/----------------------------------------------------------------------------\ | | | yosys -- Yosys Open SYnthesis Suite | | | | Copyright (C) 2012 - 2019 Clifford Wolf | | | | Permission to use, copy, modify, and/or distribute this software for any | | purpose with or without fee is hereby granted, provided that the above | | copyright notice and this permission notice appear in all copies. | | | | THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | | WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | | MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | | ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | | WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | | ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | | OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | | | \----------------------------------------------------------------------------/ Yosys 0.9+932 (git sha1 26699340, clang 6.0.0-1ubuntu2 -fPIC -Os) -- Executing script file `attributes_test.ys' -- 1. Executing Verilog-2005 frontend: attributes_test.v Parsing Verilog input from `attributes_test.v' to AST representation. Generating RTLIL representation for module `\block_ram'. Generating RTLIL representation for module `\distributed_ram'. Generating RTLIL representation for module `\distributed_ram_manual'. Generating RTLIL representation for module `\distributed_ram_manual_syn'. Successfully finished Verilog frontend. 2. Executing HIERARCHY pass (managing design hierarchy). 2.1. Analyzing design hierarchy.. Top module: \block_ram 2.2. Analyzing design hierarchy.. Top module: \block_ram Removing unused module `\distributed_ram_manual_syn'. Removing unused module `\distributed_ram_manual'. Removing unused module `\distributed_ram'. Removed 3 unused modules. 3. Executing SYNTH_XILINX pass. 3.1. Executing Verilog-2005 frontend: /opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/cells_sim.v Parsing Verilog input from `/opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/cells_sim.v' to AST representation. Generating RTLIL representation for module `\VCC'. Generating RTLIL representation for module `\GND'. Generating RTLIL representation for module `\IBUF'. Generating RTLIL representation for module `\IBUFG'. Generating RTLIL representation for module `\OBUF'. Generating RTLIL representation for module `\IOBUF'. Generating RTLIL representation for module `\OBUFT'. Generating RTLIL representation for module `\BUFG'. Generating RTLIL representation for module `\BUFGCTRL'. Generating RTLIL representation for module `\BUFHCE'. Generating RTLIL representation for module `\INV'. Generating RTLIL representation for module `\LUT1'. Generating RTLIL representation for module `\LUT2'. Generating RTLIL representation for module `\LUT3'. Generating RTLIL representation for module `\LUT4'. Generating RTLIL representation for module `\LUT5'. Generating RTLIL representation for module `\LUT6'. Generating RTLIL representation for module `\LUT6_2'. Generating RTLIL representation for module `\MUXCY'. Generating RTLIL representation for module `\MUXF7'. Generating RTLIL representation for module `\MUXF8'. Generating RTLIL representation for module `\XORCY'. Generating RTLIL representation for module `\CARRY4'. Generating RTLIL representation for module `\FDRE'. Generating RTLIL representation for module `\FDSE'. Generating RTLIL representation for module `\FDCE'. Generating RTLIL representation for module `\FDPE'. Generating RTLIL representation for module `\FDRE_1'. Generating RTLIL representation for module `\FDSE_1'. Generating RTLIL representation for module `\FDCE_1'. Generating RTLIL representation for module `\FDPE_1'. Generating RTLIL representation for module `\LDCE'. Generating RTLIL representation for module `\LDPE'. Generating RTLIL representation for module `\RAM16X1S'. Generating RTLIL representation for module `\RAM16X1S_1'. Generating RTLIL representation for module `\RAM32X1S'. Generating RTLIL representation for module `\RAM32X1S_1'. Generating RTLIL representation for module `\RAM64X1S'. Generating RTLIL representation for module `\RAM64X1S_1'. Generating RTLIL representation for module `\RAM128X1S'. Generating RTLIL representation for module `\RAM128X1S_1'. Generating RTLIL representation for module `\RAM256X1S'. Generating RTLIL representation for module `\RAM512X1S'. Generating RTLIL representation for module `\RAM16X2S'. Generating RTLIL representation for module `\RAM32X2S'. Generating RTLIL representation for module `\RAM64X2S'. Generating RTLIL representation for module `\RAM16X4S'. Generating RTLIL representation for module `\RAM32X4S'. Generating RTLIL representation for module `\RAM16X8S'. Generating RTLIL representation for module `\RAM32X8S'. Generating RTLIL representation for module `\RAM16X1D'. Generating RTLIL representation for module `\RAM16X1D_1'. Generating RTLIL representation for module `\RAM32X1D'. Generating RTLIL representation for module `\RAM32X1D_1'. Generating RTLIL representation for module `\RAM64X1D'. Generating RTLIL representation for module `\RAM64X1D_1'. Generating RTLIL representation for module `\RAM128X1D'. Generating RTLIL representation for module `\RAM256X1D'. Generating RTLIL representation for module `\RAM32M'. Generating RTLIL representation for module `\RAM32M16'. Generating RTLIL representation for module `\RAM64M'. Generating RTLIL representation for module `\RAM64M8'. Generating RTLIL representation for module `\ROM16X1'. Generating RTLIL representation for module `\ROM32X1'. Generating RTLIL representation for module `\ROM64X1'. Generating RTLIL representation for module `\ROM128X1'. Generating RTLIL representation for module `\ROM256X1'. Generating RTLIL representation for module `\SRL16E'. Generating RTLIL representation for module `\SRLC16E'. Generating RTLIL representation for module `\SRLC32E'. Generating RTLIL representation for module `\MULT18X18'. Generating RTLIL representation for module `\MULT18X18S'. Generating RTLIL representation for module `\MULT18X18SIO'. Generating RTLIL representation for module `\DSP48A'. Generating RTLIL representation for module `\DSP48A1'. Generating RTLIL representation for module `\DSP48E1'. Successfully finished Verilog frontend. 3.2. Executing Verilog-2005 frontend: /opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/cells_xtra.v Parsing Verilog input from `/opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/cells_xtra.v' to AST representation. Generating RTLIL representation for module `\FDCPE'. Generating RTLIL representation for module `\FDRSE'. Generating RTLIL representation for module `\LDCPE'. Generating RTLIL representation for module `\AND2B1L'. Generating RTLIL representation for module `\OR2L'. Generating RTLIL representation for module `\MUXF5'. Generating RTLIL representation for module `\MUXF6'. Generating RTLIL representation for module `\MUXF9'. Generating RTLIL representation for module `\CARRY8'. Generating RTLIL representation for module `\ORCY'. Generating RTLIL representation for module `\MULT_AND'. Generating RTLIL representation for module `\SRL16'. Generating RTLIL representation for module `\SRLC16'. Generating RTLIL representation for module `\CFGLUT5'. Generating RTLIL representation for module `\RAMB16_S1'. Generating RTLIL representation for module `\RAMB16_S2'. Generating RTLIL representation for module `\RAMB16_S4'. Generating RTLIL representation for module `\RAMB16_S9'. Generating RTLIL representation for module `\RAMB16_S18'. Generating RTLIL representation for module `\RAMB16_S36'. Generating RTLIL representation for module `\RAMB16_S1_S1'. Generating RTLIL representation for module `\RAMB16_S1_S2'. Generating RTLIL representation for module `\RAMB16_S1_S4'. Generating RTLIL representation for module `\RAMB16_S1_S9'. Generating RTLIL representation for module `\RAMB16_S1_S18'. Generating RTLIL representation for module `\RAMB16_S1_S36'. Generating RTLIL representation for module `\RAMB16_S2_S2'. Generating RTLIL representation for module `\RAMB16_S2_S4'. Generating RTLIL representation for module `\RAMB16_S2_S9'. Generating RTLIL representation for module `\RAMB16_S2_S18'. Generating RTLIL representation for module `\RAMB16_S2_S36'. Generating RTLIL representation for module `\RAMB16_S4_S4'. Generating RTLIL representation for module `\RAMB16_S4_S9'. Generating RTLIL representation for module `\RAMB16_S4_S18'. Generating RTLIL representation for module `\RAMB16_S4_S36'. Generating RTLIL representation for module `\RAMB16_S9_S9'. Generating RTLIL representation for module `\RAMB16_S9_S18'. Generating RTLIL representation for module `\RAMB16_S9_S36'. Generating RTLIL representation for module `\RAMB16_S18_S18'. Generating RTLIL representation for module `\RAMB16_S18_S36'. Generating RTLIL representation for module `\RAMB16_S36_S36'. Generating RTLIL representation for module `\RAMB16BWE_S18'. Generating RTLIL representation for module `\RAMB16BWE_S36'. Generating RTLIL representation for module `\RAMB16BWE_S18_S9'. Generating RTLIL representation for module `\RAMB16BWE_S18_S18'. Generating RTLIL representation for module `\RAMB16BWE_S36_S9'. Generating RTLIL representation for module `\RAMB16BWE_S36_S18'. Generating RTLIL representation for module `\RAMB16BWE_S36_S36'. Generating RTLIL representation for module `\RAMB16BWER'. Generating RTLIL representation for module `\RAMB8BWER'. Generating RTLIL representation for module `\FIFO16'. Generating RTLIL representation for module `\RAMB16'. Generating RTLIL representation for module `\RAMB32_S64_ECC'. Generating RTLIL representation for module `\FIFO18'. Generating RTLIL representation for module `\FIFO18_36'. Generating RTLIL representation for module `\FIFO36'. Generating RTLIL representation for module `\FIFO36_72'. Generating RTLIL representation for module `\RAMB18'. Generating RTLIL representation for module `\RAMB36'. Generating RTLIL representation for module `\RAMB18SDP'. Generating RTLIL representation for module `\RAMB36SDP'. Generating RTLIL representation for module `\FIFO18E1'. Generating RTLIL representation for module `\FIFO36E1'. Generating RTLIL representation for module `\RAMB18E1'. Generating RTLIL representation for module `\RAMB36E1'. Generating RTLIL representation for module `\FIFO18E2'. Generating RTLIL representation for module `\FIFO36E2'. Generating RTLIL representation for module `\RAMB18E2'. Generating RTLIL representation for module `\RAMB36E2'. Generating RTLIL representation for module `\URAM288'. Generating RTLIL representation for module `\URAM288_BASE'. Generating RTLIL representation for module `\DSP48'. Generating RTLIL representation for module `\DSP48E'. Generating RTLIL representation for module `\DSP48E2'. Generating RTLIL representation for module `\IFDDRCPE'. Generating RTLIL representation for module `\IFDDRRSE'. Generating RTLIL representation for module `\OFDDRCPE'. Generating RTLIL representation for module `\OFDDRRSE'. Generating RTLIL representation for module `\OFDDRTCPE'. Generating RTLIL representation for module `\OFDDRTRSE'. Generating RTLIL representation for module `\IDDR2'. Generating RTLIL representation for module `\ODDR2'. Generating RTLIL representation for module `\IDDR'. Generating RTLIL representation for module `\IDDR_2CLK'. Generating RTLIL representation for module `\ODDR'. Generating RTLIL representation for module `\IDELAYCTRL'. Generating RTLIL representation for module `\IDELAY'. Generating RTLIL representation for module `\ISERDES'. Generating RTLIL representation for module `\OSERDES'. Generating RTLIL representation for module `\IODELAY'. Generating RTLIL representation for module `\ISERDES_NODELAY'. Generating RTLIL representation for module `\IODELAYE1'. Generating RTLIL representation for module `\ISERDESE1'. Generating RTLIL representation for module `\OSERDESE1'. Generating RTLIL representation for module `\IDELAYE2'. Generating RTLIL representation for module `\ODELAYE2'. Generating RTLIL representation for module `\ISERDESE2'. Generating RTLIL representation for module `\OSERDESE2'. Generating RTLIL representation for module `\PHASER_IN'. Generating RTLIL representation for module `\PHASER_IN_PHY'. Generating RTLIL representation for module `\PHASER_OUT'. Generating RTLIL representation for module `\PHASER_OUT_PHY'. Generating RTLIL representation for module `\PHASER_REF'. Generating RTLIL representation for module `\PHY_CONTROL'. Generating RTLIL representation for module `\IDDRE1'. Generating RTLIL representation for module `\ODDRE1'. Generating RTLIL representation for module `\IDELAYE3'. Generating RTLIL representation for module `\ODELAYE3'. Generating RTLIL representation for module `\ISERDESE3'. Generating RTLIL representation for module `\OSERDESE3'. Generating RTLIL representation for module `\BITSLICE_CONTROL'. Generating RTLIL representation for module `\RIU_OR'. Generating RTLIL representation for module `\RX_BITSLICE'. Generating RTLIL representation for module `\RXTX_BITSLICE'. Generating RTLIL representation for module `\TX_BITSLICE'. Generating RTLIL representation for module `\TX_BITSLICE_TRI'. Generating RTLIL representation for module `\IODELAY2'. Generating RTLIL representation for module `\IODRP2'. Generating RTLIL representation for module `\IODRP2_MCB'. Generating RTLIL representation for module `\ISERDES2'. Generating RTLIL representation for module `\OSERDES2'. Generating RTLIL representation for module `\IBUF_DLY_ADJ'. Generating RTLIL representation for module `\IBUF_IBUFDISABLE'. Generating RTLIL representation for module `\IBUF_INTERMDISABLE'. Generating RTLIL representation for module `\IBUF_ANALOG'. Generating RTLIL representation for module `\IBUFE3'. Generating RTLIL representation for module `\IBUFDS'. Generating RTLIL representation for module `\IBUFDS_DLY_ADJ'. Generating RTLIL representation for module `\IBUFDS_IBUFDISABLE'. Generating RTLIL representation for module `\IBUFDS_INTERMDISABLE'. Generating RTLIL representation for module `\IBUFDS_DIFF_OUT'. Generating RTLIL representation for module `\IBUFDS_DIFF_OUT_IBUFDISABLE'. Generating RTLIL representation for module `\IBUFDS_DIFF_OUT_INTERMDISABLE'. Generating RTLIL representation for module `\IBUFDSE3'. Generating RTLIL representation for module `\IBUFDS_DPHY'. Generating RTLIL representation for module `\IBUFGDS'. Generating RTLIL representation for module `\IBUFGDS_DIFF_OUT'. Generating RTLIL representation for module `\IOBUF_DCIEN'. Generating RTLIL representation for module `\IOBUF_INTERMDISABLE'. Generating RTLIL representation for module `\IOBUFE3'. Generating RTLIL representation for module `\IOBUFDS'. Generating RTLIL representation for module `\IOBUFDS_DCIEN'. Generating RTLIL representation for module `\IOBUFDS_INTERMDISABLE'. Generating RTLIL representation for module `\IOBUFDS_DIFF_OUT'. Generating RTLIL representation for module `\IOBUFDS_DIFF_OUT_DCIEN'. Generating RTLIL representation for module `\IOBUFDS_DIFF_OUT_INTERMDISABLE'. Generating RTLIL representation for module `\IOBUFDSE3'. Generating RTLIL representation for module `\OBUFDS'. Generating RTLIL representation for module `\OBUFDS_DPHY'. Generating RTLIL representation for module `\OBUFTDS'. Generating RTLIL representation for module `\KEEPER'. Generating RTLIL representation for module `\PULLDOWN'. Generating RTLIL representation for module `\PULLUP'. Generating RTLIL representation for module `\DCIRESET'. Generating RTLIL representation for module `\HPIO_VREF'. Generating RTLIL representation for module `\BUFGCE'. Generating RTLIL representation for module `\BUFGCE_1'. Generating RTLIL representation for module `\BUFGMUX'. Generating RTLIL representation for module `\BUFGMUX_1'. Generating RTLIL representation for module `\BUFGMUX_CTRL'. Generating RTLIL representation for module `\BUFGMUX_VIRTEX4'. Generating RTLIL representation for module `\BUFG_GT'. Generating RTLIL representation for module `\BUFG_GT_SYNC'. Generating RTLIL representation for module `\BUFG_PS'. Generating RTLIL representation for module `\BUFGCE_DIV'. Generating RTLIL representation for module `\BUFH'. Generating RTLIL representation for module `\BUFIO2'. Generating RTLIL representation for module `\BUFIO2_2CLK'. Generating RTLIL representation for module `\BUFIO2FB'. Generating RTLIL representation for module `\BUFPLL'. Generating RTLIL representation for module `\BUFPLL_MCB'. Generating RTLIL representation for module `\BUFIO'. Generating RTLIL representation for module `\BUFIODQS'. Generating RTLIL representation for module `\BUFR'. Generating RTLIL representation for module `\BUFMR'. Generating RTLIL representation for module `\BUFMRCE'. Generating RTLIL representation for module `\DCM'. Generating RTLIL representation for module `\DCM_SP'. Generating RTLIL representation for module `\DCM_CLKGEN'. Generating RTLIL representation for module `\DCM_ADV'. Generating RTLIL representation for module `\DCM_BASE'. Generating RTLIL representation for module `\DCM_PS'. Generating RTLIL representation for module `\PMCD'. Generating RTLIL representation for module `\PLL_ADV'. Generating RTLIL representation for module `\PLL_BASE'. Generating RTLIL representation for module `\MMCM_ADV'. Generating RTLIL representation for module `\MMCM_BASE'. Generating RTLIL representation for module `\MMCME2_ADV'. Generating RTLIL representation for module `\MMCME2_BASE'. Generating RTLIL representation for module `\PLLE2_ADV'. Generating RTLIL representation for module `\PLLE2_BASE'. Generating RTLIL representation for module `\MMCME3_ADV'. Generating RTLIL representation for module `\MMCME3_BASE'. Generating RTLIL representation for module `\PLLE3_ADV'. Generating RTLIL representation for module `\PLLE3_BASE'. Generating RTLIL representation for module `\MMCME4_ADV'. Generating RTLIL representation for module `\MMCME4_BASE'. Generating RTLIL representation for module `\PLLE4_ADV'. Generating RTLIL representation for module `\PLLE4_BASE'. Generating RTLIL representation for module `\BUFT'. Generating RTLIL representation for module `\IN_FIFO'. Generating RTLIL representation for module `\OUT_FIFO'. Generating RTLIL representation for module `\HARD_SYNC'. Generating RTLIL representation for module `\STARTUP_SPARTAN3'. Generating RTLIL representation for module `\STARTUP_SPARTAN3E'. Generating RTLIL representation for module `\STARTUP_SPARTAN3A'. Generating RTLIL representation for module `\STARTUP_SPARTAN6'. Generating RTLIL representation for module `\STARTUP_VIRTEX4'. Generating RTLIL representation for module `\STARTUP_VIRTEX5'. Generating RTLIL representation for module `\STARTUP_VIRTEX6'. Generating RTLIL representation for module `\STARTUPE2'. Generating RTLIL representation for module `\STARTUPE3'. Generating RTLIL representation for module `\CAPTURE_SPARTAN3'. Generating RTLIL representation for module `\CAPTURE_SPARTAN3A'. Generating RTLIL representation for module `\CAPTURE_VIRTEX4'. Generating RTLIL representation for module `\CAPTURE_VIRTEX5'. Generating RTLIL representation for module `\CAPTURE_VIRTEX6'. Generating RTLIL representation for module `\CAPTUREE2'. Generating RTLIL representation for module `\ICAP_SPARTAN3A'. Generating RTLIL representation for module `\ICAP_SPARTAN6'. Generating RTLIL representation for module `\ICAP_VIRTEX4'. Generating RTLIL representation for module `\ICAP_VIRTEX5'. Generating RTLIL representation for module `\ICAP_VIRTEX6'. Generating RTLIL representation for module `\ICAPE2'. Generating RTLIL representation for module `\ICAPE3'. Generating RTLIL representation for module `\BSCAN_SPARTAN3'. Generating RTLIL representation for module `\BSCAN_SPARTAN3A'. Generating RTLIL representation for module `\BSCAN_SPARTAN6'. Generating RTLIL representation for module `\BSCAN_VIRTEX4'. Generating RTLIL representation for module `\BSCAN_VIRTEX5'. Generating RTLIL representation for module `\BSCAN_VIRTEX6'. Generating RTLIL representation for module `\BSCANE2'. Generating RTLIL representation for module `\DNA_PORT'. Generating RTLIL representation for module `\DNA_PORTE2'. Generating RTLIL representation for module `\FRAME_ECC_VIRTEX4'. Generating RTLIL representation for module `\FRAME_ECC_VIRTEX5'. Generating RTLIL representation for module `\FRAME_ECC_VIRTEX6'. Generating RTLIL representation for module `\FRAME_ECCE2'. Generating RTLIL representation for module `\FRAME_ECCE3'. Generating RTLIL representation for module `\USR_ACCESS_VIRTEX4'. Generating RTLIL representation for module `\USR_ACCESS_VIRTEX5'. Generating RTLIL representation for module `\USR_ACCESS_VIRTEX6'. Generating RTLIL representation for module `\USR_ACCESSE2'. Generating RTLIL representation for module `\POST_CRC_INTERNAL'. Generating RTLIL representation for module `\SUSPEND_SYNC'. Generating RTLIL representation for module `\KEY_CLEAR'. Generating RTLIL representation for module `\MASTER_JTAG'. Generating RTLIL representation for module `\SPI_ACCESS'. Generating RTLIL representation for module `\EFUSE_USR'. Generating RTLIL representation for module `\SYSMON'. Generating RTLIL representation for module `\XADC'. Generating RTLIL representation for module `\SYSMONE1'. Generating RTLIL representation for module `\SYSMONE4'. Generating RTLIL representation for module `\GTPA1_DUAL'. Generating RTLIL representation for module `\GT11_CUSTOM'. Generating RTLIL representation for module `\GT11_DUAL'. Generating RTLIL representation for module `\GT11CLK'. Generating RTLIL representation for module `\GT11CLK_MGT'. Generating RTLIL representation for module `\GTP_DUAL'. Generating RTLIL representation for module `\GTX_DUAL'. Generating RTLIL representation for module `\CRC32'. Generating RTLIL representation for module `\CRC64'. Generating RTLIL representation for module `\GTHE1_QUAD'. Generating RTLIL representation for module `\GTXE1'. Generating RTLIL representation for module `\IBUFDS_GTXE1'. Generating RTLIL representation for module `\IBUFDS_GTHE1'. Generating RTLIL representation for module `\GTHE2_CHANNEL'. Generating RTLIL representation for module `\GTHE2_COMMON'. Generating RTLIL representation for module `\GTPE2_CHANNEL'. Generating RTLIL representation for module `\GTPE2_COMMON'. Generating RTLIL representation for module `\GTXE2_CHANNEL'. Generating RTLIL representation for module `\GTXE2_COMMON'. Generating RTLIL representation for module `\IBUFDS_GTE2'. Generating RTLIL representation for module `\GTHE3_CHANNEL'. Generating RTLIL representation for module `\GTHE3_COMMON'. Generating RTLIL representation for module `\GTHE4_CHANNEL'. Generating RTLIL representation for module `\GTHE4_COMMON'. Generating RTLIL representation for module `\GTYE3_CHANNEL'. Generating RTLIL representation for module `\GTYE3_COMMON'. Generating RTLIL representation for module `\GTYE4_CHANNEL'. Generating RTLIL representation for module `\GTYE4_COMMON'. Generating RTLIL representation for module `\IBUFDS_GTE3'. Generating RTLIL representation for module `\IBUFDS_GTE4'. Generating RTLIL representation for module `\OBUFDS_GTE3'. Generating RTLIL representation for module `\OBUFDS_GTE3_ADV'. Generating RTLIL representation for module `\OBUFDS_GTE4'. Generating RTLIL representation for module `\OBUFDS_GTE4_ADV'. Generating RTLIL representation for module `\PCIE_A1'. Generating RTLIL representation for module `\PCIE_EP'. Generating RTLIL representation for module `\PCIE_2_0'. Generating RTLIL representation for module `\PCIE_2_1'. Generating RTLIL representation for module `\PCIE_3_0'. Generating RTLIL representation for module `\PCIE_3_1'. Generating RTLIL representation for module `\PCIE40E4'. Generating RTLIL representation for module `\EMAC'. Generating RTLIL representation for module `\TEMAC'. Generating RTLIL representation for module `\TEMAC_SINGLE'. Generating RTLIL representation for module `\CMAC'. Generating RTLIL representation for module `\CMACE4'. Generating RTLIL representation for module `\PPC405_ADV'. Generating RTLIL representation for module `\PPC440'. Generating RTLIL representation for module `\MCB'. Generating RTLIL representation for module `\PS7'. Generating RTLIL representation for module `\PS8'. Generating RTLIL representation for module `\ILKN'. Generating RTLIL representation for module `\ILKNE4'. Successfully finished Verilog frontend. 3.3. Executing HIERARCHY pass (managing design hierarchy). 3.3.1. Analyzing design hierarchy.. Top module: \block_ram 3.3.2. Analyzing design hierarchy.. Top module: \block_ram Removed 0 unused modules. 3.4. Executing PROC pass (convert processes to netlists). 3.4.1. Executing PROC_CLEAN pass (remove empty switches from decision trees). Cleaned up 0 empty switches. 3.4.2. Executing PROC_RMDEAD pass (remove dead branches from decision trees). Removed a total of 0 dead cases. 3.4.3. Executing PROC_PRUNE pass (remove redundant assignments in processes). Removed 0 redundant assignments. Promoted 1 assignment to connection. 3.4.4. Executing PROC_INIT pass (extract init attributes). 3.4.5. Executing PROC_ARST pass (detect async resets in processes). 3.4.6. Executing PROC_MUX pass (convert decision trees to multiplexers). Creating decoders for process `\block_ram.$proc$attributes_test.v:14$2'. 1/3: $0$memwr$\memory$attributes_test.v:16$1_EN[3:0]$5 2/3: $0$memwr$\memory$attributes_test.v:16$1_DATA[3:0]$4 3/3: $0$memwr$\memory$attributes_test.v:16$1_ADDR[9:0]$3 3.4.7. Executing PROC_DLATCH pass (convert process syncs to latches). 3.4.8. Executing PROC_DFF pass (convert process syncs to FFs). Creating register for signal `\block_ram.\data_out_r' using process `\block_ram.$proc$attributes_test.v:14$2'. created $dff cell `$procdff$48' with positive edge clock. Creating register for signal `\block_ram.$memwr$\memory$attributes_test.v:16$1_ADDR' using process `\block_ram.$proc$attributes_test.v:14$2'. created $dff cell `$procdff$49' with positive edge clock. Creating register for signal `\block_ram.$memwr$\memory$attributes_test.v:16$1_DATA' using process `\block_ram.$proc$attributes_test.v:14$2'. created $dff cell `$procdff$50' with positive edge clock. Creating register for signal `\block_ram.$memwr$\memory$attributes_test.v:16$1_EN' using process `\block_ram.$proc$attributes_test.v:14$2'. created $dff cell `$procdff$51' with positive edge clock. 3.4.9. Executing PROC_CLEAN pass (remove empty switches from decision trees). Found and cleaned up 1 empty switch in `\block_ram.$proc$attributes_test.v:14$2'. Removing empty process `block_ram.$proc$attributes_test.v:14$2'. Cleaned up 1 empty switch. 3.5. Executing TRIBUF pass. 3.6. Executing DEMINOUT pass (demote inout ports to input or output). 3.7. Executing OPT_EXPR pass (perform const folding). Optimizing module block_ram. 3.8. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \block_ram.. Removed 0 unused cells and 7 unused wires. 3.9. Executing CHECK pass (checking for obvious problems). checking module block_ram.. found and reported 0 problems. 3.10. Executing OPT pass (performing simple optimizations). 3.10.1. Executing OPT_EXPR pass (perform const folding). Optimizing module block_ram. 3.10.2. Executing OPT_MERGE pass (detect identical cells). Finding identical cells in module `\block_ram'. Removed a total of 0 cells. 3.10.3. Executing OPT_MUXTREE pass (detect dead branches in mux trees). Running muxtree optimizer on module \block_ram.. Creating internal representation of mux trees. Evaluating internal representation of mux trees. Analyzing evaluation results. Removed 0 multiplexer ports. 3.10.4. Executing OPT_REDUCE pass (consolidate $*mux and $reduce_* inputs). Optimizing cells in module \block_ram. Consolidated identical input bits for $mux cell $procmux$42: Old ports: A=4'0000, B=4'1111, Y=$0$memwr$\memory$attributes_test.v:16$1_EN[3:0]$5 New ports: A=1'0, B=1'1, Y=$0$memwr$\memory$attributes_test.v:16$1_EN[3:0]$5 [0] New connections: $0$memwr$\memory$attributes_test.v:16$1_EN[3:0]$5 [3:1] = { $0$memwr$\memory$attributes_test.v:16$1_EN[3:0]$5 [0] $0$memwr$\memory$attributes_test.v:16$1_EN[3:0]$5 [0] $0$memwr$\memory$attributes_test.v:16$1_EN[3:0]$5 [0] } Optimizing cells in module \block_ram. Performed a total of 1 changes. 3.10.5. Executing OPT_MERGE pass (detect identical cells). Finding identical cells in module `\block_ram'. Removed a total of 0 cells. 3.10.6. Executing OPT_RMDFF pass (remove dff with constant values). 3.10.7. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \block_ram.. 3.10.8. Executing OPT_EXPR pass (perform const folding). Optimizing module block_ram. 3.10.9. Rerunning OPT passes. (Maybe there is more to do..) 3.10.10. Executing OPT_MUXTREE pass (detect dead branches in mux trees). Running muxtree optimizer on module \block_ram.. Creating internal representation of mux trees. Evaluating internal representation of mux trees. Analyzing evaluation results. Removed 0 multiplexer ports. 3.10.11. Executing OPT_REDUCE pass (consolidate $*mux and $reduce_* inputs). Optimizing cells in module \block_ram. Performed a total of 0 changes. 3.10.12. Executing OPT_MERGE pass (detect identical cells). Finding identical cells in module `\block_ram'. Removed a total of 0 cells. 3.10.13. Executing OPT_RMDFF pass (remove dff with constant values). 3.10.14. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \block_ram.. 3.10.15. Executing OPT_EXPR pass (perform const folding). Optimizing module block_ram. 3.10.16. Finished OPT passes. (There is nothing left to do.) 3.11. Executing WREDUCE pass (reducing word size of cells). Removed cell block_ram.$procmux$44 ($mux). Removed cell block_ram.$procmux$46 ($mux). Removed top 3 bits (of 4) from FF cell block_ram.$procdff$51 ($dff). 3.12. Executing PEEPOPT pass (run peephole optimizers). 3.13. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \block_ram.. Removed 0 unused cells and 2 unused wires. 3.14. Executing PMUX2SHIFTX pass. 3.15. Executing TECHMAP pass (map to technology primitives). 3.15.1. Executing Verilog-2005 frontend: /opt/eda/fpga/FOSS/memattr/yosys_release/share/cmp2lut.v Parsing Verilog input from `/opt/eda/fpga/FOSS/memattr/yosys_release/share/cmp2lut.v' to AST representation. Generating RTLIL representation for module `\_90_lut_cmp_'. Successfully finished Verilog frontend. 3.15.2. Continuing TECHMAP pass. No more expansions possible. 3.16. Executing MEMORY_DFF pass (merging $dff cells to $memrd and $memwr). Checking cell `$memwr$\memory$attributes_test.v:16$7' in module `\block_ram': merged $dff to cell. Checking cell `$memrd$\memory$attributes_test.v:17$6' in module `\block_ram': merged data $dff to cell. 3.17. Executing TECHMAP pass (map to technology primitives). 3.17.1. Executing Verilog-2005 frontend: /opt/eda/fpga/FOSS/memattr/yosys_release/share/mul2dsp.v Parsing Verilog input from `/opt/eda/fpga/FOSS/memattr/yosys_release/share/mul2dsp.v' to AST representation. Generating RTLIL representation for module `\_80_mul'. Generating RTLIL representation for module `\_90_soft_mul'. Successfully finished Verilog frontend. 3.17.2. Executing Verilog-2005 frontend: /opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/xc7_dsp_map.v Parsing Verilog input from `/opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/xc7_dsp_map.v' to AST representation. Generating RTLIL representation for module `\$__MUL25X18'. Successfully finished Verilog frontend. 3.17.3. Continuing TECHMAP pass. No more expansions possible. 3.18. Executing OPT_EXPR pass (perform const folding). 3.19. Executing WREDUCE pass (reducing word size of cells). 3.20. Executing XILINX_DSP pass (pack resources into DSPs). 3.21. Executing ALUMACC pass (create $alu and $macc cells). Extracting $alu and $macc cells in module block_ram: created 0 $alu and 0 $macc cells. 3.22. Executing SHARE pass (SAT-based resource sharing). 3.23. Executing OPT pass (performing simple optimizations). 3.23.1. Executing OPT_EXPR pass (perform const folding). Optimizing module block_ram. 3.23.2. Executing OPT_MERGE pass (detect identical cells). Finding identical cells in module `\block_ram'. Removed a total of 0 cells. 3.23.3. Executing OPT_MUXTREE pass (detect dead branches in mux trees). Running muxtree optimizer on module \block_ram.. Creating internal representation of mux trees. Evaluating internal representation of mux trees. Analyzing evaluation results. Removed 0 multiplexer ports. 3.23.4. Executing OPT_REDUCE pass (consolidate $*mux and $reduce_* inputs). Optimizing cells in module \block_ram. Performed a total of 0 changes. 3.23.5. Executing OPT_MERGE pass (detect identical cells). Finding identical cells in module `\block_ram'. Removed a total of 0 cells. 3.23.6. Executing OPT_RMDFF pass (remove dff with constant values). 3.23.7. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \block_ram.. Removed 4 unused cells and 5 unused wires. 3.23.8. Executing OPT_EXPR pass (perform const folding). Optimizing module block_ram. 3.23.9. Rerunning OPT passes. (Maybe there is more to do..) 3.23.10. Executing OPT_MUXTREE pass (detect dead branches in mux trees). Running muxtree optimizer on module \block_ram.. Creating internal representation of mux trees. Evaluating internal representation of mux trees. Analyzing evaluation results. Removed 0 multiplexer ports. 3.23.11. Executing OPT_REDUCE pass (consolidate $*mux and $reduce_* inputs). Optimizing cells in module \block_ram. Performed a total of 0 changes. 3.23.12. Executing OPT_MERGE pass (detect identical cells). Finding identical cells in module `\block_ram'. Removed a total of 0 cells. 3.23.13. Executing OPT_RMDFF pass (remove dff with constant values). 3.23.14. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \block_ram.. 3.23.15. Executing OPT_EXPR pass (perform const folding). Optimizing module block_ram. 3.23.16. Finished OPT passes. (There is nothing left to do.) 3.24. Executing FSM pass (extract and optimize FSM). 3.24.1. Executing FSM_DETECT pass (finding FSMs in design). 3.24.2. Executing FSM_EXTRACT pass (extracting FSM from design). 3.24.3. Executing FSM_OPT pass (simple optimizations of FSMs). 3.24.4. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \block_ram.. 3.24.5. Executing FSM_OPT pass (simple optimizations of FSMs). 3.24.6. Executing FSM_RECODE pass (re-assigning FSM state encoding). 3.24.7. Executing FSM_INFO pass (dumping all available information on FSM cells). 3.24.8. Executing FSM_MAP pass (mapping FSMs to basic logic). 3.25. Executing OPT pass (performing simple optimizations). 3.25.1. Executing OPT_EXPR pass (perform const folding). Optimizing module block_ram. 3.25.2. Executing OPT_MERGE pass (detect identical cells). Finding identical cells in module `\block_ram'. Removed a total of 0 cells. 3.25.3. Executing OPT_RMDFF pass (remove dff with constant values). 3.25.4. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \block_ram.. 3.25.5. Finished fast OPT passes. 3.26. Executing MEMORY pass. 3.26.1. Executing OPT_MEM pass (optimize memories). Performed a total of 0 transformations. 3.26.2. Executing MEMORY_DFF pass (merging $dff cells to $memrd and $memwr). 3.26.3. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \block_ram.. 3.26.4. Executing MEMORY_SHARE pass (consolidating $memrd/$memwr cells). 3.26.5. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \block_ram.. 3.26.6. Executing MEMORY_COLLECT pass (generating $mem cells). Collecting $memrd, $memwr and $meminit for memory `\memory' in module `\block_ram': $memwr$\memory$attributes_test.v:16$7 ($memwr) $memrd$\memory$attributes_test.v:17$6 ($memrd) 3.27. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \block_ram.. 3.28. Executing MEMORY_BRAM pass (mapping $mem cells to block memories). Processing block_ram.memory: Properties: ports=2 bits=4096 rports=1 wports=1 dbits=4 abits=10 words=1024 Checking rule #1 for bram type $__XILINX_RAMB36_SDP (variant 1): Bram geometry: abits=9 dbits=72 wports=0 rports=0 Estimated number of duplicates for more read ports: dups=1 Metrics for $__XILINX_RAMB36_SDP: awaste=0 dwaste=68 bwaste=34816 waste=34816 efficiency=5 Rule #1 for bram type $__XILINX_RAMB36_SDP (variant 1) accepted. Mapping to bram type $__XILINX_RAMB36_SDP (variant 1): Shuffle bit order to accommodate enable buckets of size 9.. Results of bit order shuffling: 0 1 2 3 -1 -1 -1 -1 -1 Write port #0 is in clock domain \clk. Mapped to bram port B1. Read port #0 is in clock domain \clk. Mapped to bram port A1.1. Updated properties: dups=1 waste=34816 efficiency=5 Storing for later selection. Checking rule #2 for bram type $__XILINX_RAMB18_SDP (variant 1): Bram geometry: abits=9 dbits=36 wports=0 rports=0 Estimated number of duplicates for more read ports: dups=1 Metrics for $__XILINX_RAMB18_SDP: awaste=0 dwaste=32 bwaste=16384 waste=16384 efficiency=11 Rule #2 for bram type $__XILINX_RAMB18_SDP (variant 1) accepted. Mapping to bram type $__XILINX_RAMB18_SDP (variant 1): Shuffle bit order to accommodate enable buckets of size 9.. Results of bit order shuffling: 0 1 2 3 -1 -1 -1 -1 -1 Write port #0 is in clock domain \clk. Mapped to bram port B1. Read port #0 is in clock domain \clk. Mapped to bram port A1.1. Updated properties: dups=1 waste=16384 efficiency=11 Storing for later selection. Checking rule #3 for bram type $__XILINX_RAMB36_TDP (variant 1): Bram geometry: abits=10 dbits=36 wports=0 rports=0 Estimated number of duplicates for more read ports: dups=1 Metrics for $__XILINX_RAMB36_TDP: awaste=0 dwaste=32 bwaste=32768 waste=32768 efficiency=11 Rule #3 for bram type $__XILINX_RAMB36_TDP (variant 1) accepted. Mapping to bram type $__XILINX_RAMB36_TDP (variant 1): Shuffle bit order to accommodate enable buckets of size 9.. Results of bit order shuffling: 0 1 2 3 -1 -1 -1 -1 -1 Write port #0 is in clock domain \clk. Mapped to bram port B1. Read port #0 is in clock domain \clk. Mapped to bram port A1.1. Updated properties: dups=1 waste=32768 efficiency=11 Storing for later selection. Checking rule #3 for bram type $__XILINX_RAMB36_TDP (variant 2): Bram geometry: abits=11 dbits=18 wports=0 rports=0 Estimated number of duplicates for more read ports: dups=1 Metrics for $__XILINX_RAMB36_TDP: awaste=1024 dwaste=14 bwaste=32768 waste=32768 efficiency=11 Rule #3 for bram type $__XILINX_RAMB36_TDP (variant 2) accepted. Mapping to bram type $__XILINX_RAMB36_TDP (variant 2): Shuffle bit order to accommodate enable buckets of size 9.. Results of bit order shuffling: 0 1 2 3 -1 -1 -1 -1 -1 Write port #0 is in clock domain \clk. Mapped to bram port B1. Read port #0 is in clock domain \clk. Mapped to bram port A1.1. Updated properties: dups=1 waste=32768 efficiency=11 Storing for later selection. Checking rule #3 for bram type $__XILINX_RAMB36_TDP (variant 3): Bram geometry: abits=12 dbits=9 wports=0 rports=0 Estimated number of duplicates for more read ports: dups=1 Metrics for $__XILINX_RAMB36_TDP: awaste=3072 dwaste=5 bwaste=32768 waste=32768 efficiency=11 Rule #3 for bram type $__XILINX_RAMB36_TDP (variant 3) accepted. Mapping to bram type $__XILINX_RAMB36_TDP (variant 3): Shuffle bit order to accommodate enable buckets of size 9.. Results of bit order shuffling: 0 1 2 3 -1 -1 -1 -1 -1 Write port #0 is in clock domain \clk. Mapped to bram port B1. Read port #0 is in clock domain \clk. Mapped to bram port A1.1. Updated properties: dups=1 waste=32768 efficiency=11 Storing for later selection. Checking rule #3 for bram type $__XILINX_RAMB36_TDP (variant 4): Bram geometry: abits=13 dbits=4 wports=0 rports=0 Estimated number of duplicates for more read ports: dups=1 Metrics for $__XILINX_RAMB36_TDP: awaste=7168 dwaste=0 bwaste=28672 waste=28672 efficiency=12 Rule #3 for bram type $__XILINX_RAMB36_TDP (variant 4) accepted. Mapping to bram type $__XILINX_RAMB36_TDP (variant 4): Shuffle bit order to accommodate enable buckets of size 4.. Results of bit order shuffling: 0 1 2 3 Write port #0 is