == nullptr) {
 | |
| 				check_expression_cache[net] = true;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			if (inst->Type() == PRIM_SVA_AT)
 | |
| 			{
 | |
| 				VerificClocking new_clocking(importer, net);
 | |
| 				log_assert(new_clocking.cond_net == nullptr);
 | |
| 				if (!clocking.property_matches_sequence(new_clocking))
 | |
| 					parser_error("Mixed clocking is currently not supported", inst);
 | |
| 				check_expression_cache[net] = check_expression(new_clocking.body_net, raise_error);
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			if (inst->Type() == PRIM_SVA_FIRST_MATCH || inst->Type() == PRIM_SVA_NOT)
 | |
| 			{
 | |
| 				check_expression_cache[net] = check_expression(inst->GetInput(), raise_error);
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			if (inst->Type() == PRIM_SVA_SEQ_OR || inst->Type() == PRIM_SVA_SEQ_AND || inst->Type() == PRIM_SVA_INTERSECT ||
 | |
| 					inst->Type() == PRIM_SVA_WITHIN || inst->Type() == PRIM_SVA_THROUGHOUT ||
 | |
| 					inst->Type() == PRIM_SVA_OR || inst->Type() == PRIM_SVA_AND)
 | |
| 			{
 | |
| 				check_expression_cache[net] = check_expression(inst->GetInput1(), raise_error) && check_expression(inst->GetInput2(), raise_error);
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			if (inst->Type() == PRIM_SVA_SEQ_CONCAT)
 | |
| 			{
 | |
| 				const char *sva_low_s = inst->GetAttValue("sva:low");
 | |
| 				const char *sva_high_s = inst->GetAttValue("sva:high");
 | |
| 
 | |
| 				int sva_low = atoi(sva_low_s);
 | |
| 				int sva_high = atoi(sva_high_s);
 | |
| 				bool sva_inf = !strcmp(sva_high_s, "$");
 | |
| 
 | |
| 				if (sva_low == 0 && sva_high == 0 && !sva_inf)
 | |
| 					check_expression_cache[net] = check_expression(inst->GetInput1(), raise_error) && check_expression(inst->GetInput2(), raise_error);
 | |
| 				else
 | |
| 					check_expression_cache[net] = false;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			check_expression_cache[net] = false;
 | |
| 		}
 | |
| 
 | |
| 		if (raise_error && !check_expression_cache.at(net))
 | |
| 			parser_error(net_to_ast_driver(net));
 | |
| 		return check_expression_cache.at(net);
 | |
| 	}
 | |
| 
 | |
| 	SigBit parse_expression(Net *net)
 | |
| 	{
 | |
| 		check_expression(net, true);
 | |
| 
 | |
| 		Instance *inst = net_to_ast_driver(net);
 | |
| 
 | |
| 		if (inst == nullptr) {
 | |
| 			return importer->net_map_at(net);
 | |
| 		}
 | |
| 
 | |
| 		if (inst->Type() == PRIM_SVA_AT)
 | |
| 		{
 | |
| 			VerificClocking new_clocking(importer, net);
 | |
| 			log_assert(new_clocking.cond_net == nullptr);
 | |
| 			if (!clocking.property_matches_sequence(new_clocking))
 | |
| 				parser_error("Mixed clocking is currently not supported", inst);
 | |
| 			return parse_expression(new_clocking.body_net);
 | |
| 		}
 | |
| 
 | |
| 		if (inst->Type() == PRIM_SVA_FIRST_MATCH)
 | |
| 			return parse_expression(inst->GetInput());
 | |
| 
 | |
| 		if (inst->Type() == PRIM_SVA_NOT)
 | |
| 			return module->Not(NEW_ID, parse_expression(inst->GetInput()));
 | |
| 
 | |
| 		if (inst->Type() == PRIM_SVA_SEQ_OR || inst->Type() == PRIM_SVA_OR)
 | |
| 			return module->Or(NEW_ID, parse_expression(inst->GetInput1()), parse_expression(inst->GetInput2()));
 | |
| 
 | |
| 		if (inst->Type() == PRIM_SVA_SEQ_AND || inst->Type() == PRIM_SVA_AND || inst->Type() == PRIM_SVA_INTERSECT ||
 | |
| 				inst->Type() == PRIM_SVA_WITHIN || inst->Type() == PRIM_SVA_THROUGHOUT || inst->Type() == PRIM_SVA_SEQ_CONCAT)
 | |
| 			return module->And(NEW_ID, parse_expression(inst->GetInput1()), parse_expression(inst->GetInput2()));
 | |
| 
