3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2025-04-23 17:15:33 +00:00

Add support for various ff/latch cells simulation

This commit is contained in:
Miodrag Milanovic 2022-02-15 09:30:42 +01:00
parent 1586000048
commit fb22d7cdc4
3 changed files with 260 additions and 171 deletions

View file

@ -22,6 +22,7 @@
#include "kernel/celltypes.h"
#include "kernel/mem.h"
#include "kernel/fstdata.h"
#include "kernel/ff.h"
#include <ctime>
@ -76,6 +77,7 @@ struct SimShared
double stop_time = -1;
SimulationMode sim_mode = SimulationMode::sim;
bool cycles_set = false;
const pool<IdString> ff_types = RTLIL::builtin_ff_cell_types();
};
void zinit(State &v)
@ -113,8 +115,13 @@ struct SimInstance
struct ff_state_t
{
State past_clock;
Const past_d;
Const past_ad;
SigSpec past_clk;
SigSpec past_ce;
SigSpec past_srst;
FfData data;
};
struct mem_state_t
@ -209,10 +216,15 @@ struct SimInstance
}
}
if (cell->type.in(ID($dff))) {
if (shared->ff_types.count(cell->type)) {
FfData ff_data(nullptr, cell);
ff_state_t ff;
ff.past_clock = State::Sx;
ff.past_d = Const(State::Sx, cell->getParam(ID::WIDTH).as_int());
ff.past_d = Const(State::Sx, ff_data.width);
ff.past_ad = Const(State::Sx, ff_data.width);
ff.past_clk = State::Sx;
ff.past_ce = State::Sx;
ff.past_srst = State::Sx;
ff.data = ff_data;
ff_database[cell] = ff;
}
@ -229,11 +241,10 @@ struct SimInstance
{
for (auto &it : ff_database)
{
Cell *cell = it.first;
ff_state_t &ff = it.second;
zinit(ff.past_d);
SigSpec qsig = cell->getPort(ID::Q);
SigSpec qsig = it.second.data.sig_q;
Const qdata = get_state(qsig);
zinit(qdata);
set_state(qsig, qdata);
@ -466,20 +477,138 @@ struct SimInstance
for (auto &it : ff_database)
{
Cell *cell = it.first;
ff_state_t &ff = it.second;
FfData ff_data = ff.data;
if (cell->type.in(ID($dff)))
{
bool clkpol = cell->getParam(ID::CLK_POLARITY).as_bool();
State current_clock = get_state(cell->getPort(ID::CLK))[0];
if (ff_data.has_clk) {
// flip-flops
State current_clk = get_state(ff_data.sig_clk)[0];
if (clkpol ? (ff.past_clock == State::S1 || current_clock != State::S1) :
(ff.past_clock == State::S0 || current_clock != State::S0))
continue;
// handle set/reset
if (ff.data.has_sr) {
Const current_q = get_state(ff.data.sig_q);
Const current_clr = get_state(ff.data.sig_clr);
Const current_set = get_state(ff.data.sig_set);
if (set_state(cell->getPort(ID::Q), ff.past_d))
did_something = true;
for(int i=0;i<ff.past_d.size();i++) {
if (current_clr[i] == (ff_data.pol_clr ? State::S1 : State::S0)) {
current_q[i] = State::S0;
}
else if (current_set[i] == (ff_data.pol_set ? State::S1 : State::S0)) {
current_q[i] = State::S1;
} else {
// all below is in sync with clk
if (ff_data.pol_clk ? (ff.past_clk == State::S1 || current_clk != State::S1) :
(ff.past_clk == State::S0 || current_clk != State::S0))
continue;
if (ff_data.has_ce) {
if (ff.past_ce == (ff_data.pol_ce ? State::S1 : State::S0))
current_q[i] = ff.past_d[i];
} else {
current_q[i] = ff.past_d[i];
}
}
}
if (set_state(ff_data.sig_q, current_q))
did_something = true;
} else {
// async reset
if (ff_data.has_arst) {
State current_arst = get_state(ff_data.sig_arst)[0];
if (current_arst == (ff_data.pol_arst ? State::S1 : State::S0)) {
if (set_state(ff_data.sig_q, ff_data.val_arst))
did_something = true;
continue;
}
}
// async load
if (ff_data.has_aload) {
State current_aload = get_state(ff_data.sig_aload)[0];
if (current_aload == (ff_data.pol_aload ? State::S1 : State::S0)) {