in clock domain \clk. Mapped to bram port B1. Read port #0 is in clock domain \clk. Mapped to bram port A1.1. Updated properties: dups=1 waste=28672 efficiency=12 Storing for later selection. Checking rule #3 for bram type $__XILINX_RAMB36_TDP (variant 5): Bram geometry: abits=14 dbits=2 wports=0 rports=0 Estimated number of duplicates for more read ports: dups=1 Metrics for $__XILINX_RAMB36_TDP: awaste=15360 dwaste=0 bwaste=30720 waste=30720 efficiency=6 Rule #3 for bram type $__XILINX_RAMB36_TDP (variant 5) accepted. Mapping to bram type $__XILINX_RAMB36_TDP (variant 5): Shuffle bit order to accommodate enable buckets of size 2.. Results of bit order shuffling: 0 1 2 3 Write port #0 is in clock domain \clk. Mapped to bram port B1. Read port #0 is in clock domain \clk. Mapped to bram port A1.1. Updated properties: dups=1 waste=30720 efficiency=6 Storing for later selection. Checking rule #3 for bram type $__XILINX_RAMB36_TDP (variant 6): Bram geometry: abits=15 dbits=1 wports=0 rports=0 Estimated number of duplicates for more read ports: dups=1 Metrics for $__XILINX_RAMB36_TDP: awaste=31744 dwaste=0 bwaste=31744 waste=31744 efficiency=3 Rule #3 for bram type $__XILINX_RAMB36_TDP (variant 6) rejected: requirement 'min efficiency 5' not met. Checking rule #4 for bram type $__XILINX_RAMB18_TDP (variant 1): Bram geometry: abits=10 dbits=18 wports=0 rports=0 Estimated number of duplicates for more read ports: dups=1 Metrics for $__XILINX_RAMB18_TDP: awaste=0 dwaste=14 bwaste=14336 waste=14336 efficiency=22 Rule #4 for bram type $__XILINX_RAMB18_TDP (variant 1) accepted. Mapping to bram type $__XILINX_RAMB18_TDP (variant 1): Shuffle bit order to accommodate enable buckets of size 9.. Results of bit order shuffling: 0 1 2 3 -1 -1 -1 -1 -1 Write port #0 is in clock domain \clk. Mapped to bram port B1. Read port #0 is in clock domain \clk. Mapped to bram port A1.1. Updated properties: dups=1 waste=14336 efficiency=22 Storing for later selection. Checking rule #4 for bram type $__XILINX_RAMB18_TDP (variant 2): Bram geometry: abits=11 dbits=9 wports=0 rports=0 Estimated number of duplicates for more read ports: dups=1 Metrics for $__XILINX_RAMB18_TDP: awaste=1024 dwaste=5 bwaste=14336 waste=14336 efficiency=22 Rule #4 for bram type $__XILINX_RAMB18_TDP (variant 2) accepted. Mapping to bram type $__XILINX_RAMB18_TDP (variant 2): Shuffle bit order to accommodate enable buckets of size 9.. Results of bit order shuffling: 0 1 2 3 -1 -1 -1 -1 -1 Write port #0 is in clock domain \clk. Mapped to bram port B1. Read port #0 is in clock domain \clk. Mapped to bram port A1.1. Updated properties: dups=1 waste=14336 efficiency=22 Storing for later selection. Checking rule #4 for bram type $__XILINX_RAMB18_TDP (variant 3): Bram geometry: abits=12 dbits=4 wports=0 rports=0 Estimated number of duplicates for more read ports: dups=1 Metrics for $__XILINX_RAMB18_TDP: awaste=3072 dwaste=0 bwaste=12288 waste=12288 efficiency=25 Rule #4 for bram type $__XILINX_RAMB18_TDP (variant 3) accepted. Mapping to bram type $__XILINX_RAMB18_TDP (variant 3): Shuffle bit order to accommodate enable buckets of size 4.. Results of bit order shuffling: 0 1 2 3 Write port #0 is in clock domain \clk. Mapped to bram port B1. Read port #0 is in clock domain \clk. Mapped to bram port A1.1. Updated properties: dups=1 waste=12288 efficiency=25 Storing for later selection. Checking rule #4 for bram type $__XILINX_RAMB18_TDP (variant 4): Bram geometry: abits=13 dbits=2 wports=0 rports=0 Estimated number of duplicates for more read ports: dups=1 Metrics for $__XILINX_RAMB18_TDP: awaste=7168 dwaste=0 bwaste=14336 waste=14336 efficiency=12 Rule #4 for bram type $__XILINX_RAMB18_TDP (variant 4) accepted. Mapping to bram type $__XILINX_RAMB18_TDP (variant 4): Shuffle bit order to accommodate enable buckets of size 2.. Results of bit order shuffling: 0 1 2 3 Write port #0 is in clock domain \clk. Mapped to bram port B1. Read port #0 is in clock domain \clk. Mapped to bram port A1.1. Updated properties: dups=1 waste=14336 efficiency=12 Storing for later selection. Checking rule #4 for bram type $__XILINX_RAMB18_TDP (variant 5): Bram geometry: abits=14 dbits=1 wports=0 rports=0 Estimated number of duplicates for more read ports: dups=1 Metrics for $__XILINX_RAMB18_TDP: awaste=15360 dwaste=0 bwaste=15360 waste=15360 efficiency=6 Rule #4 for bram type $__XILINX_RAMB18_TDP (variant 5) accepted. Mapping to bram type $__XILINX_RAMB18_TDP (variant 5): Write port #0 is in clock domain \clk. Mapped to bram port B1. Read port #0 is in clock domain \clk. Mapped to bram port A1.1. Updated properties: dups=1 waste=15360 efficiency=6 Storing for later selection. Selecting best of 12 rules: Efficiency for rule 4.5: efficiency=6, cells=4, acells=1 Efficiency for rule 4.4: efficiency=12, cells=2, acells=1 Efficiency for rule 4.3: efficiency=25, cells=1, acells=1 Efficiency for rule 4.2: efficiency=22, cells=1, acells=1 Efficiency for rule 4.1: efficiency=22, cells=1, acells=1 Efficiency for rule 3.5: efficiency=6, cells=2, acells=1 Efficiency for rule 3.4: efficiency=12, cells=1, acells=1 Efficiency for rule 3.3: efficiency=11, cells=1, acells=1 Efficiency for rule 3.2: efficiency=11, cells=1, acells=1 Efficiency for rule 3.1: efficiency=11, cells=1, acells=1 Efficiency for rule 2.1: efficiency=11, cells=2, acells=2 Efficiency for rule 1.1: efficiency=5, cells=2, acells=2 Selected rule 4.3 with efficiency 25. Mapping to bram type $__XILINX_RAMB18_TDP (variant 3): Shuffle bit order to accommodate enable buckets of size 4.. Results of bit order shuffling: 0 1 2 3 Write port #0 is in clock domain \clk. Mapped to bram port B1. Read port #0 is in clock domain \clk. Mapped to bram port A1.1. Creating $__XILINX_RAMB18_TDP cell at grid position <0 0 0>: memory.0.0.0 3.29. Executing TECHMAP pass (map to technology primitives). 3.29.1. Executing Verilog-2005 frontend: /opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/xc7_brams_map.v Parsing Verilog input from `/opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/xc7_brams_map.v' to AST representation. Generating RTLIL representation for module `\$__XILINX_RAMB36_SDP'. Generating RTLIL representation for module `\$__XILINX_RAMB18_SDP'. Generating RTLIL representation for module `\$__XILINX_RAMB36_TDP'. Generating RTLIL representation for module `\$__XILINX_RAMB18_TDP'. Successfully finished Verilog frontend. 3.29.2. Continuing TECHMAP pass. Using template $paramod\$__XILINX_RAMB18_TDP\CFG_ABITS=12\CFG_DBITS=4\CFG_ENABLE_B=1\CLKPOL2=1\CLKPOL3=1 for cells of type $__XILINX_RAMB18_TDP. No more expansions possible. 3.30. Executing MEMORY_BRAM pass (mapping $mem cells to block memories). 3.31. Executing TECHMAP pass (map to technology primitives). 3.31.1. Executing Verilog-2005 frontend: /opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/lutrams_map.v Parsing Verilog input from `/opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/lutrams_map.v' to AST representation. Generating RTLIL representation for module `\$__XILINX_RAM32X1D'. Generating RTLIL representation for module `\$__XILINX_RAM64X1D'. Generating RTLIL representation for module `\$__XILINX_RAM128X1D'. Successfully finished Verilog frontend. 3.31.2. Continuing TECHMAP pass. No more expansions possible. 3.32. Executing OPT pass (performing simple optimizations). 3.32.1. Executing OPT_EXPR pass (perform const folding). Optimizing module block_ram. 3.32.2. Executing OPT_MERGE pass (detect identical cells). Finding identical cells in module `\block_ram'. Removed a total of 0 cells. 3.32.3. Executing OPT_RMDFF pass (remove dff with constant values). 3.32.4. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \block_ram.. Removed 0 unused cells and 17 unused wires. 3.32.5. Finished fast OPT passes. 3.33. Executing MEMORY_MAP pass (converting $mem cells to logic and flip-flops). 3.34. Executing DFFSR2DFF pass (mapping DFFSR cells to simpler FFs). 3.35. Executing DFF2DFFE pass (transform $dff to $dffe where applicable). Transforming FF to FF+Enable cells in module block_ram: 3.36. Executing OPT pass (performing simple optimizations). 3.36.1. Executing OPT_EXPR pass (perform const folding). Optimizing module block_ram. 3.36.2. Executing OPT_MERGE pass (detect identical cells). Finding identical cells in module `\block_ram'. Removed a total of 0 cells. 3.36.3. Executing OPT_MUXTREE pass (detect dead branches in mux trees). Running muxtree optimizer on module \block_ram.. Creating internal representation of mux trees. No muxes found in this module. Removed 0 multiplexer ports. 3.36.4. Executing OPT_REDUCE pass (consolidate $*mux and $reduce_* inputs). Optimizing cells in module \block_ram. Performed a total of 0 changes. 3.36.5. Executing OPT_MERGE pass (detect identical cells). Finding identical cells in module `\block_ram'. Removed a total of 0 cells. 3.36.6. Executing OPT_SHARE pass. 3.36.7. Executing OPT_RMDFF pass (remove dff with constant values). 3.36.8. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \block_ram.. 3.36.9. Executing OPT_EXPR pass (perform const folding). Optimizing module block_ram. 3.36.10. Finished OPT passes. (There is nothing left to do.) 3.37. Executing XILINX_SRL pass (Xilinx shift register extraction). 3.38. Executing TECHMAP pass (map to technology primitives). 3.38.1. Executing Verilog-2005 frontend: /opt/eda/fpga/FOSS/memattr/yosys_release/share/techmap.v Parsing Verilog input from `/opt/eda/fpga/FOSS/memattr/yosys_release/share/techmap.v' to AST representation. Generating RTLIL representation for module `\_90_simplemap_bool_ops'. Generating RTLIL representation for module `\_90_simplemap_reduce_ops'. Generating RTLIL representation for module `\_90_simplemap_logic_ops'. Generating RTLIL representation for module `\_90_simplemap_compare_ops'. Generating RTLIL representation for module `\_90_simplemap_various'. Generating RTLIL representation for module `\_90_simplemap_registers'. Generating RTLIL representation for module `\_90_shift_ops_shr_shl_sshl_sshr'. Generating RTLIL representation for module `\_90_shift_shiftx'. Generating RTLIL representation for module `\_90_fa'. Generating RTLIL representation for module `\_90_lcu'. Generating RTLIL representation for module `\_90_alu'. Generating RTLIL representation for module `\_90_macc'. Generating RTLIL representation for module `\_90_alumacc'. Generating RTLIL representation for module `\$__div_mod_u'. Generating RTLIL representation for module `\$__div_mod'. Generating RTLIL representation for module `\_90_div'. Generating RTLIL representation for module `\_90_mod'. Generating RTLIL representation for module `\_90_pow'. Generating RTLIL representation for module `\_90_pmux'. Generating RTLIL representation for module `\_90_lut'. Successfully finished Verilog frontend. 3.38.2. Executing Verilog-2005 frontend: /opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/arith_map.v Parsing Verilog input from `/opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/arith_map.v' to AST representation. Generating RTLIL representation for module `\_80_xilinx_lcu'. Generating RTLIL representation for module `\_80_xilinx_alu'. Successfully finished Verilog frontend. 3.38.3. Continuing TECHMAP pass. No more expansions possible. 3.39. Executing OPT pass (performing simple optimizations). 3.39.1. Executing OPT_EXPR pass (perform const folding). Optimizing module block_ram. 3.39.2. Executing OPT_MERGE pass (detect identical cells). Finding identical cells in module `\block_ram'. Removed a total of 0 cells. 3.39.3. Executing OPT_RMDFF pass (remove dff with constant values). 3.39.4. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \block_ram.. 3.39.5. Finished fast OPT passes. 3.40. Executing TECHMAP pass (map to technology primitives). 3.40.1. Executing Verilog-2005 frontend: /opt/eda/fpga/FOSS/memattr/yosys_release/share/techmap.v Parsing Verilog input from `/opt/eda/fpga/FOSS/memattr/yosys_release/share/techmap.v' to AST representation. Generating RTLIL representation for module `\_90_simplemap_bool_ops'. Generating RTLIL representation for module `\_90_simplemap_reduce_ops'. Generating RTLIL representation for module `\_90_simplemap_logic_ops'. Generating RTLIL representation for module `\_90_simplemap_compare_ops'. Generating RTLIL representation for module `\_90_simplemap_various'. Generating RTLIL representation for module `\_90_simplemap_registers'. Generating RTLIL representation for module `\_90_shift_ops_shr_shl_sshl_sshr'. Generating RTLIL representation for module `\_90_shift_shiftx'. Generating RTLIL representation for module `\_90_fa'. Generating RTLIL representation for module `\_90_lcu'. Generating RTLIL representation for module `\_90_alu'. Generating RTLIL representation for module `\_90_macc'. Generating RTLIL representation for module `\_90_alumacc'. Generating RTLIL representation for module `\$__div_mod_u'. Generating RTLIL representation for module `\$__div_mod'. Generating RTLIL representation for module `\_90_div'. Generating RTLIL representation for module `\_90_mod'. Generating RTLIL representation for module `\_90_pow'. Generating RTLIL representation for module `\_90_pmux'. Generating RTLIL representation for module `\_90_lut'. Successfully finished Verilog frontend. 3.40.2. Executing Verilog-2005 frontend: /opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/cells_map.v Parsing Verilog input from `/opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/cells_map.v' to AST representation. Generating RTLIL representation for module `\_90_dff_nn0_to_np0'. Generating RTLIL representation for module `\_90_dff_pn0_to_pp0'. Generating RTLIL representation for module `\_90_dff_nn1_to_np1'. Generating RTLIL representation for module `\_90_dff_pn1_to_pp1'. Generating RTLIL representation for module `\$__SHREG_'. Generating RTLIL representation for module `\$__XILINX_SHREG_'. Generating RTLIL representation for module `\$__XILINX_MUXF78'. Generating RTLIL representation for module `\$__XILINX_TINOUTPAD'. Generating RTLIL representation for module `\$__XILINX_TOUTPAD'. Successfully finished Verilog frontend. 3.40.3. Continuing TECHMAP pass. No more expansions possible. 3.41. Executing OPT_EXPR pass (perform const folding). Optimizing module block_ram. 3.42. Executing ABC pass (technology mapping using ABC). 3.42.1. Extracting gate netlist of module `\block_ram' to `/input.blif'.. Extracted 0 gates and 0 wires to a netlist network with 0 inputs and 0 outputs. Don't call ABC as there is nothing to map. Removing temp directory. 3.43. Executing XILINX_SRL pass (Xilinx shift register extraction). 3.44. Executing TECHMAP pass (map to technology primitives). 3.44.1. Executing Verilog-2005 frontend: /opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/lut_map.v Parsing Verilog input from `/opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/lut_map.v' to AST representation. Generating RTLIL representation for module `\$lut'. Successfully finished Verilog frontend. 3.44.2. Executing Verilog-2005 frontend: /opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/cells_map.v Parsing Verilog input from `/opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/cells_map.v' to AST representation. Generating RTLIL representation for module `\_90_dff_nn0_to_np0'. Generating RTLIL representation for module `\_90_dff_pn0_to_pp0'. Generating RTLIL representation for module `\_90_dff_nn1_to_np1'. Generating RTLIL representation for module `\_90_dff_pn1_to_pp1'. Generating RTLIL representation for module `\$__SHREG_'. Generating RTLIL representation for module `\$__XILINX_SHREG_'. Generating RTLIL representation for module `\$__XILINX_MUXF78'. Generating RTLIL representation for module `\$__XILINX_TINOUTPAD'. Generating RTLIL representation for module `\$__XILINX_TOUTPAD'. Successfully finished Verilog frontend. 3.44.3. Executing Verilog-2005 frontend: /opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/xc7_ff_map.v Parsing Verilog input from `/opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/xc7_ff_map.v' to AST representation. Generating RTLIL representation for module `\$_DFF_N_'. Generating RTLIL representation for module `\$_DFF_P_'. Generating RTLIL representation for module `\$_DFFE_NP_'. Generating RTLIL representation for module `\$_DFFE_PP_'. Generating RTLIL representation for module `\$_DFF_NN0_'. Generating RTLIL representation for module `\$_DFF_NP0_'. Generating RTLIL representation for module `\$_DFF_PN0_'. Generating RTLIL representation for module `\$_DFF_PP0_'. Generating RTLIL representation for module `\$_DFF_NN1_'. Generating RTLIL representation for module `\$_DFF_NP1_'. Generating RTLIL representation for module `\$_DFF_PN1_'. Generating RTLIL representation for module `\$_DFF_PP1_'. Generating RTLIL representation for module `\$_DLATCH_N_'. Generating RTLIL representation for module `\$_DLATCH_P_'. Successfully finished Verilog frontend. 3.44.4. Continuing TECHMAP pass. No more expansions possible. 3.45. Executing CLKBUFMAP pass (inserting global clock buffers). Inserting BUFG on block_ram.clk[0]. 3.46. Executing HIERARCHY pass (managing design hierarchy). 3.46.1. Analyzing design hierarchy.. Top module: \block_ram 3.46.2. Analyzing design hierarchy.. Top module: \block_ram Removed 0 unused modules. 3.47. Printing statistics. === block_ram === Number of wires: 12 Number of wire bits: 62 Number of public wires: 6 Number of public wire bits: 24 Number of memories: 0 Number of memory bits: 0 Number of processes: 0 Number of cells: 2 BUFG 1 RAMB18E1 1 Estimated number of LCs: 0 3.48. Executing CHECK pass (checking for obvious problems). checking module block_ram.. found and reported 0 problems. 4. Executing Verilog-2005 frontend: attributes_test.v Parsing Verilog input from `attributes_test.v' to AST representation. Generating RTLIL representation for module `\block_ram'. Generating RTLIL representation for module `\distributed_ram'. Generating RTLIL representation for module `\distributed_ram_manual'. Generating RTLIL representation for module `\distributed_ram_manual_syn'. Successfully finished Verilog frontend. 5. Executing HIERARCHY pass (managing design hierarchy). 5.1. Analyzing design hierarchy.. Top module: \distributed_ram 5.2. Analyzing design hierarchy.. Top module: \distributed_ram Removing unused module `\distributed_ram_manual_syn'. Removing unused module `\distributed_ram_manual'. Removing unused module `\block_ram'. Removed 3 unused modules. 