 | |
| 		log_abort();
 | |
| 	}
 | |
| 
 | |
| 	bool check_zero_consecutive_repeat(Net *net)
 | |
| 	{
 | |
| 		Instance *inst = net_to_ast_driver(net);
 | |
| 
 | |
| 		if (inst == nullptr)
 | |
| 			return false;
 | |
| 
 | |
| 		if (inst->Type() != PRIM_SVA_CONSECUTIVE_REPEAT)
 | |
| 			return false;
 | |
| 
 | |
| 		const char *sva_low_s = inst->GetAttValue("sva:low");
 | |
| 		int sva_low = atoi(sva_low_s);
 | |
| 
 | |
| 		return sva_low == 0;
 | |
| 	}
 | |
| 
 | |
| 	int parse_consecutive_repeat(SvaFsm &fsm, int start_node, Net *net, bool add_pre_delay, bool add_post_delay)
 | |
| 	{
 | |
| 		Instance *inst = net_to_ast_driver(net);
 | |
| 
 | |
| 		log_assert(inst->Type() == PRIM_SVA_CONSECUTIVE_REPEAT);
 | |
| 
 | |
| 		const char *sva_low_s = inst->GetAttValue("sva:low");
 | |
| 		const char *sva_high_s = inst->GetAttValue("sva:high");
 | |
| 
 | |
| 		int sva_low = atoi(sva_low_s);
 | |
| 		int sva_high = atoi(sva_high_s);
 | |
| 		bool sva_inf = !strcmp(sva_high_s, "$");
 | |
| 
 | |
| 		Net *body_net = inst->GetInput();
 | |
| 
 | |
| 		if (add_pre_delay || add_post_delay)
 | |
| 			log_assert(sva_low == 0);
 | |
| 
 | |
| 		if (sva_low == 0) {
 | |
| 			if (!add_pre_delay && !add_post_delay)
 | |
| 				parser_error("Possibly zero-length consecutive repeat must follow or precede a delay of at least one cycle", inst);
 | |
| 			sva_low++;
 | |
| 		}
 | |
| 
 | |
| 		int node = fsm.createNode(start_node);
 | |
| 		start_node = node;
 | |
| 
 | |
| 		if (add_pre_delay) {
 | |
| 			node = fsm.createNode(start_node);
 | |
| 			fsm.createEdge(start_node, node);
 | |
| 		}
 | |
| 
 | |
| 		int prev_node = node;
 | |
| 		node = parse_sequence(fsm, node, body_net);
 | |
| 
 | |
| 		for (int i = 1; i < sva_low; i++)
 | |
| 		{
 | |
| 			int next_node = fsm.createNode();
 | |
| 			fsm.createEdge(node, next_node);
 | |
| 
 | |
| 			prev_node = node;
 | |
| 			node = parse_sequence(fsm, next_node, body_net);
 | |
| 		}
 | |
| 
 | |
| 		if (sva_inf)
 | |
| 		{
 | |
| 			log_assert(prev_node >= 0);
 | |
| 			fsm.createEdge(node, prev_node);
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			for (int i = sva_low; i < sva_high; i++)
 | |
| 			{
 | |
| 				int next_node = fsm.createNode();
 | |
| 				fsm.createEdge(node, next_node);
 | |
| 
 | |
| 				prev_node = node;
 | |
| 				node = parse_sequence(fsm, next_node, body_net);
 | |
| 
 | |
| 				fsm.createLink(prev_node, node);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (add_post_delay) {
 | |
| 			int next_node = fsm.createNode();
 | |
| 			fsm.createEdge(node, next_node);
 | |
| 			node = next_node;
 | |
| 		}
 | |
| 
 | |
| 		if (add_pre_delay || add_post_delay)
 | |
| 			fsm.createLink(start_node, node);
 | |
| 
 | |
| 		return node;
 | |
| 	}
 | |
| 
 | |
| 	int parse_sequence(SvaFsm &fsm, int start_node, Net *net)
 | |
| 	{
 | |
| 		if (check_expression(net)) {
 | |
| 			int node = fsm.createNode();
 | |
| 			fsm.createLink(start_node, node, parse_expression(net));
 | |
| 			return node;
 | |
| 		}
 | |
| 
 | |
| 		Instance *inst = net_to_ast_driver(net);
 | |
| 
 | |
| 		if (inst->Type() == PRIM_SVA_AT)
 | |
| 		{
 | |
| 			VerificClocking new_clocking(importer, net);
 | |
| 			log_assert(new_clocking.cond_net == nullptr);
 | |
| 			if (!clocking.property_matches_sequence(new_clocking))
 | |
| 				parser_error("Mixed clocking is currently not supported", inst);
 | |
| 			return parse_sequence(fsm, start_node, new_clocking.body_net);
 | |
| 		}
 | |
| 
 | |
| 		if (inst->Type() == PRIM_SVA_FIRST_MATCH)
 | |
| 		{
 | |
| 			SvaFsm match_fsm(clocking);
 | |