if (set_state(ff_data.sig_q, ff.past_ad))
did_something = true;
continue;
}
}
// all below is in sync with clk
if (ff_data.pol_clk ? (ff.past_clk == State::S1 || current_clk != State::S1) :
(ff.past_clk == State::S0 || current_clk != State::S0))
continue;
// chip enable priority over reset
if (ff_data.ce_over_srst && ff_data.has_ce) {
if (ff.past_ce != (ff_data.pol_ce ? State::S1 : State::S0))
continue;
}
// handle sync reset
if (ff_data.has_srst) {
if (ff.past_srst == (ff_data.pol_srst ? State::S1 : State::S0)) {
if (set_state(ff_data.sig_q, ff_data.val_srst))
did_something = true;
continue;
}
}
// reset had priority over chip enable
if (!ff_data.ce_over_srst && ff_data.has_ce) {
if (ff.past_ce != (ff_data.pol_ce ? State::S1 : State::S0))
continue;
}
if (set_state(ff_data.sig_q, ff.past_d))
did_something = true;
}
} else {
// handle set/reset
if (ff.data.has_sr) {
Const current_q = get_state(ff.data.sig_q);
Const current_clr = get_state(ff.data.sig_clr);
Const current_set = get_state(ff.data.sig_set);
for(int i=0;i<current_q.size();i++) {
if (current_clr[i] == (ff_data.pol_clr ? State::S1 : State::S0)) {
current_q[i] = State::S0;
}
else if (current_set[i] == (ff_data.pol_set ? State::S1 : State::S0)) {
current_q[i] = State::S1;
} else {
if (ff_data.has_aload) {
Const current_ad = get_state(ff.data.sig_ad);
State current_aload = get_state(ff_data.sig_aload)[0];
if (current_aload == (ff_data.pol_aload ? State::S1 : State::S0)) {
current_q[i] = current_ad[i];
}
}
}
}
if (set_state(ff_data.sig_q, current_q))
did_something = true;
}
// async load is true for all latches
else if (ff_data.has_aload) {
// async reset
if (ff_data.has_arst) {
State current_arst = get_state(ff_data.sig_arst)[0];
if (current_arst == (ff_data.pol_arst ? State::S1 : State::S0)) {
if (set_state(ff_data.sig_q, ff_data.val_arst))
did_something = true;
continue;
}
}
State current_aload = get_state(ff_data.sig_aload)[0];
if (current_aload == (ff_data.pol_aload ? State::S1 : State::S0)) {
if (set_state(ff_data.sig_q, get_state(ff.data.sig_ad)))
did_something = true;
}
} else if (ff_data.has_gclk) {
// $ff
if (set_state(ff_data.sig_q, ff.past_d))
did_something = true;
}
}
}
@ -538,13 +667,22 @@ struct SimInstance
{
for (auto &it : ff_database)
{
Cell *cell = it.first;
ff_state_t &ff = it.second;
if (cell->type.in(ID($dff))) {
ff.past_clock = get_state(cell->getPort(ID::CLK))[0];
ff.past_d = get_state(cell->getPort(ID::D));
}
if (ff.data.has_aload)
ff.past_ad = get_state(ff.data.sig_ad);
if (ff.data.has_clk || ff.data.has_gclk)
ff.past_d = get_state(ff.data.sig_d);
if (ff.data.has_clk)
ff.past_clk = get_state(ff.data.sig_clk)[0];
if (ff.data.has_ce)
ff.past_ce = get_state(ff.data.sig_ce)[0];
if (ff.data.has_srst)
ff.past_srst = get_state(ff.data.sig_srst)[0];
}
for (auto &it : mem_database)
@ -595,8 +733,7 @@ struct SimInstance
for (auto &it : ff_database)
{
Cell *cell = it.first;
SigSpec sig_q = cell->getPort(ID::Q);
SigSpec sig_q = it.second.data.sig_q;
Const initval = get_state(sig_q);
for (int i = 0; i < GetSize(sig_q); i++)
@ -722,34 +859,32 @@ struct SimInstance
child.second->write_fst_step(f);
}
void setInitState(uint64_t time)
void setInitState()
{
for (auto &it : ff_database)
{
Cell *cell = it.first;
SigSpec qsig = cell->getPort(ID::Q);
SigSpec qsig = it.second.data.sig_q;
if (qsig.is_wire()) {
IdString name = qsig.as_wire()->name;