6. Executing SYNTH_XILINX pass. 6.1. Executing Verilog-2005 frontend: /opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/cells_sim.v Parsing Verilog input from `/opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/cells_sim.v' to AST representation. Generating RTLIL representation for module `\VCC'. Generating RTLIL representation for module `\GND'. Generating RTLIL representation for module `\IBUF'. Generating RTLIL representation for module `\IBUFG'. Generating RTLIL representation for module `\OBUF'. Generating RTLIL representation for module `\IOBUF'. Generating RTLIL representation for module `\OBUFT'. Generating RTLIL representation for module `\BUFG'. Generating RTLIL representation for module `\BUFGCTRL'. Generating RTLIL representation for module `\BUFHCE'. Generating RTLIL representation for module `\INV'. Generating RTLIL representation for module `\LUT1'. Generating RTLIL representation for module `\LUT2'. Generating RTLIL representation for module `\LUT3'. Generating RTLIL representation for module `\LUT4'. Generating RTLIL representation for module `\LUT5'. Generating RTLIL representation for module `\LUT6'. Generating RTLIL representation for module `\LUT6_2'. Generating RTLIL representation for module `\MUXCY'. Generating RTLIL representation for module `\MUXF7'. Generating RTLIL representation for module `\MUXF8'. Generating RTLIL representation for module `\XORCY'. Generating RTLIL representation for module `\CARRY4'. Generating RTLIL representation for module `\FDRE'. Generating RTLIL representation for module `\FDSE'. Generating RTLIL representation for module `\FDCE'. Generating RTLIL representation for module `\FDPE'. Generating RTLIL representation for module `\FDRE_1'. Generating RTLIL representation for module `\FDSE_1'. Generating RTLIL representation for module `\FDCE_1'. Generating RTLIL representation for module `\FDPE_1'. Generating RTLIL representation for module `\LDCE'. Generating RTLIL representation for module `\LDPE'. Generating RTLIL representation for module `\RAM16X1S'. Generating RTLIL representation for module `\RAM16X1S_1'. Generating RTLIL representation for module `\RAM32X1S'. Generating RTLIL representation for module `\RAM32X1S_1'. Generating RTLIL representation for module `\RAM64X1S'. Generating RTLIL representation for module `\RAM64X1S_1'. Generating RTLIL representation for module `\RAM128X1S'. Generating RTLIL representation for module `\RAM128X1S_1'. Generating RTLIL representation for module `\RAM256X1S'. Generating RTLIL representation for module `\RAM512X1S'. Generating RTLIL representation for module `\RAM16X2S'. Generating RTLIL representation for module `\RAM32X2S'. Generating RTLIL representation for module `\RAM64X2S'. Generating RTLIL representation for module `\RAM16X4S'. Generating RTLIL representation for module `\RAM32X4S'. Generating RTLIL representation for module `\RAM16X8S'. Generating RTLIL representation for module `\RAM32X8S'. Generating RTLIL representation for module `\RAM16X1D'. Generating RTLIL representation for module `\RAM16X1D_1'. Generating RTLIL representation for module `\RAM32X1D'. Generating RTLIL representation for module `\RAM32X1D_1'. Generating RTLIL representation for module `\RAM64X1D'. Generating RTLIL representation for module `\RAM64X1D_1'. Generating RTLIL representation for module `\RAM128X1D'. Generating RTLIL representation for module `\RAM256X1D'. Generating RTLIL representation for module `\RAM32M'. Generating RTLIL representation for module `\RAM32M16'. Generating RTLIL representation for module `\RAM64M'. Generating RTLIL representation for module `\RAM64M8'. Generating RTLIL representation for module `\ROM16X1'. Generating RTLIL representation for module `\ROM32X1'. Generating RTLIL representation for module `\ROM64X1'. Generating RTLIL representation for module `\ROM128X1'. Generating RTLIL representation for module `\ROM256X1'. Generating RTLIL representation for module `\SRL16E'. Generating RTLIL representation for module `\SRLC16E'. Generating RTLIL representation for module `\SRLC32E'. Generating RTLIL representation for module `\MULT18X18'. Generating RTLIL representation for module `\MULT18X18S'. Generating RTLIL representation for module `\MULT18X18SIO'. Generating RTLIL representation for module `\DSP48A'. Generating RTLIL representation for module `\DSP48A1'. Generating RTLIL representation for module `\DSP48E1'. Successfully finished Verilog frontend. 6.2. Executing Verilog-2005 frontend: /opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/cells_xtra.v Parsing Verilog input from `/opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/cells_xtra.v' to AST representation. Generating RTLIL representation for module `\FDCPE'. Generating RTLIL representation for module `\FDRSE'. Generating RTLIL representation for module `\LDCPE'. Generating RTLIL representation for module `\AND2B1L'. Generating RTLIL representation for module `\OR2L'. Generating RTLIL representation for module `\MUXF5'. Generating RTLIL representation for module `\MUXF6'. Generating RTLIL representation for module `\MUXF9'. Generating RTLIL representation for module `\CARRY8'. Generating RTLIL representation for module `\ORCY'. Generating RTLIL representation for module `\MULT_AND'. Generating RTLIL representation for module `\SRL16'. Generating RTLIL representation for module `\SRLC16'. Generating RTLIL representation for module `\CFGLUT5'. Generating RTLIL representation for module `\RAMB16_S1'. Generating RTLIL representation for module `\RAMB16_S2'. Generating RTLIL representation for module `\RAMB16_S4'. Generating RTLIL representation for module `\RAMB16_S9'. Generating RTLIL representation for module `\RAMB16_S18'. Generating RTLIL representation for module `\RAMB16_S36'. Generating RTLIL representation for module `\RAMB16_S1_S1'. Generating RTLIL representation for module `\RAMB16_S1_S2'. Generating RTLIL representation for module `\RAMB16_S1_S4'. Generating RTLIL representation for module `\RAMB16_S1_S9'. Generating RTLIL representation for module `\RAMB16_S1_S18'. Generating RTLIL representation for module `\RAMB16_S1_S36'. Generating RTLIL representation for module `\RAMB16_S2_S2'. Generating RTLIL representation for module `\RAMB16_S2_S4'. Generating RTLIL representation for module `\RAMB16_S2_S9'. Generating RTLIL representation for module `\RAMB16_S2_S18'. Generating RTLIL representation for module `\RAMB16_S2_S36'. Generating RTLIL representation for module `\RAMB16_S4_S4'. Generating RTLIL representation for module `\RAMB16_S4_S9'. Generating RTLIL representation for module `\RAMB16_S4_S18'. Generating RTLIL representation for module `\RAMB16_S4_S36'. Generating RTLIL representation for module `\RAMB16_S9_S9'. Generating RTLIL representation for module `\RAMB16_S9_S18'. Generating RTLIL representation for module `\RAMB16_S9_S36'. Generating RTLIL representation for module `\RAMB16_S18_S18'. Generating RTLIL representation for module `\RAMB16_S18_S36'. Generating RTLIL representation for module `\RAMB16_S36_S36'. Generating RTLIL representation for module `\RAMB16BWE_S18'. Generating RTLIL representation for module `\RAMB16BWE_S36'. Generating RTLIL representation for module `\RAMB16BWE_S18_S9'. Generating RTLIL representation for module `\RAMB16BWE_S18_S18'. Generating RTLIL representation for module `\RAMB16BWE_S36_S9'. Generating RTLIL representation for module `\RAMB16BWE_S36_S18'. Generating RTLIL representation for module `\RAMB16BWE_S36_S36'. Generating RTLIL representation for module `\RAMB16BWER'. Generating RTLIL representation for module `\RAMB8BWER'. Generating RTLIL representation for module `\FIFO16'. Generating RTLIL representation for module `\RAMB16'. Generating RTLIL representation for module `\RAMB32_S64_ECC'. Generating RTLIL representation for module `\FIFO18'. Generating RTLIL representation for module `\FIFO18_36'. Generating RTLIL representation for module `\FIFO36'. Generating RTLIL representation for module `\FIFO36_72'. Generating RTLIL representation for module `\RAMB18'. Generating RTLIL representation for module `\RAMB36'. Generating RTLIL representation for module `\RAMB18SDP'. Generating RTLIL representation for module `\RAMB36SDP'. Generating RTLIL representation for module `\FIFO18E1'. Generating RTLIL representation for module `\FIFO36E1'. Generating RTLIL representation for module `\RAMB18E1'. Generating RTLIL representation for module `\RAMB36E1'. Generating RTLIL representation for module `\FIFO18E2'. Generating RTLIL representation for module `\FIFO36E2'. Generating RTLIL representation for module `\RAMB18E2'. Generating RTLIL representation for module `\RAMB36E2'. Generating RTLIL representation for module `\URAM288'. Generating RTLIL representation for module `\URAM288_BASE'. Generating RTLIL representation for module `\DSP48'. Generating RTLIL representation for module `\DSP48E'. Generating RTLIL representation for module `\DSP48E2'. Generating RTLIL representation for module `\IFDDRCPE'. Generating RTLIL representation for module `\IFDDRRSE'. Generating RTLIL representation for module `\OFDDRCPE'. Generating RTLIL representation for module `\OFDDRRSE'. Generating RTLIL representation for module `\OFDDRTCPE'. Generating RTLIL representation for module `\OFDDRTRSE'. Generating RTLIL representation for module `\IDDR2'. Generating RTLIL representation for module `\ODDR2'. Generating RTLIL representation for module `\IDDR'. Generating RTLIL representation for module `\IDDR_2CLK'. Generating RTLIL representation for module `\ODDR'. Generating RTLIL representation for module `\IDELAYCTRL'. Generating RTLIL representation for module `\IDELAY'. Generating RTLIL representation for module `\ISERDES'. Generating RTLIL representation for module `\OSERDES'. Generating RTLIL representation for module `\IODELAY'. Generating RTLIL representation for module `\ISERDES_NODELAY'. Generating RTLIL representation for module `\IODELAYE1'. Generating RTLIL representation for module `\ISERDESE1'. Generating RTLIL representation for module `\OSERDESE1'. Generating RTLIL representation for module `\IDELAYE2'. Generating RTLIL representation for module `\ODELAYE2'. Generating RTLIL representation for module `\ISERDESE2'. Generating RTLIL representation for module `\OSERDESE2'. Generating RTLIL representation for module `\PHASER_IN'. Generating RTLIL representation for module `\PHASER_IN_PHY'. Generating RTLIL representation for module `\PHASER_OUT'. Generating RTLIL representation for module `\PHASER_OUT_PHY'. Generating RTLIL representation for module `\PHASER_REF'. Generating RTLIL representation for module `\PHY_CONTROL'. Generating RTLIL representation for module `\IDDRE1'. Generating RTLIL representation for module `\ODDRE1'. Generating RTLIL representation for module `\IDELAYE3'. Generating RTLIL representation for module `\ODELAYE3'. Generating RTLIL representation for module `\ISERDESE3'. Generating RTLIL representation for module `\OSERDESE3'. Generating RTLIL representation for module `\BITSLICE_CONTROL'. Generating RTLIL representation for module `\RIU_OR'. Generating RTLIL representation for module `\RX_BITSLICE'. Generating RTLIL representation for module `\RXTX_BITSLICE'. Generating RTLIL representation for module `\TX_BITSLICE'. Generating RTLIL representation for module `\TX_BITSLICE_TRI'. Generating RTLIL representation for module `\IODELAY2'. Generating RTLIL representation for module `\IODRP2'. Generating RTLIL representation for module `\IODRP2_MCB'. Generating RTLIL representation for module `\ISERDES2'. Generating RTLIL representation for module `\OSERDES2'. Generating RTLIL representation for module `\IBUF_DLY_ADJ'. Generating RTLIL representation for module `\IBUF_IBUFDISABLE'. Generating RTLIL representation for module `\IBUF_INTERMDISABLE'. Generating RTLIL representation for module `\IBUF_ANALOG'. Generating RTLIL representation for module `\IBUFE3'. Generating RTLIL representation for module `\IBUFDS'. Generating RTLIL representation for module `\IBUFDS_DLY_ADJ'. Generating RTLIL representation for module `\IBUFDS_IBUFDISABLE'. Generating RTLIL representation for module `\IBUFDS_INTERMDISABLE'. Generating RTLIL representation for module `\IBUFDS_DIFF_OUT'. Generating RTLIL representation for module `\IBUFDS_DIFF_OUT_IBUFDISABLE'. Generating RTLIL representation for module `\IBUFDS_DIFF_OUT_INTERMDISABLE'. Generating RTLIL representation for module `\IBUFDSE3'. Generating RTLIL representation for module `\IBUFDS_DPHY'. Generating RTLIL representation for module `\IBUFGDS'. Generating RTLIL representation for module `\IBUFGDS_DIFF_OUT'. Generating RTLIL representation for module `\IOBUF_DCIEN'. Generating RTLIL representation for module `\IOBUF_INTERMDISABLE'. Generating RTLIL representation for module `\IOBUFE3'. Generating RTLIL representation for module `\IOBUFDS'. Generating RTLIL representation for module `\IOBUFDS_DCIEN'. Generating RTLIL representation for module `\IOBUFDS_INTERMDISABLE'. Generating RTLIL representation for module `\IOBUFDS_DIFF_OUT'. Generating RTLIL representation for module `\IOBUFDS_DIFF_OUT_DCIEN'. Generating RTLIL representation for module `\IOBUFDS_DIFF_OUT_INTERMDISABLE'. Generating RTLIL representation for module `\IOBUFDSE3'. Generating RTLIL representation for module `\OBUFDS'. Generating RTLIL representation for module `\OBUFDS_DPHY'. Generating RTLIL representation for module `\OBUFTDS'. Generating RTLIL representation for module `\KEEPER'. Generating RTLIL representation for module `\PULLDOWN'. Generating RTLIL representation for module `\PULLUP'. Generating RTLIL representation for module `\DCIRESET'. Generating RTLIL representation for module `\HPIO_VREF'. Generating RTLIL representation for module `\BUFGCE'. Generating RTLIL representation for module `\BUFGCE_1'. Generating RTLIL representation for module `\BUFGMUX'. Generating RTLIL representation for module `\BUFGMUX_1'. Generating RTLIL representation for module `\BUFGMUX_CTRL'. Generating RTLIL representation for module `\BUFGMUX_VIRTEX4'. Generating RTLIL representation for module `\BUFG_GT'. Generating RTLIL representation for module `\BUFG_GT_SYNC'. Generating RTLIL representation for module `\BUFG_PS'. Generating RTLIL representation for module `\BUFGCE_DIV'. Generating RTLIL representation for module `\BUFH'. Generating RTLIL representation for module `\BUFIO2'. Generating RTLIL representation for module `\BUFIO2_2CLK'. Generating RTLIL representation for module `\BUFIO2FB'. Generating RTLIL representation for module `\BUFPLL'. Generating RTLIL representation for module `\BUFPLL_MCB'. Generating RTLIL representation for module `\BUFIO'. Generating RTLIL representation for module `\BUFIODQS'. Generating RTLIL representation for module `\BUFR'. Generating RTLIL representation for module `\BUFMR'. Generating RTLIL representation for module `\BUFMRCE'. Generating RTLIL representation for module `\DCM'. Generating RTLIL representation for module `\DCM_SP'. Generating RTLIL representation for module `\DCM_CLKGEN'. Generating RTLIL representation for module `\DCM_ADV'. Generating RTLIL representation for module `\DCM_BASE'. Generating RTLIL representation for module `\DCM_PS'. Generating RTLIL representation for module `\PMCD'. Generating RTLIL representation for module `\PLL_ADV'. Generating RTLIL representation for module `\PLL_BASE'. Generating RTLIL representation for module `\MMCM_ADV'. Generating RTLIL representation for module `\MMCM_BASE'. Generating RTLIL representation for module `\MMCME2_ADV'. Generating RTLIL representation for module `\MMCME2_BASE'. Generating RTLIL representation for module `\PLLE2_ADV'. Generating RTLIL representation for module `\PLLE2_BASE'. Generating RTLIL representation for module `\MMCME3_ADV'. Generating RTLIL representation for module `\MMCME3_BASE'. Generating RTLIL representation for module `\PLLE3_ADV'. Generating RTLIL representation for module `\PLLE3_BASE'. Generating RTLIL representation for module `\MMCME4_ADV'. Generating RTLIL representation for module `\MMCME4_BASE'. Generating RTLIL representation for module `\PLLE4_ADV'. Generating RTLIL representation for module `\PLLE4_BASE'. Generating RTLIL representation for module `\BUFT'. Generating RTLIL representation for module `\IN_FIFO'. Generating RTLIL representation for module `\OUT_FIFO'. Generating RTLIL representation for module `\HARD_SYNC'. Generating RTLIL representation for module `\STARTUP_SPARTAN3'. Generating RTLIL representation for module `\STARTUP_SPARTAN3E'. Generating RTLIL representation for module `\STARTUP_SPARTAN3A'. Generating RTLIL representation for module `\STARTUP_SPARTAN6'. Generating RTLIL representation for module `\STARTUP_VIRTEX4'. Generating RTLIL representation for module `\STARTUP_VIRTEX5'. Generating RTLIL representation for module `\STARTUP_VIRTEX6'. Generating RTLIL representation for module `\STARTUPE2'. Generating RTLIL representation for module `\STARTUPE3'. Generating RTLIL representation for module `\CAPTURE_SPARTAN3'. Generating RTLIL representation for module `\CAPTURE_SPARTAN3A'. Generating RTLIL representation for module `\CAPTURE_VIRTEX4'. Generating RTLIL representation for module `\CAPTURE_VIRTEX5'. Generating RTLIL representation for module `\CAPTURE_VIRTEX6'. Generating RTLIL representation for module `\CAPTUREE2'. Generating RTLIL representation for module `\ICAP_SPARTAN3A'. Generating RTLIL representation for module `\ICAP_SPARTAN6'. Generating RTLIL representation for module `\ICAP_VIRTEX4'. Generating RTLIL representation for module `\ICAP_VIRTEX5'. Generating RTLIL representation for module `\ICAP_VIRTEX6'. Generating RTLIL representation for module `\ICAPE2'. Generating RTLIL representation for module `\ICAPE3'. Generating RTLIL representation for module `\BSCAN_SPARTAN3'. Generating RTLIL representation for module `\BSCAN_SPARTAN3A'. Generating RTLIL representation for module `\BSCAN_SPARTAN6'. Generating RTLIL representation for module `\BSCAN_VIRTEX4'. Generating RTLIL representation for module `\BSCAN_VIRTEX5'. Generating RTLIL representation for module `\BSCAN_VIRTEX6'. Generating RTLIL representation for module `\BSCANE2'. Generating RTLIL representation for module `\DNA_PORT'. Generating RTLIL representation for module `\DNA_PORTE2'. Generating RTLIL representation for module `\FRAME_ECC_VIRTEX4'. Generating RTLIL representation for module `\FRAME_ECC_VIRTEX5'. Generating RTLIL representation for module `\FRAME_ECC_VIRTEX6'. Generating RTLIL representation for module `\FRAME_ECCE2'. Generating RTLIL representation for module `\FRAME_ECCE3'. Generating RTLIL representation for module `\USR_ACCESS_VIRTEX4'. Generating RTLIL representation for module `\USR_ACCESS_VIRTEX5'. Generating RTLIL representation for module `\USR_ACCESS_VIRTEX6'. Generating RTLIL representation for module `\USR_ACCESSE2'. Generating RTLIL representation for module `\POST_CRC_INTERNAL'. Generating RTLIL representation for module `\SUSPEND_SYNC'. Generating RTLIL representation for module `\KEY_CLEAR'. Generating RTLIL representation for module `\MASTER_JTAG'. Generating RTLIL representation for module `\SPI_ACCESS'. Generating RTLIL representation for module `\EFUSE_USR'. Generating RTLIL representation for module `\SYSMON'. Generating RTLIL representation for module `\XADC'. Generating RTLIL representation for module `\SYSMONE1'. Generating RTLIL representation for module `\SYSMONE4'. Generating RTLIL representation for module `\GTPA1_DUAL'. Generating RTLIL representation for module `\GT11_CUSTOM'. Generating RTLIL representation for module `\GT11_DUAL'. Generating RTLIL representation for module `\GT11CLK'. Generating RTLIL representation for module `\GT11CLK_MGT'. Generating RTLIL representation for module `\GTP_DUAL'. Generating RTLIL representation for module `\GTX_DUAL'. Generating RTLIL representation for module `\CRC32'. Generating RTLIL representation for module `\CRC64'. Generating RTLIL representation for module `\GTHE1_QUAD'. Generating RTLIL representation for module `\GTXE1'. Generating RTLIL representation for module `\IBUFDS_GTXE1'. Generating RTLIL representation for module `\IBUFDS_GTHE1'. Generating RTLIL representation for module `\GTHE2_CHANNEL'. Generating RTLIL representation for module `\GTHE2_COMMON'. Generating RTLIL representation for module `\GTPE2_CHANNEL'. Generating RTLIL representation for module `\GTPE2_COMMON'. Generating RTLIL representation for module `\GTXE2_CHANNEL'. Generating RTLIL representation for module `\GTXE2_COMMON'. Generating RTLIL representation for module `\IBUFDS_GTE2'. Generating RTLIL representation for module `\GTHE3_CHANNEL'. Generating RTLIL representation for module `\GTHE3_COMMON'. Generating RTLIL representation for module `\GTHE4_CHANNEL'. Generating RTLIL representation for module `\GTHE4_COMMON'. Generating RTLIL representation for module `\GTYE3_CHANNEL'. Generating RTLIL representation for module `\GTYE3_COMMON'. Generating RTLIL representation for module `\GTYE4_CHANNEL'. Generating RTLIL representation for module `\GTYE4_COMMON'. Generating RTLIL representation for module `\IBUFDS_GTE3'. Generating RTLIL representation for module `\IBUFDS_GTE4'. Generating RTLIL representation for module `\OBUFDS_GTE3'. Generating RTLIL representation for module `\OBUFDS_GTE3_ADV'. Generating RTLIL representation for module `\OBUFDS_GTE4'. Generating RTLIL representation for module `\OBUFDS_GTE4_ADV'. Generating RTLIL representation for module `\PCIE_A1'. Generating RTLIL representation for module `\PCIE_EP'. Generating RTLIL representation for module `\PCIE_2_0'. Generating RTLIL representation for module `\PCIE_2_1'. Generating RTLIL representation for module `\PCIE_3_0'. Generating RTLIL representation for module `\PCIE_3_1'. Generating RTLIL representation for module `\PCIE40E4'. Generating RTLIL representation for module `\EMAC'. Generating RTLIL representation for module `\TEMAC'. Generating RTLIL representation for module `\TEMAC_SINGLE'. Generating RTLIL representation for module `\CMAC'. Generating RTLIL representation for module `\CMACE4'. Generating RTLIL representation for module `\PPC405_ADV'. Generating RTLIL representation for module `\PPC440'. Generating RTLIL representation for module `\MCB'. Generating RTLIL representation for module `\PS7'. Generating RTLIL representation for module `\PS8'. Generating RTLIL representation for module `\ILKN'. Generating RTLIL representation for module `\ILKNE4'. Successfully finished Verilog frontend. 