| 			match_fsm.createLink(parse_sequence(match_fsm, match_fsm.createStartNode(), inst->GetInput()), match_fsm.acceptNode);
 | |
| 
 | |
| 			int node = fsm.createNode();
 | |
| 			match_fsm.getDFsm(fsm, start_node, node);
 | |
| 
 | |
| 			if (verific_verbose) {
 | |
| 				log("    First Match FSM:\n");
 | |
| 				match_fsm.dump();
 | |
| 			}
 | |
| 
 | |
| 			return node;
 | |
| 		}
 | |
| 
 | |
| 		if (inst->Type() == PRIM_SVA_NEXTTIME || inst->Type() == PRIM_SVA_S_NEXTTIME)
 | |
| 		{
 | |
| 			const char *sva_low_s = inst->GetAttValue("sva:low");
 | |
| 			const char *sva_high_s = inst->GetAttValue("sva:high");
 | |
| 
 | |
| 			int sva_low = atoi(sva_low_s);
 | |
| 			int sva_high = atoi(sva_high_s);
 | |
| 			log_assert(sva_low == sva_high);
 | |
| 
 | |
| 			int node = start_node;
 | |
| 
 | |
| 			for (int i = 0; i < sva_low; i++) {
 | |
| 				int next_node = fsm.createNode();
 | |
| 				fsm.createEdge(node, next_node);
 | |
| 				node = next_node;
 | |
| 			}
 | |
| 
 | |
| 			return parse_sequence(fsm, node, inst->GetInput());
 | |
| 		}
 | |
| 
 | |
| 		if (inst->Type() == PRIM_SVA_SEQ_CONCAT)
 | |
| 		{
 | |
| 			const char *sva_low_s = inst->GetAttValue("sva:low");
 | |
| 			const char *sva_high_s = inst->GetAttValue("sva:high");
 | |
| 
 | |
| 			int sva_low = atoi(sva_low_s);
 | |
| 			int sva_high = atoi(sva_high_s);
 | |
| 			bool sva_inf = !strcmp(sva_high_s, "$");
 | |
| 
 | |
| 			int node = -1;
 | |
| 			bool past_add_delay = false;
 | |
| 
 | |
| 			if (check_zero_consecutive_repeat(inst->GetInput1()) && sva_low > 0) {
 | |
| 				node = parse_consecutive_repeat(fsm, start_node, inst->GetInput1(), false, true);
 | |
| 				sva_low--, sva_high--;
 | |
| 			} else {
 | |
| 				node = parse_sequence(fsm, start_node, inst->GetInput1());
 | |
| 			}
 | |
| 
 | |
| 			if (check_zero_consecutive_repeat(inst->GetInput2()) && sva_low > 0) {
 | |
| 				past_add_delay = true;
 | |
| 				sva_low--, sva_high--;
 | |
| 			}
 | |
| 
 | |
| 			for (int i = 0; i < sva_low; i++) {
 | |
| 				int next_node = fsm.createNode();
 | |
| 				fsm.createEdge(node, next_node);
 | |
| 				node = next_node;
 | |
| 			}
 | |
| 
 | |
| 			if (sva_inf)
 | |
| 			{
 | |
| 				fsm.createEdge(node, node);
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				for (int i = sva_low; i < sva_high; i++)
 | |
| 				{
 | |
| 					int next_node = fsm.createNode();
 | |
| 					fsm.createEdge(node, next_node);
 | |
| 					fsm.createLink(node, next_node);
 | |
| 					node = next_node;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (past_add_delay)
 | |
| 				node = parse_consecutive_repeat(fsm, node, inst->GetInput2(), true, false);
 | |
| 			else
 | |
| 				node = parse_sequence(fsm, node, inst->GetInput2());
 | |
| 
 | |
| 			return node;
 | |
| 		}
 | |
| 
 | |
| 		if (inst->Type() == PRIM_SVA_CONSECUTIVE_REPEAT)
 | |
| 		{
 | |
| 			return parse_consecutive_repeat(fsm, start_node, net, false, false);
 | |
| 		}
 | |
| 
 | |
| 		if (inst->Type() == PRIM_SVA_NON_CONSECUTIVE_REPEAT || inst->Type() == PRIM_SVA_GOTO_REPEAT)
 | |
| 		{
 | |
| 			const char *sva_low_s = inst->GetAttValue("sva:low");
 | |
| 			const char *sva_high_s = inst->GetAttValue("sva:high");
 | |
| 
 | |
| 			int sva_low = atoi(sva_low_s);
 | |
| 			int sva_high = atoi(sva_high_s);
 | |
| 			bool sva_inf = !strcmp(sva_high_s, "$");
 | |
| 
 | |
| 			Net *body_net = inst->GetInput();
 | |
| 			int node = fsm.createNode(start_node);
 | |
| 
 | |
| 			SigBit cond = parse_expression(body_net);
 | |
| 			SigBit not_cond = module->Not(NEW_ID, cond);
 | |
| 
 | |
| 			for (int i = 0; i < sva_low; i++)
 | |