6.3. Executing HIERARCHY pass (managing design hierarchy). 6.3.1. Analyzing design hierarchy.. Top module: \distributed_ram 6.3.2. Analyzing design hierarchy.. Top module: \distributed_ram Removed 0 unused modules. 6.4. Executing PROC pass (convert processes to netlists). 6.4.1. Executing PROC_CLEAN pass (remove empty switches from decision trees). Cleaned up 0 empty switches. 6.4.2. Executing PROC_RMDEAD pass (remove dead branches from decision trees). Removed a total of 0 dead cases. 6.4.3. Executing PROC_PRUNE pass (remove redundant assignments in processes). Removed 0 redundant assignments. Promoted 1 assignment to connection. 6.4.4. Executing PROC_INIT pass (extract init attributes). 6.4.5. Executing PROC_ARST pass (detect async resets in processes). 6.4.6. Executing PROC_MUX pass (convert decision trees to multiplexers). Creating decoders for process `\distributed_ram.$proc$attributes_test.v:36$188'. 1/3: $0$memwr$\memory$attributes_test.v:38$187_EN[7:0]$191 2/3: $0$memwr$\memory$attributes_test.v:38$187_DATA[7:0]$190 3/3: $0$memwr$\memory$attributes_test.v:38$187_ADDR[3:0]$189 6.4.7. Executing PROC_DLATCH pass (convert process syncs to latches). 6.4.8. Executing PROC_DFF pass (convert process syncs to FFs). Creating register for signal `\distributed_ram.\data_out_r' using process `\distributed_ram.$proc$attributes_test.v:36$188'. created $dff cell `$procdff$227' with positive edge clock. Creating register for signal `\distributed_ram.$memwr$\memory$attributes_test.v:38$187_ADDR' using process `\distributed_ram.$proc$attributes_test.v:36$188'. created $dff cell `$procdff$228' with positive edge clock. Creating register for signal `\distributed_ram.$memwr$\memory$attributes_test.v:38$187_DATA' using process `\distributed_ram.$proc$attributes_test.v:36$188'. created $dff cell `$procdff$229' with positive edge clock. Creating register for signal `\distributed_ram.$memwr$\memory$attributes_test.v:38$187_EN' using process `\distributed_ram.$proc$attributes_test.v:36$188'. created $dff cell `$procdff$230' with positive edge clock. 6.4.9. Executing PROC_CLEAN pass (remove empty switches from decision trees). Found and cleaned up 1 empty switch in `\distributed_ram.$proc$attributes_test.v:36$188'. Removing empty process `distributed_ram.$proc$attributes_test.v:36$188'. Cleaned up 1 empty switch. 6.5. Executing TRIBUF pass. 6.6. Executing DEMINOUT pass (demote inout ports to input or output). 6.7. Executing OPT_EXPR pass (perform const folding). Optimizing module distributed_ram. 6.8. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \distributed_ram.. Removed 0 unused cells and 7 unused wires. 6.9. Executing CHECK pass (checking for obvious problems). checking module distributed_ram.. found and reported 0 problems. 6.10. Executing OPT pass (performing simple optimizations). 6.10.1. Executing OPT_EXPR pass (perform const folding). Optimizing module distributed_ram. 6.10.2. Executing OPT_MERGE pass (detect identical cells). Finding identical cells in module `\distributed_ram'. Removed a total of 0 cells. 6.10.3. Executing OPT_MUXTREE pass (detect dead branches in mux trees). Running muxtree optimizer on module \distributed_ram.. Creating internal representation of mux trees. Evaluating internal representation of mux trees. Analyzing evaluation results. Removed 0 multiplexer ports. 6.10.4. Executing OPT_REDUCE pass (consolidate $*mux and $reduce_* inputs). Optimizing cells in module \distributed_ram. Consolidated identical input bits for $mux cell $procmux$221: Old ports: A=8'00000000, B=8'11111111, Y=$0$memwr$\memory$attributes_test.v:38$187_EN[7:0]$191 New ports: A=1'0, B=1'1, Y=$0$memwr$\memory$attributes_test.v:38$187_EN[7:0]$191 [0] New connections: $0$memwr$\memory$attributes_test.v:38$187_EN[7:0]$191 [7:1] = { $0$memwr$\memory$attributes_test.v:38$187_EN[7:0]$191 [0] $0$memwr$\memory$attributes_test.v:38$187_EN[7:0]$191 [0] $0$memwr$\memory$attributes_test.v:38$187_EN[7:0]$191 [0] $0$memwr$\memory$attributes_test.v:38$187_EN[7:0]$191 [0] $0$memwr$\memory$attributes_test.v:38$187_EN[7:0]$191 [0] $0$memwr$\memory$attributes_test.v:38$187_EN[7:0]$191 [0] $0$memwr$\memory$attributes_test.v:38$187_EN[7:0]$191 [0] } Optimizing cells in module \distributed_ram. Performed a total of 1 changes. 6.10.5. Executing OPT_MERGE pass (detect identical cells). Finding identical cells in module `\distributed_ram'. Removed a total of 0 cells. 6.10.6. Executing OPT_RMDFF pass (remove dff with constant values). 6.10.7. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \distributed_ram.. 6.10.8. Executing OPT_EXPR pass (perform const folding). Optimizing module distributed_ram. 6.10.9. Rerunning OPT passes. (Maybe there is more to do..) 6.10.10. Executing OPT_MUXTREE pass (detect dead branches in mux trees). Running muxtree optimizer on module \distributed_ram.. Creating internal representation of mux trees. Evaluating internal representation of mux trees. Analyzing evaluation results. Removed 0 multiplexer ports. 6.10.11. Executing OPT_REDUCE pass (consolidate $*mux and $reduce_* inputs). Optimizing cells in module \distributed_ram. Performed a total of 0 changes. 6.10.12. Executing OPT_MERGE pass (detect identical cells). Finding identical cells in module `\distributed_ram'. Removed a total of 0 cells. 6.10.13. Executing OPT_RMDFF pass (remove dff with constant values). 6.10.14. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \distributed_ram.. 6.10.15. Executing OPT_EXPR pass (perform const folding). Optimizing module distributed_ram. 6.10.16. Finished OPT passes. (There is nothing left to do.) 6.11. Executing WREDUCE pass (reducing word size of cells). Removed cell distributed_ram.$procmux$223 ($mux). Removed cell distributed_ram.$procmux$225 ($mux). Removed top 7 bits (of 8) from FF cell distributed_ram.$procdff$230 ($dff). 6.12. Executing PEEPOPT pass (run peephole optimizers). 6.13. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \distributed_ram.. Removed 0 unused cells and 2 unused wires. 6.14. Executing PMUX2SHIFTX pass. 6.15. Executing TECHMAP pass (map to technology primitives). 6.15.1. Executing Verilog-2005 frontend: /opt/eda/fpga/FOSS/memattr/yosys_release/share/cmp2lut.v Parsing Verilog input from `/opt/eda/fpga/FOSS/memattr/yosys_release/share/cmp2lut.v' to AST representation. Generating RTLIL representation for module `\_90_lut_cmp_'. Successfully finished Verilog frontend. 6.15.2. Continuing TECHMAP pass. No more expansions possible. 6.16. Executing MEMORY_DFF pass (merging $dff cells to $memrd and $memwr). Checking cell `$memwr$\memory$attributes_test.v:38$193' in module `\distributed_ram': merged $dff to cell. Checking cell `$memrd$\memory$attributes_test.v:39$192' in module `\distributed_ram': merged data $dff to cell. 6.17. Executing TECHMAP pass (map to technology primitives). 6.17.1. Executing Verilog-2005 frontend: /opt/eda/fpga/FOSS/memattr/yosys_release/share/mul2dsp.v Parsing Verilog input from `/opt/eda/fpga/FOSS/memattr/yosys_release/share/mul2dsp.v' to AST representation. Generating RTLIL representation for module `\_80_mul'. Generating RTLIL representation for module `\_90_soft_mul'. Successfully finished Verilog frontend. 6.17.2. Executing Verilog-2005 frontend: /opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/xc7_dsp_map.v Parsing Verilog input from `/opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/xc7_dsp_map.v' to AST representation. Generating RTLIL representation for module `\$__MUL25X18'. Successfully finished Verilog frontend. 6.17.3. Continuing TECHMAP pass. No more expansions possible. 6.18. Executing OPT_EXPR pass (perform const folding). 6.19. Executing WREDUCE pass (reducing word size of cells). 6.20. Executing XILINX_DSP pass (pack resources into DSPs). 6.21. Executing ALUMACC pass (create $alu and $macc cells). Extracting $alu and $macc cells in module distributed_ram: created 0 $alu and 0 $macc cells. 6.22. Executing SHARE pass (SAT-based resource sharing). 6.23. Executing OPT pass (performing simple optimizations). 6.23.1. Executing OPT_EXPR pass (perform const folding). Optimizing module distributed_ram. 6.23.2. Executing OPT_MERGE pass (detect identical cells). Finding identical cells in module `\distributed_ram'. Removed a total of 0 cells. 6.23.3. Executing OPT_MUXTREE pass (detect dead branches in mux trees). Running muxtree optimizer on module \distributed_ram.. Creating internal representation of mux trees. Evaluating internal representation of mux trees. Analyzing evaluation results. Removed 0 multiplexer ports. 6.23.4. Executing OPT_REDUCE pass (consolidate $*mux and $reduce_* inputs). Optimizing cells in module \distributed_ram. Performed a total of 0 changes. 6.23.5. Executing OPT_MERGE pass (detect identical cells). Finding identical cells in module `\distributed_ram'. Removed a total of 0 cells. 6.23.6. Executing OPT_RMDFF pass (remove dff with constant values). 6.23.7. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \distributed_ram.. Removed 4 unused cells and 5 unused wires. 6.23.8. Executing OPT_EXPR pass (perform const folding). Optimizing module distributed_ram. 6.23.9. Rerunning OPT passes. (Maybe there is more to do..) 6.23.10. Executing OPT_MUXTREE pass (detect dead branches in mux trees). Running muxtree optimizer on module \distributed_ram.. Creating internal representation of mux trees. Evaluating internal representation of mux trees. Analyzing evaluation results. Removed 0 multiplexer ports. 6.23.11. Executing OPT_REDUCE pass (consolidate $*mux and $reduce_* inputs). Optimizing cells in module \distributed_ram. Performed a total of 0 changes. 6.23.12. Executing OPT_MERGE pass (detect identical cells). Finding identical cells in module `\distributed_ram'. Removed a total of 0 cells. 6.23.13. Executing OPT_RMDFF pass (remove dff with constant values). 6.23.14. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \distributed_ram.. 6.23.15. Executing OPT_EXPR pass (perform const folding). Optimizing module distributed_ram. 6.23.16. Finished OPT passes. (There is nothing left to do.) 6.24. Executing FSM pass (extract and optimize FSM). 6.24.1. Executing FSM_DETECT pass (finding FSMs in design). 6.24.2. Executing FSM_EXTRACT pass (extracting FSM from design). 6.24.3. Executing FSM_OPT pass (simple optimizations of FSMs). 6.24.4. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \distributed_ram.. 6.24.5. Executing FSM_OPT pass (simple optimizations of FSMs). 6.24.6. Executing FSM_RECODE pass (re-assigning FSM state encoding). 6.24.7. Executing FSM_INFO pass (dumping all available information on FSM cells). 6.24.8. Executing FSM_MAP pass (mapping FSMs to basic logic). 6.25. Executing OPT pass (performing simple optimizations). 6.25.1. Executing OPT_EXPR pass (perform const folding). Optimizing module distributed_ram. 6.25.2. Executing OPT_MERGE pass (detect identical cells). Finding identical cells in module `\distributed_ram'. Removed a total of 0 cells. 6.25.3. Executing OPT_RMDFF pass (remove dff with constant values). 6.25.4. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \distributed_ram.. 6.25.5. Finished fast OPT passes. 6.26. Executing MEMORY pass. 6.26.1. Executing OPT_MEM pass (optimize memories). Performed a total of 0 transformations. 6.26.2. Executing MEMORY_DFF pass (merging $dff cells to $memrd and $memwr). 6.26.3. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \distributed_ram.. 6.26.4. Executing MEMORY_SHARE pass (consolidating $memrd/$memwr cells). 6.26.5. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \distributed_ram.. 6.26.6. Executing MEMORY_COLLECT pass (generating $mem cells). Collecting $memrd, $memwr and $meminit for memory `\memory' in module `\distributed_ram': $memwr$\memory$attributes_test.v:38$193 ($memwr) $memrd$\memory$attributes_test.v:39$192 ($memrd) 6.27. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \distributed_ram.. 6.28. Executing MEMORY_BRAM pass (mapping $mem cells to block memories). Processing distributed_ram.memory: Properties: ports=2 bits=128 rports=1 wports=1 dbits=8 abits=4 words=16 Checking rule #1 for bram type $__XILINX_RAMB36_SDP (variant 1): Bram geometry: abits=9 dbits=72 wports=0 rports=0 Estimated number of duplicates for more read ports: dups=1 Metrics for $__XILINX_RAMB36_SDP: awaste=496 dwaste=64 bwaste=36736 waste=36736 efficiency=0 Rule #1 for bram type $__XILINX_RAMB36_SDP (variant 1) rejected: requirement 'min efficiency 5' not met. Checking rule #2 for bram type $__XILINX_RAMB18_SDP (variant 1): Bram geometry: abits=9 dbits=36 wports=0 rports=0 Estimated number of duplicates for more read ports: dups=1 Metrics for $__XILINX_RAMB18_SDP: awaste=496 dwaste=28 bwaste=18304 waste=18304 efficiency=0 Rule #2 for bram type $__XILINX_RAMB18_SDP (variant 1) rejected: requirement 'min efficiency 5' not met. Checking rule #3 for bram type $__XILINX_RAMB36_TDP (variant 1): Bram geometry: abits=10 dbits=36 wports=0 rports=0 Estimated number of duplicates for more read ports: dups=1 Metrics for $__XILINX_RAMB36_TDP: awaste=1008 dwaste=28 bwaste=36736 waste=36736 efficiency=0 Rule #3 for bram type $__XILINX_RAMB36_TDP (variant 1) rejected: requirement 'min efficiency 5' not met. Checking rule #3 for bram type $__XILINX_RAMB36_TDP (variant 2): Bram geometry: abits=11 dbits=18 wports=0 rports=0 Estimated number of duplicates for more read ports: dups=1 Metrics for $__XILINX_RAMB36_TDP: awaste=2032 dwaste=10 bwaste=36736 waste=36736 efficiency=0 Rule #3 for bram type $__XILINX_RAMB36_TDP (variant 2) rejected: requirement 'min efficiency 5' not met. Checking rule #3 for bram type $__XILINX_RAMB36_TDP (variant 3): Bram geometry: abits=12 dbits=9 wports=0 rports=0 Estimated number of duplicates for more read ports: dups=1 Metrics for $__XILINX_RAMB36_TDP: awaste=4080 dwaste=1 bwaste=36736 waste=36736 efficiency=0 Rule #3 for bram type $__XILINX_RAMB36_TDP (variant 3) rejected: requirement 'min efficiency 5' not met. Checking rule #3 for bram type $__XILINX_RAMB36_TDP (variant 4): Bram geometry: abits=13 dbits=4 wports=0 rports=0 Estimated number of duplicates for more read ports: dups=1 Metrics for $__XILINX_RAMB36_TDP: awaste=8176 dwaste=0 bwaste=32704 waste=32704 efficiency=0 Rule #3 for bram type $__XILINX_RAMB36_TDP (variant 4) rejected: requirement 'min efficiency 5' not met. Checking rule #3 for bram type $__XILINX_RAMB36_TDP (variant 5): Bram geometry: abits=14 dbits=2 wports=0 rports=0 Estimated number of duplicates for more read ports: dups=1 Metrics for $__XILINX_RAMB36_TDP: awaste=16368 dwaste=0 bwaste=32736 waste=32736 efficiency=0 Rule #3 for bram type $__XILINX_RAMB36_TDP (variant 5) rejected: requirement 'min efficiency 5' not met. Checking rule #3 for bram type $__XILINX_RAMB36_TDP (variant 6): Bram geometry: abits=15 dbits=1 wports=0 rports=0 Estimated number of duplicates for more read ports: dups=1 Metrics for $__XILINX_RAMB36_TDP: awaste=32752 dwaste=0 bwaste=32752 waste=32752 efficiency=0 Rule #3 for bram type $__XILINX_RAMB36_TDP (variant 6) rejected: requirement 'min efficiency 5' not met. Checking rule #4 for bram type $__XILINX_RAMB18_TDP (variant 1): Bram geometry: abits=10 dbits=18 wports=0 rports=0 Estimated number of duplicates for more read ports: dups=1 Metrics for $__XILINX_RAMB18_TDP: awaste=1008 dwaste=10 bwaste=18304 waste=18304 efficiency=0 Rule #4 for bram type $__XILINX_RAMB18_TDP (variant 1) rejected: requirement 'min efficiency 5' not met. Checking rule #4 for bram type $__XILINX_RAMB18_TDP (variant 2): Bram geometry: abits=11 dbits=9 wports=0 rports=0 Estimated number of duplicates for more read ports: dups=1 Metrics for $__XILINX_RAMB18_TDP: awaste=2032 dwaste=1 bwaste=18304 waste=18304 efficiency=0 Rule #4 for bram type $__XILINX_RAMB18_TDP (variant 2) rejected: requirement 'min efficiency 5' not met. Checking rule #4 for bram type $__XILINX_RAMB18_TDP (variant 3): Bram geometry: abits=12 dbits=4 wports=0 rports=0 Estimated number of duplicates for more read ports: dups=1 Metrics for $__XILINX_RAMB18_TDP: awaste=4080 dwaste=0 bwaste=16320 waste=16320 efficiency=0 Rule #4 for bram type $__XILINX_RAMB18_TDP (variant 3) rejected: requirement 'min efficiency 5' not met. Checking rule #4 for bram type $__XILINX_RAMB18_TDP (variant 4): Bram geometry: abits=13 dbits=2 wports=0 rports=0 Estimated number of duplicates for more read ports: dups=1 Metrics for $__XILINX_RAMB18_TDP: awaste=8176 dwaste=0 bwaste=16352 waste=16352 efficiency=0 Rule #4 for bram type $__XILINX_RAMB18_TDP (variant 4) rejected: requirement 'min efficiency 5' not met. Checking rule #4 for bram type $__XILINX_RAMB18_TDP (variant 5): Bram geometry: abits=14 dbits=1 wports=0 rports=0 Estimated number of duplicates for more read ports: dups=1 Metrics for $__XILINX_RAMB18_TDP: awaste=16368 dwaste=0 bwaste=16368 waste=16368 efficiency=0 Rule #4 for bram type $__XILINX_RAMB18_TDP (variant 5) rejected: requirement 'min efficiency 5' not met. No acceptable bram resources found. 6.29. Executing TECHMAP pass (map to technology primitives). 6.29.1. Executing Verilog-2005 frontend: /opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/xc7_brams_map.v Parsing Verilog input from `/opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/xc7_brams_map.v' to AST representation. Generating RTLIL representation for module `\$__XILINX_RAMB36_SDP'. Generating RTLIL representation for module `\$__XILINX_RAMB18_SDP'. Generating RTLIL representation for module `\$__XILINX_RAMB36_TDP'. Generating RTLIL representation for module `\$__XILINX_RAMB18_TDP'. Successfully finished Verilog frontend. 6.29.2. Continuing TECHMAP pass. No more expansions possible. 6.30. Executing MEMORY_BRAM pass (mapping $mem cells to block memories). Processing distributed_ram.memory: Properties: ports=2 bits=128 rports=1 wports=1 dbits=8 abits=4 words=16 Checking rule #1 for bram type $__XILINX_RAM32X1D (variant 1): Bram geometry: abits=5 dbits=1 wports=0 rports=0 Estimated number of duplicates for more read ports: dups=1 Metrics for $__XILINX_RAM32X1D: awaste=16 dwaste=0 bwaste=16 waste=16 efficiency=50 Rule #1 for bram type $__XILINX_RAM32X1D (variant 1) accepted. Mapping to bram type $__XILINX_RAM32X1D (variant 1): Write port #0 is in clock domain \clk. Mapped to bram port B1. Read port #0 is in clock domain \clk. Mapped to bram port A1.1. Updated properties: dups=1 waste=16 efficiency=50 Storing for later selection. Checking rule #2 for bram type $__XILINX_RAM64X1D (variant 1): Bram geometry: abits=6 dbits=1 wports=0 rports=0 Estimated number of duplicates for more read ports: dups=1 Metrics for $__XILINX_RAM64X1D: awaste=48 dwaste=0 bwaste=48 waste=48 efficiency=25 Rule #2 for bram type $__XILINX_RAM64X1D (variant 1) accepted. Mapping to bram type $__XILINX_RAM64X1D (variant 1): Write port #0 is in clock domain \clk. Mapped to bram port B1. Read port #0 is in clock domain \clk. Mapped to bram port A1.1. Updated properties: dups=1 waste=48 efficiency=25 Storing for later selection. Checking rule #3 for bram type $__XILINX_RAM128X1D (variant 1): Bram geometry: abits=7 dbits=1 wports=0 rports=0 Estimated number of duplicates for more read ports: dups=1 Metrics for $__XILINX_RAM128X1D: awaste=112 dwaste=0 bwaste=112 waste=112 efficiency=12 Rule #3 for bram type $__XILINX_RAM128X1D (variant 1) accepted. Mapping to bram type $__XILINX_RAM128X1D (variant 1): Write port #0 is in clock domain \clk. Mapped to bram port B1. Read port #0 is in clock domain \clk. Mapped to bram port A1.1. Updated properties: dups=1 waste=112 efficiency=12 Storing for later selection. Selecting best of 3 rules: Efficiency for rule 3.1: efficiency=12, cells=8, acells=1 Efficiency for rule 2.1: efficiency=25, cells=8, acells=1 Efficiency for rule 1.1: efficiency=50, cells=8, acells=1 Selected rule 1.1 with efficiency 50. Mapping to bram type $__XILINX_RAM32X1D (variant 1): Write port #0 is in clock domain \clk. Mapped to bram port B1. Read port #0 is in clock domain \clk. Mapped to bram port A1.1. Creating $__XILINX_RAM32X1D cell at grid position <0 0 0>: memory.0.0.0 Creating $__XILINX_RAM32X1D cell at grid position <1 0 0>: memory.1.0.0 Creating $__XILINX_RAM32X1D cell at grid position <2 0 0>: memory.2.0.0 Creating $__XILINX_RAM32X1D cell at grid position <3 0 0>: memory.3.0.0 Creating $__XILINX_RAM32X1D cell at grid position <4 0 0>: memory.4.0.0 Creating $__XILINX_RAM32X1D cell at grid position <5 0 0>: memory.5.0.0 Creating $__XILINX_RAM32X1D cell at grid position <6 0 0>: memory.6.0.0 Creating $__XILINX_RAM32X1D cell at grid position <7 0 0>: memory.7.0.0 6.31. Executing TECHMAP pass (map to technology primitives). 6.31.1. Executing Verilog-2005 frontend: /opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/lutrams_map.v Parsing Verilog input from `/opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/lutrams_map.v' to AST representation. Generating RTLIL representation for module `\$__XILINX_RAM32X1D'. Generating RTLIL representation for module `\$__XILINX_RAM64X1D'. Generating RTLIL representation for module `\$__XILINX_RAM128X1D'. Successfully finished Verilog frontend. 6.31.2. Continuing TECHMAP pass. Using template $paramod\$__XILINX_RAM32X1D\CLKPOL2=1 for cells of type $__XILINX_RAM32X1D. No more expansions possible. 6.32. Executing OPT pass (performing simple optimizations). 6.32.1. Executing OPT_EXPR pass (perform const folding). Optimizing module distributed_ram. 6.32.2. Executing OPT_MERGE pass (detect identical cells). Finding identical cells in module `\distributed_ram'. Removed a total of 0 cells. 6.32.3. Executing OPT_RMDFF pass (remove dff with constant values). 6.32.4. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \distributed_ram.. Removed 0 unused cells and 65 unused wires. 6.32.5. Finished fast OPT passes. 6.33. Executing MEMORY_MAP pass (converting $mem cells to logic and flip-flops). 6.34. Executing DFFSR2DFF pass (mapping DFFSR cells to simpler FFs). 6.35. Executing DFF2DFFE pass (transform $dff to $dffe where applicable). Transforming FF to FF+Enable cells in module distributed_ram: 6.36. Executing OPT pass (performing simple optimizations). 6.36.1. Executing OPT_EXPR pass (perform const folding). Optimizing module distributed_ram. 6.36.2. Executing OPT_MERGE pass (detect identical cells). Finding identical cells in module `\distributed_ram'. Removed a total of 0 cells. 6.36.3. Executing OPT_MUXTREE pass (detect dead branches in mux trees). Running muxtree optimizer on module \distributed_ram.. Creating internal representation of mux trees. No muxes found in this module. Removed 0 multiplexer ports. 6.36.4. Executing OPT_REDUCE pass (consolidate $*mux and $reduce_* inputs). Optimizing cells in module \distributed_ram. Performed a total of 0 changes. 6.36.5. Executing OPT_MERGE pass (detect identical cells). Finding identical cells in module `\distributed_ram'. Removed a total of 0 cells. 6.36.6. Executing OPT_SHARE pass. 6.36.7. Executing OPT_RMDFF pass (remove dff with constant values). 6.36.8. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \distributed_ram.. 6.36.9. Executing OPT_EXPR pass (perform const folding). Optimizing module distributed_ram. 6.36.10. Finished OPT passes. (There is nothing left to do.) 6.37. Executing XILINX_SRL pass (Xilinx shift register extraction). 6.38. Executing TECHMAP pass (map to technology primitives). 6.38.1. Executing Verilog-2005 frontend: /opt/eda/fpga/FOSS/memattr/yosys_release/share/techmap.v Parsing Verilog input from `/opt/eda/fpga/FOSS/memattr/yosys_release/share/techmap.v' to AST representation. Generating RTLIL representation for module `\_90_simplemap_bool_ops'. Generating RTLIL representation for module `\_90_simplemap_reduce_ops'. Generating RTLIL representation for module `\_90_simplemap_logic_ops'. Generating RTLIL representation for module `\_90_simplemap_compare_ops'. Generating RTLIL representation for module `\_90_simplemap_various'. Generating RTLIL representation for module `\_90_simplemap_registers'. Generating RTLIL representation for module `\_90_shift_ops_shr_shl_sshl_sshr'. Generating RTLIL representation for module `\_90_shift_shiftx'. Generating RTLIL representation for module `\_90_fa'. Generating RTLIL representation for module `\_90_lcu'. Generating RTLIL representation for module `\_90_alu'. Generating RTLIL representation for module `\_90_macc'. Generating RTLIL representation for module `\_90_alumacc'. Generating RTLIL representation for module `\$__div_mod_u'. Generating RTLIL representation for module `\$__div_mod'. Generating RTLIL representation for module `\_90_div'. Generating RTLIL representation for module `\_90_mod'. Generating RTLIL representation for module `\_90_pow'. Generating RTLIL representation for module `\_90_pmux'. Generating RTLIL representation for module `\_90_lut'. Successfully finished Verilog frontend. 6.38.2. Executing Verilog-2005 frontend: /opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/arith_map.v Parsing Verilog input from `/opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/arith_map.v' to AST representation. Generating RTLIL representation for module `\_80_xilinx_lcu'. Generating RTLIL representation for module `\_80_xilinx_alu'. Successfully finished Verilog frontend. 6.38.3. Continuing TECHMAP pass. Using extmapper simplemap for cells of type $dff. No more expansions possible. 6.39. Executing OPT pass (performing simple optimizations). 6.39.1. Executing OPT_EXPR pass (perform const folding). Optimizing module distributed_ram. 6.39.2. Executing OPT_MERGE pass (detect identical cells). Finding identical cells in module `\distributed_ram'. Removed a total of 0 cells. 6.39.3. Executing OPT_RMDFF pass (remove dff with constant values). 6.39.4. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \distributed_ram.. 6.39.5. Finished fast OPT passes. 6.40. Executing TECHMAP pass (map to technology primitives). 6.40.1. Executing Verilog-2005 frontend: /opt/eda/fpga/FOSS/memattr/yosys_release/share/techmap.v Parsing Verilog input from `/opt/eda/fpga/FOSS/memattr/yosys_release/share/techmap.v' to AST representation. Generating RTLIL representation for module `\_90_simplemap_bool_ops'. Generating RTLIL representation for module `\_90_simplemap_reduce_ops'. Generating RTLIL representation for module `\_90_simplemap_logic_ops'. Generating RTLIL representation for module `\_90_simplemap_compare_ops'. Generating RTLIL representation for module `\_90_simplemap_various'. Generating RTLIL representation for module `\_90_simplemap_registers'. Generating RTLIL representation for module `\_90_shift_ops_shr_shl_sshl_sshr'. Generating RTLIL representation for module `\_90_shift_shiftx'. Generating RTLIL representation for module `\_90_fa'. Generating RTLIL representation for module `\_90_lcu'. Generating RTLIL representation for module `\_90_alu'. Generating RTLIL representation for module `\_90_macc'. Generating RTLIL representation for module `\_90_alumacc'. Generating RTLIL representation for module `\$__div_mod_u'. Generating RTLIL representation for module `\$__div_mod'. Generating RTLIL representation for module `\_90_div'. Generating RTLIL representation for module `\_90_mod'. Generating RTLIL representation for module `\_90_pow'. Generating RTLIL representation for module `\_90_pmux'. Generating RTLIL representation for module `\_90_lut'. Successfully finished Verilog frontend. 6.40.2. Executing Verilog-2005 frontend: /opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/cells_map.v Parsing Verilog input from `/opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/cells_map.v' to AST representation. Generating RTLIL representation for module `\_90_dff_nn0_to_np0'. Generating RTLIL representation for module `\_90_dff_pn0_to_pp0'. Generating RTLIL representation for module `\_90_dff_nn1_to_np1'. Generating RTLIL representation for module `\_90_dff_pn1_to_pp1'. Generating RTLIL representation for module `\$__SHREG_'. Generating RTLIL representation for module `\$__XILINX_SHREG_'. Generating RTLIL representation for module `\$__XILINX_MUXF78'. Generating RTLIL representation for module `\$__XILINX_TINOUTPAD'. Generating RTLIL representation for module `\$__XILINX_TOUTPAD'. Successfully finished Verilog frontend. 6.40.3. Continuing TECHMAP pass. No more expansions possible. 6.41. Executing OPT_EXPR pass (perform const folding). Optimizing module distributed_ram. 6.42. Executing ABC pass (technology mapping using ABC). 6.42.1. Extracting gate netlist of module `\distributed_ram' to `/input.blif'.. Extracted 0 gates and 0 wires to a netlist network with 0 inputs and 0 outputs. Don't call ABC as there is nothing to map. Removing temp directory. 6.43. Executing XILINX_SRL pass (Xilinx shift register extraction). 6.44. Executing TECHMAP pass (map to technology primitives). 6.44.1. Executing Verilog-2005 frontend: /opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/lut_map.v Parsing Verilog input from `/opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/lut_map.v' to AST representation. Generating RTLIL representation for module `\$lut'. Successfully finished Verilog frontend. 6.44.2. Executing Verilog-2005 frontend: /opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/cells_map.v Parsing Verilog input from `/opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/cells_map.v' to AST representation. Generating RTLIL representation for module `\_90_dff_nn0_to_np0'. Generating RTLIL representation for module `\_90_dff_pn0_to_pp0'. Generating RTLIL representation for module `\_90_dff_nn1_to_np1'. Generating RTLIL representation for module `\_90_dff_pn1_to_pp1'. Generating RTLIL representation for module `\$__SHREG_'. Generating RTLIL representation for module `\$__XILINX_SHREG_'. Generating RTLIL representation for module `\$__XILINX_MUXF78'. Generating RTLIL representation for module `\$__XILINX_TINOUTPAD'. Generating RTLIL representation for module `\$__XILINX_TOUTPAD'. Successfully finished Verilog frontend. 6.44.3. Executing Verilog-2005 frontend: /opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/xc7_ff_map.v Parsing Verilog input from `/opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/xc7_ff_map.v' to AST representation. Generating RTLIL representation for module `\$_DFF_N_'. Generating RTLIL representation for module `\$_DFF_P_'. Generating RTLIL representation for module `\$_DFFE_NP_'. Generating RTLIL representation for module `\$_DFFE_PP_'. Generating RTLIL representation for module `\$_DFF_NN0_'. Generating RTLIL representation for module `\$_DFF_NP0_'. Generating RTLIL representation for module `\$_DFF_PN0_'. Generating RTLIL representation for module `\$_DFF_PP0_'. Generating RTLIL representation for module `\$_DFF_NN1_'. Generating RTLIL representation for module `\$_DFF_NP1_'. Generating RTLIL representation for module `\$_DFF_PN1_'. Generating RTLIL representation for module `\$_DFF_PP1_'. Generating RTLIL representation for module `\$_DLATCH_N_'. Generating RTLIL representation for module `\$_DLATCH_P_'. Successfully finished Verilog frontend. 6.44.4. Continuing TECHMAP pass. Using template $paramod\$_DFF_P_\_TECHMAP_WIREINIT_Q_=1'x for cells of type $_DFF_P_. No more expansions possible. Removed 0 unused cells and 32 unused wires. 6.45. Executing CLKBUFMAP pass (inserting global clock buffers). Inserting BUFG on distributed_ram.clk[0]. 6.46. Executing HIERARCHY pass (managing design hierarchy). 6.46.1. Analyzing design hierarchy.. Top module: \distributed_ram 6.46.2. Analyzing design hierarchy.. Top module: \distributed_ram Removed 0 unused modules. 6.47. Printing statistics. === distributed_ram === Number of wires: 16 Number of wire bits: 40 Number of public wires: 6 Number of public wire bits: 30 Number of memories: 0 Number of memory bits: 0 Number of processes: 0 Number of cells: 17 BUFG 1 FDRE 8 RAM32X1D 8 Estimated number of LCs: 0 6.48. Executing CHECK pass (checking for obvious problems). checking module distributed_ram.. found and reported 0 problems. 7. Executing Verilog-2005 frontend: attributes_test.v Parsing Verilog input from `attributes_test.v' to AST representation. Generating RTLIL representation for module `\block_ram'. Generating RTLIL representation for module `\distributed_ram'. Generating RTLIL representation for module `\distributed_ram_manual'. Generating RTLIL representation for module `\distributed_ram_manual_syn'. Successfully finished Verilog frontend. 8. Executing PREP pass. 8.1. Executing HIERARCHY pass (managing design hierarchy). 8.2. Executing PROC pass (convert processes to netlists). 8.2.1. Executing PROC_CLEAN pass (remove empty switches from decision trees). Cleaned up 0 empty switches. 8.2.2. Executing PROC_RMDEAD pass (remove dead branches from decision trees). Removed a total of 0 dead cases. 8.2.3. Executing PROC_PRUNE pass (remove redundant assignments in processes). Removed 0 redundant assignments. Promoted 4 assignments to connections. 8.2.4. Executing PROC_INIT pass (extract init attributes). 8.2.5. Executing PROC_ARST pass (detect async resets in processes). 8.2.6. Executing PROC_MUX pass (convert decision trees to multiplexers). Creating decoders for process `\distributed_ram_manual_syn.$proc$attributes_test.v:80$441'. 1/3: $0$memwr$\memory$attributes_test.v:82$440_EN[7:0]$443 2/3: $0$memwr$\memory$attributes_test.v:82$440_DATA[7:0]$444 3/3: $0$memwr$\memory$attributes_test.v:82$440_ADDR[3:0]$442 Creating decoders for process `\distributed_ram_manual.$proc$attributes_test.v:58$434'. 1/3: $0$memwr$\memory$attributes_test.v:60$433_EN[7:0]$435 2/3: $0$memwr$\memory$attributes_test.v:60$433_DATA[7:0]$437 3/3: $0$memwr$\memory$attributes_test.v:60$433_ADDR[3:0]$436 Creating decoders for process `\distributed_ram.$proc$attributes_test.v:36$427'. 1/3: $0$memwr$\memory$attributes_test.v:38$426_EN[7:0]$430 2/3: $0$memwr$\memory$attributes_test.v:38$426_DATA[7:0]$429 3/3: $0$memwr$\memory$attributes_test.v:38$426_ADDR[3:0]$428 Creating decoders for process `\block_ram.$proc$attributes_test.v:14$420'. 1/3: $0$memwr$\memory$attributes_test.v:16$419_EN[3:0]$423 2/3: $0$memwr$\memory$attributes_test.v:16$419_DATA[3:0]$422 3/3: $0$memwr$\memory$attributes_test.v:16$419_ADDR[9:0]$421 8.2.7. Executing PROC_DLATCH pass (convert process syncs to latches). 8.2.8. Executing PROC_DFF pass (convert process syncs to FFs). Creating register for signal `\distributed_ram_manual_syn.$memwr$\memory$attributes_test.v:82$440_ADDR' using process `\distributed_ram_manual_syn.$proc$attributes_test.v:80$441'. created $dff cell `$procdff$471' with positive edge clock. Creating register for signal `\distributed_ram_manual_syn.\data_out_r' using process `\distributed_ram_manual_syn.$proc$attributes_test.v:80$441'. created $dff cell `$procdff$472' with positive edge clock. Creating register for signal `\distributed_ram_manual_syn.$memwr$\memory$attributes_test.v:82$440_EN' using process `\distributed_ram_manual_syn.$proc$attributes_test.v:80$441'. created $dff cell `$procdff$473' with positive edge clock. Creating register for signal `\distributed_ram_manual_syn.$memwr$\memory$attributes_test.v:82$440_DATA' using process `\distributed_ram_manual_syn.$proc$attributes_test.v:80$441'. created $dff cell `$procdff$474' with positive edge clock. Creating register for signal `\distributed_ram_manual.$memwr$\memory$attributes_test.v:60$433_EN' using process `\distributed_ram_manual.$proc$attributes_test.v:58$434'. created $dff cell `$procdff$475' with positive edge clock. Creating register for signal `\distributed_ram_manual.$memwr$\memory$attributes_test.v:60$433_ADDR' using process `\distributed_ram_manual.$proc$attributes_test.v:58$434'. created $dff cell `$procdff$476' with positive edge clock. Creating register for signal `\distributed_ram_manual.$memwr$\memory$attributes_test.v:60$433_DATA' using process `\distributed_ram_manual.$proc$attributes_test.v:58$434'. created $dff cell `$procdff$477' with positive edge clock. Creating register for signal `\distributed_ram_manual.\data_out_r' using process `\distributed_ram_manual.$proc$attributes_test.v:58$434'. created $dff cell `$procdff$478' with positive edge clock. Creating register for signal `\distributed_ram.$memwr$\memory$attributes_test.v:38$426_ADDR' using process `\distributed_ram.$proc$attributes_test.v:36$427'. created $dff cell `$procdff$479' with positive edge clock. Creating register for signal `\distributed_ram.\data_out_r' using process `\distributed_ram.$proc$attributes_test.v:36$427'. created $dff cell `$procdff$480' with positive edge clock. Creating register for signal `\distributed_ram.$memwr$\memory$attributes_test.v:38$426_DATA' using process `\distributed_ram.$proc$attributes_test.v:36$427'. created $dff cell `$procdff$481' with positive edge clock. Creating register for signal `\distributed_ram.$memwr$\memory$attributes_test.v:38$426_EN' using process `\distributed_ram.$proc$attributes_test.v:36$427'. created $dff cell `$procdff$482' with positive edge clock. Creating register for signal `\block_ram.$memwr$\memory$attributes_test.v:16$419_ADDR' using process `\block_ram.$proc$attributes_test.v:14$420'. created $dff cell `$procdff$483' with positive edge clock. Creating register for signal `\block_ram.\data_out_r' using process `\block_ram.$proc$attributes_test.v:14$420'. created $dff cell `$procdff$484' with positive edge clock. Creating register for signal `\block_ram.$memwr$\memory$attributes_test.v:16$419_DATA' using process `\block_ram.$proc$attributes_test.v:14$420'. created $dff cell `$procdff$485' with positive edge clock. Creating register for signal `\block_ram.$memwr$\memory$attributes_test.v:16$419_EN' using process `\block_ram.$proc$attributes_test.v:14$420'. created $dff cell `$procdff$486' with positive edge clock. 8.2.9. Executing PROC_CLEAN pass (remove empty switches from decision trees). Found and cleaned up 1 empty switch in `\distributed_ram_manual_syn.$proc$attributes_test.v:80$441'. Removing empty process `distributed_ram_manual_syn.$proc$attributes_test.v:80$441'. Found and cleaned up 1 empty switch in `\distributed_ram_manual.$proc$attributes_test.v:58$434'. Removing empty process `distributed_ram_manual.$proc$attributes_test.v:58$434'. Found and cleaned up 1 empty switch in `\distributed_ram.$proc$attributes_test.v:36$427'. Removing empty process `distributed_ram.$proc$attributes_test.v:36$427'. Found and cleaned up 1 empty switch in `\block_ram.$proc$attributes_test.v:14$420'. Removing empty process `block_ram.$proc$attributes_test.v:14$420'. Cleaned up 4 empty switches. 