| 			{
 | |
| 				int wait_node = fsm.createNode();
 | |
| 				fsm.createEdge(wait_node, wait_node, not_cond);
 | |
| 
 | |
| 				if (i == 0)
 | |
| 					fsm.createLink(node, wait_node);
 | |
| 				else
 | |
| 					fsm.createEdge(node, wait_node);
 | |
| 
 | |
| 				int next_node = fsm.createNode();
 | |
| 				fsm.createLink(wait_node, next_node, cond);
 | |
| 
 | |
| 				node = next_node;
 | |
| 			}
 | |
| 
 | |
| 			if (sva_inf)
 | |
| 			{
 | |
| 				int wait_node = fsm.createNode();
 | |
| 				fsm.createEdge(wait_node, wait_node, not_cond);
 | |
| 				fsm.createEdge(node, wait_node);
 | |
| 				fsm.createLink(wait_node, node, cond);
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				for (int i = sva_low; i < sva_high; i++)
 | |
| 				{
 | |
| 					int wait_node = fsm.createNode();
 | |
| 					fsm.createEdge(wait_node, wait_node, not_cond);
 | |
| 
 | |
| 					if (i == 0)
 | |
| 						fsm.createLink(node, wait_node);
 | |
| 					else
 | |
| 						fsm.createEdge(node, wait_node);
 | |
| 
 | |
| 					int next_node = fsm.createNode();
 | |
| 					fsm.createLink(wait_node, next_node, cond);
 | |
| 
 | |
| 					fsm.createLink(node, next_node);
 | |
| 					node = next_node;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (inst->Type() == PRIM_SVA_NON_CONSECUTIVE_REPEAT)
 | |
| 				fsm.createEdge(node, node);
 | |
| 
 | |
| 			return node;
 | |
| 		}
 | |
| 
 | |
| 		if (inst->Type() == PRIM_SVA_SEQ_OR || inst->Type() == PRIM_SVA_OR)
 | |
| 		{
 | |
| 			int node = parse_sequence(fsm, start_node, inst->GetInput1());
 | |
| 			int node2 = parse_sequence(fsm, start_node, inst->GetInput2());
 | |
| 			fsm.createLink(node2, node);
 | |
| 			return node;
 | |
| 		}
 | |
| 
 | |
| 		if (inst->Type() == PRIM_SVA_SEQ_AND || inst->Type() == PRIM_SVA_AND)
 | |
| 		{
 | |
| 			SvaFsm fsm1(clocking);
 | |
| 			fsm1.createLink(parse_sequence(fsm1, fsm1.createStartNode(), inst->GetInput1()), fsm1.acceptNode);
 | |
| 
 | |
| 			SvaFsm fsm2(clocking);
 | |
| 			fsm2.createLink(parse_sequence(fsm2, fsm2.createStartNode(), inst->GetInput2()), fsm2.acceptNode);
 | |
| 
 | |
| 			SvaFsm combined_fsm(clocking);
 | |
| 			fsm1.getDFsm(combined_fsm, combined_fsm.createStartNode(), -1, combined_fsm.acceptNode);
 | |
| 			fsm2.getDFsm(combined_fsm, combined_fsm.createStartNode(), -1, combined_fsm.acceptNode);
 | |
| 
 | |
| 			int node = fsm.createNode();
 | |
| 			combined_fsm.getDFsm(fsm, start_node, -1, node);
 | |
| 
 | |
| 			if (verific_verbose)
 | |
| 			{
 | |
| 				log("    Left And FSM:\n");
 | |
| 				fsm1.dump();
 | |
| 
 | |
| 				log("    Right And FSM:\n");
 | |
| 				fsm1.dump();
 | |
| 
 | |
| 				log("    Combined And FSM:\n");
 | |
| 				combined_fsm.dump();
 | |
| 			}
 | |
| 
 | |
| 			return node;
 | |
| 		}
 | |
| 
 | |
| 		if (inst->Type() == PRIM_SVA_INTERSECT || inst->Type() == PRIM_SVA_WITHIN)
 | |
| 		{
 | |
| 			SvaFsm intersect_fsm(clocking);
 | |
| 
 | |
| 			if (inst->Type() == PRIM_SVA_INTERSECT)
 | |
| 			{
 | |
| 				intersect_fsm.createLink(parse_sequence(intersect_fsm, intersect_fsm.createStartNode(), inst->GetInput1()), intersect_fsm.acceptNode);
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				int n = intersect_fsm.createNode();
 | |
| 				intersect_fsm.createLink(intersect_fsm.createStartNode(), n);
 | |
| 				intersect_fsm.createEdge(n, n);
 | |
| 
 | |
| 				n = parse_sequence(intersect_fsm, n, inst->GetInput1());
 | |
| 
 | |
| 				intersect_fsm.createLink(n, intersect_fsm.acceptNode);
 | |
| 				intersect_fsm.createEdge(n, n);
 | |
| 			}
 | |
| 
 | |
| 			intersect_fsm.in_cond_mode = true;
 | |
| 			intersect_fsm.createLink(parse_sequence(intersect_fsm, intersect_fsm.createStartNode(), inst->GetInput2()), intersect_fsm.condNode);
 | |
| 			intersect_fsm.in_cond_mode = false;
 | |
| 
 | |
| 			int node = fsm.createNode();
 | |
| 			intersect_fsm.getDFsm(fsm, start_node, node, -1, false, true);
 | |
| 
 | |
| 			if (verific_verbose) {
 | |
| 				log("    Intersect FSM:\n");
 | |
| 				intersect_fsm.dump();
 | |
| 			}
 | |
| 
 | |
| 			return node;
 | |
| 		}
 | |
| 
 | |
| 		if (inst->Type() == PRIM_SVA_THROUGHOUT)
 | |
| 		{
 | |
| 			SigBit expr = parse_expression(inst->GetInput1());
 | |
| 
 | |
| 			fsm.pushThroughout(expr);
 | |
| 			int node = parse_sequence(fsm, start_node, inst->GetInput2());
 | |
| 			fsm.popThroughout();
 | |
| 
 | |
| 			return node;
 | |
| 		}
 | |
| 
 | |
| 		parser_error(inst);
 | |
| 	}
 | |
| 
 | |
| 	void get_fsm_accept_reject(SvaFsm &fsm, SigBit *accept_p, SigBit *reject_p, bool swap_accept_reject = false)
 | |
| 	{
 | |
| 		log_assert(accept_p != nullptr || reject_p != nullptr);
 | |
| 
 | |
| 		if (swap_accept_reject)
 | |
| 			get_fsm_accept_reject(fsm, reject_p, accept_p);
 | |
| 		else if (reject_p == nullptr)
 | |
| 			*accept_p = fsm.getAccept();
 | |
| 		else if (accept_p == nullptr)
 | |
| 			*reject_p = fsm.getReject();
 | |
| 		else
 | |
| 			fsm.getFirstAcceptReject(accept_p, reject_p);
 | |
| 	}
 | |
| 
 | |
| 	bool eventually_property(Net *&net, SigBit &trig)
 | |
| 	{
 | |
| 		Instance *inst = net_to_ast_driver(net);
 | |
| 
 | |
| 		if (inst == nullptr)
 | |
| 			return false;
 | |
| 
 | |
| 		if (clocking.cond_net != nullptr) {
 | |
| 			trig = importer->net_map_at(clocking.cond_net);
 | |
| 			if (!clocking.cond_pol)
 | |
| 				trig = module->Not(NEW_ID, trig);
 | |
| 		} else {
 | |
| 			trig = State::S1;
 | |
| 		}
 | |
| 
 | |
| 		if (inst->Type() == PRIM_SVA_S_EVENTUALLY || inst->Type() == PRIM_SVA_EVENTUALLY)
 | |
| 		{
 | |
| 			if (mode_cover || mode_trigger)
 | |
| 				parser_error(inst);
 | |
| 
 | |
| 			net = inst->GetInput();
 | |
| 			clocking.cond_net = nullptr;
 | |
| 
 | |
| 			return true;
 | |
| 		}
 | |
| 
 | |
| 		if (inst->Type() == PRIM_SVA_OVERLAPPED_IMPLICATION ||
 | |
| 				inst->Type() == PRIM_SVA_NON_OVERLAPPED_IMPLICATION)
 | |
| 		{
 | |
| 			Net *antecedent_net = inst->GetInput1();
 | |
| 			Net *consequent_net = inst->GetInput2();
 | |
| 
 | |
| 			Instance *consequent_inst = net_to_ast_driver(consequent_net);
 | |
| 
 | |
| 			if (consequent_inst == nullptr)
 | |
| 				return false;
 | |
| 
 | |
| 			if (consequent_inst->Type() != PRIM_SVA_S_EVENTUALLY && consequent_inst->Type() != PRIM_SVA_EVENTUALLY)
 | |
| 				return false;
 | |
| 
 | |
| 			if (mode_cover || mode_trigger)
 | |
| 				parser_error(consequent_inst);
 | |
| 
 | |
| 			int node;
 | |
| 
 | |
| 			SvaFsm antecedent_fsm(clocking, trig);
 | |
| 			node = parse_sequence(antecedent_fsm, antecedent_fsm.createStartNode(), antecedent_net);
 | |
| 			if (inst->Type() == PRIM_SVA_NON_OVERLAPPED_IMPLICATION) {
 | |
| 				int next_node = antecedent_fsm.createNode();
 | |
| 				antecedent_fsm.createEdge(node, next_node);
 | |
| 				node = next_node;
 | |
| 			}
 | |
| 			antecedent_fsm.createLink(node, antecedent_fsm.acceptNode);
 | |
| 
 | |
| 			trig = antecedent_fsm.getAccept();
 | |
| 			net = consequent_inst->GetInput();
 | |
| 			clocking.cond_net = nullptr;
 | |
| 
 | |
| 			if (verific_verbose) {
 | |
| 				log("    Eventually Antecedent FSM:\n");
 | |
| 				antecedent_fsm.dump();
 | |
| 			}
 | |
| 
 | |
| 			return true;
 | |
| 		}
 | |
| 