8.3. Executing OPT_EXPR pass (perform const folding). Optimizing module distributed_ram_manual_syn. Optimizing module distributed_ram_manual. Optimizing module distributed_ram. Optimizing module block_ram. 8.4. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \distributed_ram_manual_syn.. Finding unused cells or wires in module \distributed_ram_manual.. Finding unused cells or wires in module \distributed_ram.. Finding unused cells or wires in module \block_ram.. Removed 0 unused cells and 28 unused wires. 8.5. Executing CHECK pass (checking for obvious problems). checking module block_ram.. checking module distributed_ram.. checking module distributed_ram_manual.. checking module distributed_ram_manual_syn.. found and reported 0 problems. 8.6. Executing OPT pass (performing simple optimizations). 8.6.1. Executing OPT_EXPR pass (perform const folding). Optimizing module block_ram. Optimizing module distributed_ram. Optimizing module distributed_ram_manual. Optimizing module distributed_ram_manual_syn. 8.6.2. Executing OPT_MERGE pass (detect identical cells). Finding identical cells in module `\block_ram'. Finding identical cells in module `\distributed_ram'. Finding identical cells in module `\distributed_ram_manual'. Finding identical cells in module `\distributed_ram_manual_syn'. Removed a total of 0 cells. 8.6.3. Executing OPT_MUXTREE pass (detect dead branches in mux trees). Running muxtree optimizer on module \block_ram.. Creating internal representation of mux trees. Evaluating internal representation of mux trees. Analyzing evaluation results. Running muxtree optimizer on module \distributed_ram.. Creating internal representation of mux trees. Evaluating internal representation of mux trees. Analyzing evaluation results. Running muxtree optimizer on module \distributed_ram_manual.. Creating internal representation of mux trees. Evaluating internal representation of mux trees. Analyzing evaluation results. Running muxtree optimizer on module \distributed_ram_manual_syn.. Creating internal representation of mux trees. Evaluating internal representation of mux trees. Analyzing evaluation results. Removed 0 multiplexer ports. 8.6.4. Executing OPT_REDUCE pass (consolidate $*mux and $reduce_* inputs). Optimizing cells in module \block_ram. Consolidated identical input bits for $mux cell $procmux$465: Old ports: A=4'0000, B=4'1111, Y=$0$memwr$\memory$attributes_test.v:16$419_EN[3:0]$423 New ports: A=1'0, B=1'1, Y=$0$memwr$\memory$attributes_test.v:16$419_EN[3:0]$423 [0] New connections: $0$memwr$\memory$attributes_test.v:16$419_EN[3:0]$423 [3:1] = { $0$memwr$\memory$attributes_test.v:16$419_EN[3:0]$423 [0] $0$memwr$\memory$attributes_test.v:16$419_EN[3:0]$423 [0] $0$memwr$\memory$attributes_test.v:16$419_EN[3:0]$423 [0] } Optimizing cells in module \block_ram. Optimizing cells in module \distributed_ram. Consolidated identical input bits for $mux cell $procmux$459: Old ports: A=8'00000000, B=8'11111111, Y=$0$memwr$\memory$attributes_test.v:38$426_EN[7:0]$430 New ports: A=1'0, B=1'1, Y=$0$memwr$\memory$attributes_test.v:38$426_EN[7:0]$430 [0] New connections: $0$memwr$\memory$attributes_test.v:38$426_EN[7:0]$430 [7:1] = { $0$memwr$\memory$attributes_test.v:38$426_EN[7:0]$430 [0] $0$memwr$\memory$attributes_test.v:38$426_EN[7:0]$430 [0] $0$memwr$\memory$attributes_test.v:38$426_EN[7:0]$430 [0] $0$memwr$\memory$attributes_test.v:38$426_EN[7:0]$430 [0] $0$memwr$\memory$attributes_test.v:38$426_EN[7:0]$430 [0] $0$memwr$\memory$attributes_test.v:38$426_EN[7:0]$430 [0] $0$memwr$\memory$attributes_test.v:38$426_EN[7:0]$430 [0] } Optimizing cells in module \distributed_ram. Optimizing cells in module \distributed_ram_manual. Consolidated identical input bits for $mux cell $procmux$453: Old ports: A=8'00000000, B=8'11111111, Y=$0$memwr$\memory$attributes_test.v:60$433_EN[7:0]$435 New ports: A=1'0, B=1'1, Y=$0$memwr$\memory$attributes_test.v:60$433_EN[7:0]$435 [0] New connections: $0$memwr$\memory$attributes_test.v:60$433_EN[7:0]$435 [7:1] = { $0$memwr$\memory$attributes_test.v:60$433_EN[7:0]$435 [0] $0$memwr$\memory$attributes_test.v:60$433_EN[7:0]$435 [0] $0$memwr$\memory$attributes_test.v:60$433_EN[7:0]$435 [0] $0$memwr$\memory$attributes_test.v:60$433_EN[7:0]$435 [0] $0$memwr$\memory$attributes_test.v:60$433_EN[7:0]$435 [0] $0$memwr$\memory$attributes_test.v:60$433_EN[7:0]$435 [0] $0$memwr$\memory$attributes_test.v:60$433_EN[7:0]$435 [0] } Optimizing cells in module \distributed_ram_manual. Optimizing cells in module \distributed_ram_manual_syn. Consolidated identical input bits for $mux cell $procmux$447: Old ports: A=8'00000000, B=8'11111111, Y=$0$memwr$\memory$attributes_test.v:82$440_EN[7:0]$443 New ports: A=1'0, B=1'1, Y=$0$memwr$\memory$attributes_test.v:82$440_EN[7:0]$443 [0] New connections: $0$memwr$\memory$attributes_test.v:82$440_EN[7:0]$443 [7:1] = { $0$memwr$\memory$attributes_test.v:82$440_EN[7:0]$443 [0] $0$memwr$\memory$attributes_test.v:82$440_EN[7:0]$443 [0] $0$memwr$\memory$attributes_test.v:82$440_EN[7:0]$443 [0] $0$memwr$\memory$attributes_test.v:82$440_EN[7:0]$443 [0] $0$memwr$\memory$attributes_test.v:82$440_EN[7:0]$443 [0] $0$memwr$\memory$attributes_test.v:82$440_EN[7:0]$443 [0] $0$memwr$\memory$attributes_test.v:82$440_EN[7:0]$443 [0] } Optimizing cells in module \distributed_ram_manual_syn. Performed a total of 4 changes. 8.6.5. Executing OPT_MERGE pass (detect identical cells). Finding identical cells in module `\block_ram'. Finding identical cells in module `\distributed_ram'. Finding identical cells in module `\distributed_ram_manual'. Finding identical cells in module `\distributed_ram_manual_syn'. Removed a total of 0 cells. 8.6.6. Executing OPT_RMDFF pass (remove dff with constant values). 8.6.7. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \block_ram.. Finding unused cells or wires in module \distributed_ram.. Finding unused cells or wires in module \distributed_ram_manual.. Finding unused cells or wires in module \distributed_ram_manual_syn.. 8.6.8. Executing OPT_EXPR pass (perform const folding). Optimizing module block_ram. Optimizing module distributed_ram. Optimizing module distributed_ram_manual. Optimizing module distributed_ram_manual_syn. 8.6.9. Rerunning OPT passes. (Maybe there is more to do..) 8.6.10. Executing OPT_MUXTREE pass (detect dead branches in mux trees). Running muxtree optimizer on module \block_ram.. Creating internal representation of mux trees. Evaluating internal representation of mux trees. Analyzing evaluation results. Running muxtree optimizer on module \distributed_ram.. Creating internal representation of mux trees. Evaluating internal representation of mux trees. Analyzing evaluation results. Running muxtree optimizer on module \distributed_ram_manual.. Creating internal representation of mux trees. Evaluating internal representation of mux trees. Analyzing evaluation results. Running muxtree optimizer on module \distributed_ram_manual_syn.. Creating internal representation of mux trees. Evaluating internal representation of mux trees. Analyzing evaluation results. Removed 0 multiplexer ports. 8.6.11. Executing OPT_REDUCE pass (consolidate $*mux and $reduce_* inputs). Optimizing cells in module \block_ram. Optimizing cells in module \distributed_ram. Optimizing cells in module \distributed_ram_manual. Optimizing cells in module \distributed_ram_manual_syn. Performed a total of 0 changes. 8.6.12. Executing OPT_MERGE pass (detect identical cells). Finding identical cells in module `\block_ram'. Finding identical cells in module `\distributed_ram'. Finding identical cells in module `\distributed_ram_manual'. Finding identical cells in module `\distributed_ram_manual_syn'. Removed a total of 0 cells. 8.6.13. Executing OPT_RMDFF pass (remove dff with constant values). 8.6.14. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \block_ram.. Finding unused cells or wires in module \distributed_ram.. Finding unused cells or wires in module \distributed_ram_manual.. Finding unused cells or wires in module \distributed_ram_manual_syn.. 8.6.15. Executing OPT_EXPR pass (perform const folding). Optimizing module block_ram. Optimizing module distributed_ram. Optimizing module distributed_ram_manual. Optimizing module distributed_ram_manual_syn. 8.6.16. Finished OPT passes. (There is nothing left to do.) 8.7. Executing WREDUCE pass (reducing word size of cells). Removed top 3 bits (of 4) from FF cell block_ram.$procdff$486 ($dff). Removed top 7 bits (of 8) from FF cell distributed_ram.$procdff$482 ($dff). Removed top 7 bits (of 8) from FF cell distributed_ram_manual.$procdff$475 ($dff). Removed top 7 bits (of 8) from FF cell distributed_ram_manual_syn.$procdff$473 ($dff). 8.8. Executing MEMORY_DFF pass (merging $dff cells to $memrd and $memwr). Checking cell `$memwr$\memory$attributes_test.v:16$425' in module `\block_ram': merged $dff to cell. Checking cell `$memwr$\memory$attributes_test.v:38$432' in module `\distributed_ram': merged $dff to cell. Checking cell `$memwr$\memory$attributes_test.v:60$439' in module `\distributed_ram_manual': merged $dff to cell. Checking cell `$memwr$\memory$attributes_test.v:82$446' in module `\distributed_ram_manual_syn': merged $dff to cell. 8.9. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \block_ram.. Finding unused cells or wires in module \distributed_ram.. Finding unused cells or wires in module \distributed_ram_manual.. Finding unused cells or wires in module \distributed_ram_manual_syn.. Removed 12 unused cells and 12 unused wires. 8.10. Executing MEMORY_COLLECT pass (generating $mem cells). Collecting $memrd, $memwr and $meminit for memory `\memory' in module `\block_ram': $memwr$\memory$attributes_test.v:16$425 ($memwr) $memrd$\memory$attributes_test.v:17$424 ($memrd) Collecting $memrd, $memwr and $meminit for memory `\memory' in module `\distributed_ram': $memwr$\memory$attributes_test.v:38$432 ($memwr) $memrd$\memory$attributes_test.v:39$431 ($memrd) Collecting $memrd, $memwr and $meminit for memory `\memory' in module `\distributed_ram_manual': $memwr$\memory$attributes_test.v:60$439 ($memwr) $memrd$\memory$attributes_test.v:61$438 ($memrd) Collecting $memrd, $memwr and $meminit for memory `\memory' in module `\distributed_ram_manual_syn': $memwr$\memory$attributes_test.v:82$446 ($memwr) $memrd$\memory$attributes_test.v:83$445 ($memrd) 8.11. Executing OPT pass (performing simple optimizations). 8.11.1. Executing OPT_EXPR pass (perform const folding). Optimizing module block_ram. Optimizing module distributed_ram. Optimizing module distributed_ram_manual. Optimizing module distributed_ram_manual_syn. 8.11.2. Executing OPT_MERGE pass (detect identical cells). Finding identical cells in module `\block_ram'. Finding identical cells in module `\distributed_ram'. Finding identical cells in module `\distributed_ram_manual'. Finding identical cells in module `\distributed_ram_manual_syn'. Removed a total of 0 cells. 8.11.3. Executing OPT_RMDFF pass (remove dff with constant values). 8.11.4. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \block_ram.. Finding unused cells or wires in module \distributed_ram.. Finding unused cells or wires in module \distributed_ram_manual.. Finding unused cells or wires in module \distributed_ram_manual_syn.. 8.11.5. Finished fast OPT passes. 8.12. Printing statistics. === block_ram === Number of wires: 10 Number of wire bits: 46 Number of public wires: 6 Number of public wire bits: 24 Number of memories: 0 Number of memory bits: 0 Number of processes: 0 Number of cells: 5 $dff 1 $mem 1 $mux 3 === distributed_ram === Number of wires: 10 Number of wire bits: 58 Number of public wires: 6 Number of public wire bits: 30 Number of memories: 0 Number of memory bits: 0 Number of processes: 0 Number of cells: 5 $dff 1 $mem 1 $mux 3 === distributed_ram_manual === Number of wires: 10 Number of wire bits: 58 Number of public wires: 6 Number of public wire bits: 30 Number of memories: 0 Number of memory bits: 0 Number of processes: 0 Number of cells: 5 $dff 1 $mem 1 $mux 3 === distributed_ram_manual_syn === Number of wires: 10 Number of wire bits: 58 Number of public wires: 6 Number of public wire bits: 30 Number of memories: 0 Number of memory bits: 0 Number of processes: 0 Number of cells: 5 $dff 1 $mem 1 $mux 3 8.13. Executing CHECK pass (checking for obvious problems). checking module block_ram.. checking module distributed_ram.. checking module distributed_ram_manual.. checking module distributed_ram_manual_syn.. found and reported 0 problems. 9. Executing SYNTH_XILINX pass. 9.1. Executing Verilog-2005 frontend: /opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/cells_sim.v Parsing Verilog input from `/opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/cells_sim.v' to AST representation. Generating RTLIL representation for module `\VCC'. Generating RTLIL representation for module `\GND'. Generating RTLIL representation for module `\IBUF'. Generating RTLIL representation for module `\IBUFG'. Generating RTLIL representation for module `\OBUF'. Generating RTLIL representation for module `\IOBUF'. Generating RTLIL representation for module `\OBUFT'. Generating RTLIL representation for module `\BUFG'. Generating RTLIL representation for module `\BUFGCTRL'. Generating RTLIL representation for module `\BUFHCE'. Generating RTLIL representation for module `\INV'. Generating RTLIL representation for module `\LUT1'. Generating RTLIL representation for module `\LUT2'. Generating RTLIL representation for module `\LUT3'. Generating RTLIL representation for module `\LUT4'. Generating RTLIL representation for module `\LUT5'. Generating RTLIL representation for module `\LUT6'. Generating RTLIL representation for module `\LUT6_2'. Generating RTLIL representation for module `\MUXCY'. Generating RTLIL representation for module `\MUXF7'. Generating RTLIL representation for module `\MUXF8'. Generating RTLIL representation for module `\XORCY'. Generating RTLIL representation for module `\CARRY4'. Generating RTLIL representation for module `\FDRE'. Generating RTLIL representation for module `\FDSE'. Generating RTLIL representation for module `\FDCE'. Generating RTLIL representation for module `\FDPE'. Generating RTLIL representation for module `\FDRE_1'. Generating RTLIL representation for module `\FDSE_1'. Generating RTLIL representation for module `\FDCE_1'. Generating RTLIL representation for module `\FDPE_1'. Generating RTLIL representation for module `\LDCE'. Generating RTLIL representation for module `\LDPE'. Generating RTLIL representation for module `\RAM16X1S'. Generating RTLIL representation for module `\RAM16X1S_1'. Generating RTLIL representation for module `\RAM32X1S'. Generating RTLIL representation for module `\RAM32X1S_1'. Generating RTLIL representation for module `\RAM64X1S'. Generating RTLIL representation for module `\RAM64X1S_1'. Generating RTLIL representation for module `\RAM128X1S'. Generating RTLIL representation for module `\RAM128X1S_1'. Generating RTLIL representation for module `\RAM256X1S'. Generating RTLIL representation for module `\RAM512X1S'. Generating RTLIL representation for module `\RAM16X2S'. Generating RTLIL representation for module `\RAM32X2S'. Generating RTLIL representation for module `\RAM64X2S'. Generating RTLIL representation for module `\RAM16X4S'. Generating RTLIL representation for module `\RAM32X4S'. Generating RTLIL representation for module `\RAM16X8S'. Generating RTLIL representation for module `\RAM32X8S'. Generating RTLIL representation for module `\RAM16X1D'. Generating RTLIL representation for module `\RAM16X1D_1'. Generating RTLIL representation for module `\RAM32X1D'. Generating RTLIL representation for module `\RAM32X1D_1'. Generating RTLIL representation for module `\RAM64X1D'. Generating RTLIL representation for module `\RAM64X1D_1'. Generating RTLIL representation for module `\RAM128X1D'. Generating RTLIL representation for module `\RAM256X1D'. Generating RTLIL representation for module `\RAM32M'. Generating RTLIL representation for module `\RAM32M16'. Generating RTLIL representation for module `\RAM64M'. Generating RTLIL representation for module `\RAM64M8'. Generating RTLIL representation for module `\ROM16X1'. Generating RTLIL representation for module `\ROM32X1'. Generating RTLIL representation for module `\ROM64X1'. Generating RTLIL representation for module `\ROM128X1'. Generating RTLIL representation for module `\ROM256X1'. Generating RTLIL representation for module `\SRL16E'. Generating RTLIL representation for module `\SRLC16E'. Generating RTLIL representation for module `\SRLC32E'. Generating RTLIL representation for module `\MULT18X18'. Generating RTLIL representation for module `\MULT18X18S'. Generating RTLIL representation for module `\MULT18X18SIO'. Generating RTLIL representation for module `\DSP48A'. Generating RTLIL representation for module `\DSP48A1'. Generating RTLIL representation for module `\DSP48E1'. Successfully finished Verilog frontend. 