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	void parse_property(Net *net, SigBit *accept_p, SigBit *reject_p)
 | |
| 	{
 | |
| 		Instance *inst = net_to_ast_driver(net);
 | |
| 
 | |
| 		SigBit trig = State::S1;
 | |
| 
 | |
| 		if (clocking.cond_net != nullptr) {
 | |
| 			trig = importer->net_map_at(clocking.cond_net);
 | |
| 			if (!clocking.cond_pol)
 | |
| 				trig = module->Not(NEW_ID, trig);
 | |
| 		}
 | |
| 
 | |
| 		if (inst == nullptr)
 | |
| 		{
 | |
| 			if (trig != State::S1) {
 | |
| 				if (accept_p != nullptr)
 | |
| 					*accept_p = module->And(NEW_ID, trig, importer->net_map_at(net));
 | |
| 				if (reject_p != nullptr)
 | |
| 					*reject_p = module->And(NEW_ID, trig, module->Not(NEW_ID, importer->net_map_at(net)));
 | |
| 			} else {
 | |
| 				if (accept_p != nullptr)
 | |
| 					*accept_p = importer->net_map_at(net);
 | |
| 				if (reject_p != nullptr)
 | |
| 					*reject_p = module->Not(NEW_ID, importer->net_map_at(net));
 | |
| 			}
 | |
| 		}
 | |
| 		else
 | |
| 		if (inst->Type() == PRIM_SVA_OVERLAPPED_IMPLICATION ||
 | |
| 				inst->Type() == PRIM_SVA_NON_OVERLAPPED_IMPLICATION ||
 | |
| 				(mode_cover && (
 | |
| 					inst->Type() == PRIM_SVA_OVERLAPPED_FOLLOWED_BY ||
 | |
| 					inst->Type() == PRIM_SVA_NON_OVERLAPPED_FOLLOWED_BY)))
 | |
| 		{
 | |
| 			Net *antecedent_net = inst->GetInput1();
 | |
| 			Net *consequent_net = inst->GetInput2();
 | |
| 			int node;
 | |
| 
 | |
| 			SvaFsm antecedent_fsm(clocking, trig);
 | |
| 			node = parse_sequence(antecedent_fsm, antecedent_fsm.createStartNode(), antecedent_net);
 | |
| 			if (inst->Type() == PRIM_SVA_NON_OVERLAPPED_IMPLICATION || inst->Type() == PRIM_SVA_NON_OVERLAPPED_FOLLOWED_BY) {
 | |
| 				int next_node = antecedent_fsm.createNode();
 | |
| 				antecedent_fsm.createEdge(node, next_node);
 | |
| 				node = next_node;
 | |
| 			}
 | |
| 
 | |
| 			Instance *consequent_inst = net_to_ast_driver(consequent_net);
 | |
| 
 | |
| 			if (consequent_inst && (consequent_inst->Type() == PRIM_SVA_UNTIL || consequent_inst->Type() == PRIM_SVA_S_UNTIL ||
 | |
| 					consequent_inst->Type() == PRIM_SVA_UNTIL_WITH || consequent_inst->Type() == PRIM_SVA_S_UNTIL_WITH ||
 | |
| 					consequent_inst->Type() == PRIM_SVA_ALWAYS || consequent_inst->Type() == PRIM_SVA_S_ALWAYS))
 | |
| 			{
 | |
| 				bool until_with = consequent_inst->Type() == PRIM_SVA_UNTIL_WITH || consequent_inst->Type() == PRIM_SVA_S_UNTIL_WITH;
 | |
| 
 | |
| 				Net *until_net = nullptr;
 | |
| 				if (consequent_inst->Type() == PRIM_SVA_ALWAYS || consequent_inst->Type() == PRIM_SVA_S_ALWAYS)
 | |
| 				{
 | |
| 					consequent_net = consequent_inst->GetInput();
 | |
| 					consequent_inst = net_to_ast_driver(consequent_net);
 | |
| 				}
 | |
| 				else
 | |
| 				{
 | |
| 					until_net = consequent_inst->GetInput2();
 | |
| 					consequent_net = consequent_inst->GetInput1();
 | |
| 					consequent_inst = net_to_ast_driver(consequent_net);
 | |
| 				}
 | |
| 
 | |
| 				SigBit until_sig = until_net ? parse_expression(until_net) : RTLIL::S0;
 | |
| 				SigBit not_until_sig = module->Not(NEW_ID, until_sig);
 | |
| 				antecedent_fsm.createEdge(node, node, not_until_sig);
 | |
| 
 | |
| 				antecedent_fsm.createLink(node, antecedent_fsm.acceptNode, until_with ? State::S1 : not_until_sig);
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				antecedent_fsm.createLink(node, antecedent_fsm.acceptNode);
 | |
| 			}
 | |
| 
 | |
| 			SigBit antecedent_match = antecedent_fsm.getAccept();
 | |
| 
 | |
| 			if (verific_verbose) {
 | |
| 				log("    Antecedent FSM:\n");
 | |
| 				antecedent_fsm.dump();
 | |
| 			}
 | |
| 
 | |
| 			bool consequent_not = false;
 | |
| 			if (consequent_inst && consequent_inst->Type() == PRIM_SVA_NOT) {
 | |
| 				consequent_not = true;
 | |
| 				consequent_net = consequent_inst->GetInput();
 | |
| 				consequent_inst = net_to_ast_driver(consequent_net);
 | |
| 			}
 | |
| 
 | |
| 			SvaFsm consequent_fsm(clocking, antecedent_match);
 | |
| 			node = parse_sequence(consequent_fsm, consequent_fsm.createStartNode(), consequent_net);
 | |
| 			consequent_fsm.createLink(node, consequent_fsm.acceptNode);
 | |
| 
 | |
| 			get_fsm_accept_reject(consequent_fsm, accept_p, reject_p, consequent_not);
 | |
| 
 | |
| 			if (verific_verbose) {
 | |
| 				log("    Consequent FSM:\n");
 | |
| 				consequent_fsm.dump();
 | |
| 			}
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			bool prop_not = inst->Type() == PRIM_SVA_NOT;
 | |
| 			if (prop_not) {
 | |
| 				net = inst->GetInput();
 | |
| 				inst = net_to_ast_driver(net);
 | |
| 			}
 | |
| 
 | |
| 			SvaFsm fsm(clocking, trig);
 | |
| 			int node = parse_sequence(fsm, fsm.createStartNode(), net);
 | |
| 			fsm.createLink(node, fsm.acceptNode);
 | |
| 
 | |
| 			get_fsm_accept_reject(fsm, accept_p, reject_p, prop_not);
 | |
| 
 | |
| 			if (verific_verbose) {
 | |
| 				log("    Sequence FSM:\n");
 | |
| 				fsm.dump();
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	void import()
 | |
| 	{
 | |
| 		try
 | |
| 		{
 | |
| 			module = importer->module;
 | |
| 			netlist = root->Owner();
 | |
| 
 | |
| 			if (verific_verbose)
 | |
| 				log("  importing SVA property at root cell %s (%s) at %s:%d.\n", root->Name(), root->View()->Owner()->Name(),
 | |
| 						LineFile::GetFileName(root->Linefile()), LineFile::GetLineNo(root->Linefile()));
 | |
| 
 | |
| 			bool is_user_declared = root->IsUserDeclared();
 | |
| 
 | |
| 			// FIXME
 | |
| 			if (!is_user_declared) {
 | |
| 				const char *name = root->Name();
 | |
| 				for (int i = 0; name[i]; i++) {
 | |
| 					if (i ? (name[i] < '0' || name[i] > '9') : (name[i] != 'i')) {
 | |
| 						is_user_declared = true;
 | |
| 						break;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			RTLIL::IdString root_name = module->uniquify(importer->mode_names || is_user_declared ? RTLIL::escape_id(root->Name()) : NEW_ID);
 | |
| 
 | |
| 			// parse SVA sequence into trigger signal
 | |
| 
 | |
| 			clocking = VerificClocking(importer, root->GetInput(), true);
 | |
| 			SigBit accept_bit = State::S0, reject_bit = State::S0;
 | |
| 
 | |
| 			if (clocking.body_net == nullptr)
 | |
| 			{
 | |
| 				if (clocking.clock_net != nullptr || clocking.enable_net != nullptr || clocking.disable_net != nullptr ||  clocking.cond_net != nullptr)
 | |
| 					parser_error(stringf("Failed to parse SVA clocking"), root);
 | |
| 
 | |
| 				if (mode_assert || mode_assume) {
 | |
| 					reject_bit = module->Not(NEW_ID, parse_expression(root->GetInput()));
 | |
| 				} else {
 | |
| 					accept_bit = parse_expression(root->GetInput());
 | |
| 				}
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				Net *net = clocking.body_net;
 | |
| 				SigBit trig;
 | |
| 
 | |
| 				if (eventually_property(net, trig))
 | |
| 				{
 | |
| 					SigBit sig_a, sig_en = trig;
 | |
| 					parse_property(net, &sig_a, nullptr);
 | |
| 
 | |
| 					// add final FF stage
 | |
| 
 | |
| 					SigBit sig_a_q, sig_en_q;
 | |
| 
 | |
| 					if (clocking.body_net == nullptr) {
 | |
| 						sig_a_q = sig_a;
 | |
| 						sig_en_q = sig_en;
 | |
| 					} else {
 | |
| 						sig_a_q = module->addWire(NEW_ID);
 | |
| 						sig_en_q = module->addWire(NEW_ID);
 | |
| 						clocking.addDff(NEW_ID, sig_a, sig_a_q, State::S0);