9.2. Executing Verilog-2005 frontend: /opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/cells_xtra.v Parsing Verilog input from `/opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/cells_xtra.v' to AST representation. Generating RTLIL representation for module `\FDCPE'. Generating RTLIL representation for module `\FDRSE'. Generating RTLIL representation for module `\LDCPE'. Generating RTLIL representation for module `\AND2B1L'. Generating RTLIL representation for module `\OR2L'. Generating RTLIL representation for module `\MUXF5'. Generating RTLIL representation for module `\MUXF6'. Generating RTLIL representation for module `\MUXF9'. Generating RTLIL representation for module `\CARRY8'. Generating RTLIL representation for module `\ORCY'. Generating RTLIL representation for module `\MULT_AND'. Generating RTLIL representation for module `\SRL16'. Generating RTLIL representation for module `\SRLC16'. Generating RTLIL representation for module `\CFGLUT5'. Generating RTLIL representation for module `\RAMB16_S1'. Generating RTLIL representation for module `\RAMB16_S2'. Generating RTLIL representation for module `\RAMB16_S4'. Generating RTLIL representation for module `\RAMB16_S9'. Generating RTLIL representation for module `\RAMB16_S18'. Generating RTLIL representation for module `\RAMB16_S36'. Generating RTLIL representation for module `\RAMB16_S1_S1'. Generating RTLIL representation for module `\RAMB16_S1_S2'. Generating RTLIL representation for module `\RAMB16_S1_S4'. Generating RTLIL representation for module `\RAMB16_S1_S9'. Generating RTLIL representation for module `\RAMB16_S1_S18'. Generating RTLIL representation for module `\RAMB16_S1_S36'. Generating RTLIL representation for module `\RAMB16_S2_S2'. Generating RTLIL representation for module `\RAMB16_S2_S4'. Generating RTLIL representation for module `\RAMB16_S2_S9'. Generating RTLIL representation for module `\RAMB16_S2_S18'. Generating RTLIL representation for module `\RAMB16_S2_S36'. Generating RTLIL representation for module `\RAMB16_S4_S4'. Generating RTLIL representation for module `\RAMB16_S4_S9'. Generating RTLIL representation for module `\RAMB16_S4_S18'. Generating RTLIL representation for module `\RAMB16_S4_S36'. Generating RTLIL representation for module `\RAMB16_S9_S9'. Generating RTLIL representation for module `\RAMB16_S9_S18'. Generating RTLIL representation for module `\RAMB16_S9_S36'. Generating RTLIL representation for module `\RAMB16_S18_S18'. Generating RTLIL representation for module `\RAMB16_S18_S36'. Generating RTLIL representation for module `\RAMB16_S36_S36'. Generating RTLIL representation for module `\RAMB16BWE_S18'. Generating RTLIL representation for module `\RAMB16BWE_S36'. Generating RTLIL representation for module `\RAMB16BWE_S18_S9'. Generating RTLIL representation for module `\RAMB16BWE_S18_S18'. Generating RTLIL representation for module `\RAMB16BWE_S36_S9'. Generating RTLIL representation for module `\RAMB16BWE_S36_S18'. Generating RTLIL representation for module `\RAMB16BWE_S36_S36'. Generating RTLIL representation for module `\RAMB16BWER'. Generating RTLIL representation for module `\RAMB8BWER'. Generating RTLIL representation for module `\FIFO16'. Generating RTLIL representation for module `\RAMB16'. Generating RTLIL representation for module `\RAMB32_S64_ECC'. Generating RTLIL representation for module `\FIFO18'. Generating RTLIL representation for module `\FIFO18_36'. Generating RTLIL representation for module `\FIFO36'. Generating RTLIL representation for module `\FIFO36_72'. Generating RTLIL representation for module `\RAMB18'. Generating RTLIL representation for module `\RAMB36'. Generating RTLIL representation for module `\RAMB18SDP'. Generating RTLIL representation for module `\RAMB36SDP'. Generating RTLIL representation for module `\FIFO18E1'. Generating RTLIL representation for module `\FIFO36E1'. Generating RTLIL representation for module `\RAMB18E1'. Generating RTLIL representation for module `\RAMB36E1'. Generating RTLIL representation for module `\FIFO18E2'. Generating RTLIL representation for module `\FIFO36E2'. Generating RTLIL representation for module `\RAMB18E2'. Generating RTLIL representation for module `\RAMB36E2'. Generating RTLIL representation for module `\URAM288'. Generating RTLIL representation for module `\URAM288_BASE'. Generating RTLIL representation for module `\DSP48'. Generating RTLIL representation for module `\DSP48E'. Generating RTLIL representation for module `\DSP48E2'. Generating RTLIL representation for module `\IFDDRCPE'. Generating RTLIL representation for module `\IFDDRRSE'. Generating RTLIL representation for module `\OFDDRCPE'. Generating RTLIL representation for module `\OFDDRRSE'. Generating RTLIL representation for module `\OFDDRTCPE'. Generating RTLIL representation for module `\OFDDRTRSE'. Generating RTLIL representation for module `\IDDR2'. Generating RTLIL representation for module `\ODDR2'. Generating RTLIL representation for module `\IDDR'. Generating RTLIL representation for module `\IDDR_2CLK'. Generating RTLIL representation for module `\ODDR'. Generating RTLIL representation for module `\IDELAYCTRL'. Generating RTLIL representation for module `\IDELAY'. Generating RTLIL representation for module `\ISERDES'. Generating RTLIL representation for module `\OSERDES'. Generating RTLIL representation for module `\IODELAY'. Generating RTLIL representation for module `\ISERDES_NODELAY'. Generating RTLIL representation for module `\IODELAYE1'. Generating RTLIL representation for module `\ISERDESE1'. Generating RTLIL representation for module `\OSERDESE1'. Generating RTLIL representation for module `\IDELAYE2'. Generating RTLIL representation for module `\ODELAYE2'. Generating RTLIL representation for module `\ISERDESE2'. Generating RTLIL representation for module `\OSERDESE2'. Generating RTLIL representation for module `\PHASER_IN'. Generating RTLIL representation for module `\PHASER_IN_PHY'. Generating RTLIL representation for module `\PHASER_OUT'. Generating RTLIL representation for module `\PHASER_OUT_PHY'. Generating RTLIL representation for module `\PHASER_REF'. Generating RTLIL representation for module `\PHY_CONTROL'. Generating RTLIL representation for module `\IDDRE1'. Generating RTLIL representation for module `\ODDRE1'. Generating RTLIL representation for module `\IDELAYE3'. Generating RTLIL representation for module `\ODELAYE3'. Generating RTLIL representation for module `\ISERDESE3'. Generating RTLIL representation for module `\OSERDESE3'. Generating RTLIL representation for module `\BITSLICE_CONTROL'. Generating RTLIL representation for module `\RIU_OR'. Generating RTLIL representation for module `\RX_BITSLICE'. Generating RTLIL representation for module `\RXTX_BITSLICE'. Generating RTLIL representation for module `\TX_BITSLICE'. Generating RTLIL representation for module `\TX_BITSLICE_TRI'. Generating RTLIL representation for module `\IODELAY2'. Generating RTLIL representation for module `\IODRP2'. Generating RTLIL representation for module `\IODRP2_MCB'. Generating RTLIL representation for module `\ISERDES2'. Generating RTLIL representation for module `\OSERDES2'. Generating RTLIL representation for module `\IBUF_DLY_ADJ'. Generating RTLIL representation for module `\IBUF_IBUFDISABLE'. Generating RTLIL representation for module `\IBUF_INTERMDISABLE'. Generating RTLIL representation for module `\IBUF_ANALOG'. Generating RTLIL representation for module `\IBUFE3'. Generating RTLIL representation for module `\IBUFDS'. Generating RTLIL representation for module `\IBUFDS_DLY_ADJ'. Generating RTLIL representation for module `\IBUFDS_IBUFDISABLE'. Generating RTLIL representation for module `\IBUFDS_INTERMDISABLE'. Generating RTLIL representation for module `\IBUFDS_DIFF_OUT'. Generating RTLIL representation for module `\IBUFDS_DIFF_OUT_IBUFDISABLE'. Generating RTLIL representation for module `\IBUFDS_DIFF_OUT_INTERMDISABLE'. Generating RTLIL representation for module `\IBUFDSE3'. Generating RTLIL representation for module `\IBUFDS_DPHY'. Generating RTLIL representation for module `\IBUFGDS'. Generating RTLIL representation for module `\IBUFGDS_DIFF_OUT'. Generating RTLIL representation for module `\IOBUF_DCIEN'. Generating RTLIL representation for module `\IOBUF_INTERMDISABLE'. Generating RTLIL representation for module `\IOBUFE3'. Generating RTLIL representation for module `\IOBUFDS'. Generating RTLIL representation for module `\IOBUFDS_DCIEN'. Generating RTLIL representation for module `\IOBUFDS_INTERMDISABLE'. Generating RTLIL representation for module `\IOBUFDS_DIFF_OUT'. Generating RTLIL representation for module `\IOBUFDS_DIFF_OUT_DCIEN'. Generating RTLIL representation for module `\IOBUFDS_DIFF_OUT_INTERMDISABLE'. Generating RTLIL representation for module `\IOBUFDSE3'. Generating RTLIL representation for module `\OBUFDS'. Generating RTLIL representation for module `\OBUFDS_DPHY'. Generating RTLIL representation for module `\OBUFTDS'. Generating RTLIL representation for module `\KEEPER'. Generating RTLIL representation for module `\PULLDOWN'. Generating RTLIL representation for module `\PULLUP'. Generating RTLIL representation for module `\DCIRESET'. Generating RTLIL representation for module `\HPIO_VREF'. Generating RTLIL representation for module `\BUFGCE'. Generating RTLIL representation for module `\BUFGCE_1'. Generating RTLIL representation for module `\BUFGMUX'. Generating RTLIL representation for module `\BUFGMUX_1'. Generating RTLIL representation for module `\BUFGMUX_CTRL'. Generating RTLIL representation for module `\BUFGMUX_VIRTEX4'. Generating RTLIL representation for module `\BUFG_GT'. Generating RTLIL representation for module `\BUFG_GT_SYNC'. Generating RTLIL representation for module `\BUFG_PS'. Generating RTLIL representation for module `\BUFGCE_DIV'. Generating RTLIL representation for module `\BUFH'. Generating RTLIL representation for module `\BUFIO2'. Generating RTLIL representation for module `\BUFIO2_2CLK'. Generating RTLIL representation for module `\BUFIO2FB'. Generating RTLIL representation for module `\BUFPLL'. Generating RTLIL representation for module `\BUFPLL_MCB'. Generating RTLIL representation for module `\BUFIO'. Generating RTLIL representation for module `\BUFIODQS'. Generating RTLIL representation for module `\BUFR'. Generating RTLIL representation for module `\BUFMR'. Generating RTLIL representation for module `\BUFMRCE'. Generating RTLIL representation for module `\DCM'. Generating RTLIL representation for module `\DCM_SP'. Generating RTLIL representation for module `\DCM_CLKGEN'. Generating RTLIL representation for module `\DCM_ADV'. Generating RTLIL representation for module `\DCM_BASE'. Generating RTLIL representation for module `\DCM_PS'. Generating RTLIL representation for module `\PMCD'. Generating RTLIL representation for module `\PLL_ADV'. Generating RTLIL representation for module `\PLL_BASE'. Generating RTLIL representation for module `\MMCM_ADV'. Generating RTLIL representation for module `\MMCM_BASE'. Generating RTLIL representation for module `\MMCME2_ADV'. Generating RTLIL representation for module `\MMCME2_BASE'. Generating RTLIL representation for module `\PLLE2_ADV'. Generating RTLIL representation for module `\PLLE2_BASE'. Generating RTLIL representation for module `\MMCME3_ADV'. Generating RTLIL representation for module `\MMCME3_BASE'. Generating RTLIL representation for module `\PLLE3_ADV'. Generating RTLIL representation for module `\PLLE3_BASE'. Generating RTLIL representation for module `\MMCME4_ADV'. Generating RTLIL representation for module `\MMCME4_BASE'. Generating RTLIL representation for module `\PLLE4_ADV'. Generating RTLIL representation for module `\PLLE4_BASE'. Generating RTLIL representation for module `\BUFT'. Generating RTLIL representation for module `\IN_FIFO'. Generating RTLIL representation for module `\OUT_FIFO'. Generating RTLIL representation for module `\HARD_SYNC'. Generating RTLIL representation for module `\STARTUP_SPARTAN3'. Generating RTLIL representation for module `\STARTUP_SPARTAN3E'. Generating RTLIL representation for module `\STARTUP_SPARTAN3A'. Generating RTLIL representation for module `\STARTUP_SPARTAN6'. Generating RTLIL representation for module `\STARTUP_VIRTEX4'. Generating RTLIL representation for module `\STARTUP_VIRTEX5'. Generating RTLIL representation for module `\STARTUP_VIRTEX6'. Generating RTLIL representation for module `\STARTUPE2'. Generating RTLIL representation for module `\STARTUPE3'. Generating RTLIL representation for module `\CAPTURE_SPARTAN3'. Generating RTLIL representation for module `\CAPTURE_SPARTAN3A'. Generating RTLIL representation for module `\CAPTURE_VIRTEX4'. Generating RTLIL representation for module `\CAPTURE_VIRTEX5'. Generating RTLIL representation for module `\CAPTURE_VIRTEX6'. Generating RTLIL representation for module `\CAPTUREE2'. Generating RTLIL representation for module `\ICAP_SPARTAN3A'. Generating RTLIL representation for module `\ICAP_SPARTAN6'. Generating RTLIL representation for module `\ICAP_VIRTEX4'. Generating RTLIL representation for module `\ICAP_VIRTEX5'. Generating RTLIL representation for module `\ICAP_VIRTEX6'. Generating RTLIL representation for module `\ICAPE2'. Generating RTLIL representation for module `\ICAPE3'. Generating RTLIL representation for module `\BSCAN_SPARTAN3'. Generating RTLIL representation for module `\BSCAN_SPARTAN3A'. Generating RTLIL representation for module `\BSCAN_SPARTAN6'. Generating RTLIL representation for module `\BSCAN_VIRTEX4'. Generating RTLIL representation for module `\BSCAN_VIRTEX5'. Generating RTLIL representation for module `\BSCAN_VIRTEX6'. Generating RTLIL representation for module `\BSCANE2'. Generating RTLIL representation for module `\DNA_PORT'. Generating RTLIL representation for module `\DNA_PORTE2'. Generating RTLIL representation for module `\FRAME_ECC_VIRTEX4'. Generating RTLIL representation for module `\FRAME_ECC_VIRTEX5'. Generating RTLIL representation for module `\FRAME_ECC_VIRTEX6'. Generating RTLIL representation for module `\FRAME_ECCE2'. Generating RTLIL representation for module `\FRAME_ECCE3'. Generating RTLIL representation for module `\USR_ACCESS_VIRTEX4'. Generating RTLIL representation for module `\USR_ACCESS_VIRTEX5'. Generating RTLIL representation for module `\USR_ACCESS_VIRTEX6'. Generating RTLIL representation for module `\USR_ACCESSE2'. Generating RTLIL representation for module `\POST_CRC_INTERNAL'. Generating RTLIL representation for module `\SUSPEND_SYNC'. Generating RTLIL representation for module `\KEY_CLEAR'. Generating RTLIL representation for module `\MASTER_JTAG'. Generating RTLIL representation for module `\SPI_ACCESS'. Generating RTLIL representation for module `\EFUSE_USR'. Generating RTLIL representation for module `\SYSMON'. Generating RTLIL representation for module `\XADC'. Generating RTLIL representation for module `\SYSMONE1'. Generating RTLIL representation for module `\SYSMONE4'. Generating RTLIL representation for module `\GTPA1_DUAL'. Generating RTLIL representation for module `\GT11_CUSTOM'. Generating RTLIL representation for module `\GT11_DUAL'. Generating RTLIL representation for module `\GT11CLK'. Generating RTLIL representation for module `\GT11CLK_MGT'. Generating RTLIL representation for module `\GTP_DUAL'. Generating RTLIL representation for module `\GTX_DUAL'. Generating RTLIL representation for module `\CRC32'. Generating RTLIL representation for module `\CRC64'. Generating RTLIL representation for module `\GTHE1_QUAD'. Generating RTLIL representation for module `\GTXE1'. Generating RTLIL representation for module `\IBUFDS_GTXE1'. Generating RTLIL representation for module `\IBUFDS_GTHE1'. Generating RTLIL representation for module `\GTHE2_CHANNEL'. Generating RTLIL representation for module `\GTHE2_COMMON'. Generating RTLIL representation for module `\GTPE2_CHANNEL'. Generating RTLIL representation for module `\GTPE2_COMMON'. Generating RTLIL representation for module `\GTXE2_CHANNEL'. Generating RTLIL representation for module `\GTXE2_COMMON'. Generating RTLIL representation for module `\IBUFDS_GTE2'. Generating RTLIL representation for module `\GTHE3_CHANNEL'. Generating RTLIL representation for module `\GTHE3_COMMON'. Generating RTLIL representation for module `\GTHE4_CHANNEL'. Generating RTLIL representation for module `\GTHE4_COMMON'. Generating RTLIL representation for module `\GTYE3_CHANNEL'. Generating RTLIL representation for module `\GTYE3_COMMON'. Generating RTLIL representation for module `\GTYE4_CHANNEL'. Generating RTLIL representation for module `\GTYE4_COMMON'. Generating RTLIL representation for module `\IBUFDS_GTE3'. Generating RTLIL representation for module `\IBUFDS_GTE4'. Generating RTLIL representation for module `\OBUFDS_GTE3'. Generating RTLIL representation for module `\OBUFDS_GTE3_ADV'. Generating RTLIL representation for module `\OBUFDS_GTE4'. Generating RTLIL representation for module `\OBUFDS_GTE4_ADV'. Generating RTLIL representation for module `\PCIE_A1'. Generating RTLIL representation for module `\PCIE_EP'. Generating RTLIL representation for module `\PCIE_2_0'. Generating RTLIL representation for module `\PCIE_2_1'. Generating RTLIL representation for module `\PCIE_3_0'. Generating RTLIL representation for module `\PCIE_3_1'. Generating RTLIL representation for module `\PCIE40E4'. Generating RTLIL representation for module `\EMAC'. Generating RTLIL representation for module `\TEMAC'. Generating RTLIL representation for module `\TEMAC_SINGLE'. Generating RTLIL representation for module `\CMAC'. Generating RTLIL representation for module `\CMACE4'. Generating RTLIL representation for module `\PPC405_ADV'. Generating RTLIL representation for module `\PPC440'. Generating RTLIL representation for module `\MCB'. Generating RTLIL representation for module `\PS7'. Generating RTLIL representation for module `\PS8'. Generating RTLIL representation for module `\ILKN'. Generating RTLIL representation for module `\ILKNE4'. Successfully finished Verilog frontend. 9.3. Executing HIERARCHY pass (managing design hierarchy). 9.3.1. Analyzing design hierarchy.. Top module: \block_ram 9.3.2. Analyzing design hierarchy.. Top module: \block_ram Removing unused module `\distributed_ram'. Removing unused module `\distributed_ram_manual'. Removing unused module `\distributed_ram_manual_syn'. Removed 3 unused modules. 9.4. Executing PROC pass (convert processes to netlists). 9.4.1. Executing PROC_CLEAN pass (remove empty switches from decision trees). Cleaned up 0 empty switches. 9.4.2. Executing PROC_RMDEAD pass (remove dead branches from decision trees). Removed a total of 0 dead cases. 9.4.3. Executing PROC_PRUNE pass (remove redundant assignments in processes). Removed 0 redundant assignments. Promoted 0 assignments to connections. 9.4.4. Executing PROC_INIT pass (extract init attributes). 9.4.5. Executing PROC_ARST pass (detect async resets in processes). 9.4.6. Executing PROC_MUX pass (convert decision trees to multiplexers). 9.4.7. Executing PROC_DLATCH pass (convert process syncs to latches). 9.4.8. Executing PROC_DFF pass (convert process syncs to FFs). 9.4.9. Executing PROC_CLEAN pass (remove empty switches from decision trees). Cleaned up 0 empty switches. 9.5. Executing TRIBUF pass. 9.6. Executing DEMINOUT pass (demote inout ports to input or output). 9.7. Executing OPT_EXPR pass (perform const folding). Optimizing module block_ram. 9.8. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \block_ram.. 9.9. Executing CHECK pass (checking for obvious problems). checking module block_ram.. found and reported 0 problems. 9.10. Executing OPT pass (performing simple optimizations). 9.10.1. Executing OPT_EXPR pass (perform const folding). Optimizing module block_ram. 9.10.2. Executing OPT_MERGE pass (detect identical cells). Finding identical cells in module `\block_ram'. Removed a total of 0 cells. 9.10.3. Executing OPT_MUXTREE pass (detect dead branches in mux trees). Running muxtree optimizer on module \block_ram.. Creating internal representation of mux trees. Evaluating internal representation of mux trees. Analyzing evaluation results. Removed 0 multiplexer ports. 9.10.4. Executing OPT_REDUCE pass (consolidate $*mux and $reduce_* inputs). Optimizing cells in module \block_ram. Performed a total of 0 changes. 9.10.5. Executing OPT_MERGE pass (detect identical cells). Finding identical cells in module `\block_ram'. Removed a total of 0 cells. 9.10.6. Executing OPT_RMDFF pass (remove dff with constant values). 9.10.7. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \block_ram.. 9.10.8. Executing OPT_EXPR pass (perform const folding). Optimizing module block_ram. 9.10.9. Finished OPT passes. (There is nothing left to do.) 9.11. Executing WREDUCE pass (reducing word size of cells). Removed cell block_ram.$procmux$469 ($mux). Removed cell block_ram.$procmux$467 ($mux). 9.12. Executing PEEPOPT pass (run peephole optimizers). 9.13. Executing OPT_CLEAN pass (remove unused cells and wires). Finding unused cells or wires in module \block_ram.. Removed 0 unused cells and 2 unused wires. 9.14. Executing PMUX2SHIFTX pass. 9.15. Executing TECHMAP pass (map to technology primitives). 9.15.1. Executing Verilog-2005 frontend: /opt/eda/fpga/FOSS/memattr/yosys_release/share/cmp2lut.v Parsing Verilog input from `/opt/eda/fpga/FOSS/memattr/yosys_release/share/cmp2lut.v' to AST representation. Generating RTLIL representation for module `\_90_lut_cmp_'. Successfully finished Verilog frontend. 9.15.2. Continuing TECHMAP pass. No more expansions possible. 9.16. Executing MEMORY_DFF pass (merging $dff cells to $memrd and $memwr). 9.17. Executing TECHMAP pass (map to technology primitives). 9.17.1. Executing Verilog-2005 frontend: /opt/eda/fpga/FOSS/memattr/yosys_release/share/mul2dsp.v Parsing Verilog input from `/opt/eda/fpga/FOSS/memattr/yosys_release/share/mul2dsp.v' to AST representation. Generating RTLIL representation for module `\_80_mul'. Generating RTLIL representation for module `\_90_soft_mul'. Successfully finished Verilog frontend. 9.17.2. Executing Verilog-2005 frontend: /opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/xc7_dsp_map.v Parsing Verilog input from `/opt/eda/fpga/FOSS/memattr/yosys_release/share/xilinx/xc7_dsp_map.v' to AST representation. Generating RTLIL representation for module `\$__MUL25X18'. Successfully finished Verilog frontend. 9.17.3. Continuing TECHMAP pass. No more expansions possible. 9.18. Executing OPT_EXPR pass (perform const folding). 9.19. Executing WREDUCE pass (reducing word size of cells). 9.20. Executing XILINX_DSP pass (pack resources into DSPs). 9.21. Executing ALUMACC pass (create $alu and $macc cells). Extracting $alu and $macc cells in module block_ram: created 0 $alu and 0 $macc cells. 9.22. Executing SHARE pass (SAT-based resource sharing).