 | |
| 						clocking.addDff(NEW_ID, sig_en, sig_en_q, State::S0);
 | |
| 					}
 | |
| 
 | |
| 					// accept in disable case
 | |
| 
 | |
| 					if (clocking.disable_sig != State::S0)
 | |
| 						sig_a_q = module->Or(NEW_ID, sig_a_q, clocking.disable_sig);
 | |
| 
 | |
| 					// generate fair/live cell
 | |
| 
 | |
| 					RTLIL::Cell *c = nullptr;
 | |
| 
 | |
| 					if (mode_assert) c = module->addLive(root_name, sig_a_q, sig_en_q);
 | |
| 					if (mode_assume) c = module->addFair(root_name, sig_a_q, sig_en_q);
 | |
| 
 | |
| 					if (c) importer->import_attributes(c->attributes, root);
 | |
| 
 | |
| 					return;
 | |
| 				}
 | |
| 				else
 | |
| 				{
 | |
| 					if (mode_assert || mode_assume) {
 | |
| 						parse_property(net, nullptr, &reject_bit);
 | |
| 					} else {
 | |
| 						parse_property(net, &accept_bit, nullptr);
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (mode_trigger)
 | |
| 			{
 | |
| 				module->connect(importer->net_map_at(root->GetOutput()), accept_bit);
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				SigBit sig_a = module->Not(NEW_ID, reject_bit);
 | |
| 				SigBit sig_en = module->Or(NEW_ID, accept_bit, reject_bit);
 | |
| 
 | |
| 				// add final FF stage
 | |
| 
 | |
| 				SigBit sig_a_q, sig_en_q;
 | |
| 
 | |
| 				if (clocking.body_net == nullptr) {
 | |
| 					sig_a_q = sig_a;
 | |
| 					sig_en_q = sig_en;
 | |
| 				} else {
 | |
| 					sig_a_q = module->addWire(NEW_ID);
 | |
| 					sig_en_q = module->addWire(NEW_ID);
 | |
| 					clocking.addDff(NEW_ID, sig_a, sig_a_q, State::S0);
 | |
| 					clocking.addDff(NEW_ID, sig_en, sig_en_q, State::S0);
 | |
| 				}
 | |
| 
 | |
| 				// generate assert/assume/cover cell
 | |
| 
 | |
| 				RTLIL::Cell *c = nullptr;
 | |
| 
 | |
| 				if (mode_assert) c = module->addAssert(root_name, sig_a_q, sig_en_q);
 | |
| 				if (mode_assume) c = module->addAssume(root_name, sig_a_q, sig_en_q);
 | |
| 				if (mode_cover) c = module->addCover(root_name, sig_a_q, sig_en_q);
 | |
| 
 | |
| 				if (c) importer->import_attributes(c->attributes, root);
 | |
| 			}
 | |
| 		}
 | |
| 		catch (ParserErrorException)
 | |
| 		{
 | |
| 		}
 | |
| 	}
 | |
| };
 | |
| 
 | |
| void verific_import_sva_assert(VerificImporter *importer, Instance *inst)
 | |
| {
 | |
| 	VerificSvaImporter worker;
 | |
| 	worker.importer = importer;
 | |
| 	worker.root = inst;
 | |
| 	worker.mode_assert = true;
 | |
| 	worker.import();
 | |
| }
 | |
| 
 | |
| void verific_import_sva_assume(VerificImporter *importer, Instance *inst)
 | |
| {
 | |
| 	VerificSvaImporter worker;
 | |
| 	worker.importer = importer;
 | |
| 	worker.root = inst;
 | |
| 	worker.mode_assume = true;
 | |
| 	worker.import();
 | |
| }
 | |
| 
 | |
| void verific_import_sva_cover(VerificImporter *importer, Instance *inst)
 | |
| {
 | |
| 	VerificSvaImporter worker;
 | |
| 	worker.importer = importer;
 | |
| 	worker.root = inst;
 | |
| 	worker.mode_cover = true;
 | |
| 	worker.import();
 | |
| }
 | |
| 
 | |
| void verific_import_sva_trigger(VerificImporter *importer, Instance *inst)
 | |
| {
 | |
| 	VerificSvaImporter worker;
 | |
| 	worker.importer = importer;
 | |
| 	worker.root = inst;
 | |
| 	worker.mode_trigger = true;
 | |
| 	worker.import();
 | |
| }
 | |
| 
 | |
| bool verific_is_sva_net(VerificImporter *importer, Verific::Net *net)
 | |
| {
 | |
| 	VerificSvaImporter worker;
 | |
| 	worker.importer = importer;
 | |
| 	return worker.net_to_ast_driver(net) != nullptr;
 | |
| }
 | |
| #else
 | |
| YOSYS_NAMESPACE_BEGIN
 | |
| pool<int> verific_sva_prims = {};
 | |
| #endif
 | |
| YOSYS_NAMESPACE_END
 |