fstHandle id = shared->fst->getHandle(scope + "." + RTLIL::unescape_id(name));
if (id==0 && name.isPublic())
log_warning("Unable to found wire %s in input file.\n", (scope + "." + RTLIL::unescape_id(name)).c_str());
if (id!=0) {
Const fst_val = Const::from_string(shared->fst->valueAt(id, time));
Const fst_val = Const::from_string(shared->fst->valueOf(id));
set_state(qsig, fst_val);
}
}
}
for (auto child : children)
child.second->setInitState(time);
child.second->setInitState();
}
bool checkSignals(uint64_t time)
bool checkSignals()
{
bool retVal = false;
for(auto &item : fst_handles) {
if (item.second==0) continue; // Ignore signals not found
Const fst_val = Const::from_string(shared->fst->valueAt(item.second, time));
Const fst_val = Const::from_string(shared->fst->valueOf(item.second));
Const sim_val = get_state(item.first);
if (sim_val.size()!=fst_val.size())
log_error("Signal '%s' size is different in gold and gate.\n", log_id(item.first));
@ -779,7 +914,7 @@ struct SimInstance
}
}
for (auto child : children)
retVal |= child.second->checkSignals(time);
retVal |= child.second->checkSignals();
return retVal;
}
};
@ -998,8 +1133,6 @@ struct SimWorker : SimShared
log_error("Can't find port %s.%s in FST.\n", scope.c_str(), log_id(portname));
fst_clock.push_back(id);
}
if (fst_clock.size()==0)
log_error("No clock signals defined for input file\n");
SigMap sigmap(topmod);
std::map<Wire*,fstHandle> inputs;
@ -1044,37 +1177,48 @@ struct SimWorker : SimShared
if (stopCount<startCount) {
log_error("Stop time is before start time\n");
}
auto samples = fst->getAllEdges(fst_clock, startCount, stopCount);
// Limit to number of cycles if provided
if (cycles_set && ((size_t)(numcycles *2) < samples.size()))
samples.erase(samples.begin() + (numcycles*2), samples.end());
// Add setup time (start time)
if (samples.empty() || samples.front()!=startCount)
samples.insert(samples.begin(), startCount);
fst->reconstructAllAtTimes(samples);
bool initial = true;
int cycle = 0;
log("Co-simulation from %lu%s to %lu%s\n", (unsigned long)startCount, fst->getTimescaleString(), (unsigned long)stopCount, fst->getTimescaleString());
for(auto &time : samples) {
log("Co-simulating cycle %d [%lu%s].\n", cycle, (unsigned long)time, fst->getTimescaleString());
for(auto &item : inputs) {
std::string v = fst->valueAt(item.second, time);
top->set_state(item.first, Const::from_string(v));
}
if (initial) {
top->setInitState(time);
initial = false;
}
update();
log("Co-simulation from %lu%s to %lu%s", (unsigned long)startCount, fst->getTimescaleString(), (unsigned long)stopCount, fst->getTimescaleString());
if (cycles_set)
log(" for %d clock cycle(s)",numcycles);
log("\n");
bool all_samples = fst_clock.empty();
bool status = top->checkSignals(time);
if (status)
log_error("Signal difference\n");
cycle++;
try {
fst->reconstructAllAtTimes(fst_clock, startCount, stopCount, [&](uint64_t time) {
log("Co-simulating %s %d [%lu%s].\n", (all_samples ? "sample" : "cycle"), cycle, (unsigned long)time, fst->getTimescaleString());
for(auto &item : inputs) {
std::string v = fst->valueOf(item.second);
top->set_state(item.first, Const::from_string(v));
}
if (initial) {
top->setInitState();
write_output_header();
initial = false;
}
update();
write_output_step(5*cycle);
bool status = top->checkSignals();
if (status)
log_error("Signal difference\n");
cycle++;
// Limit to number of cycles if provided
if (cycles_set && cycle > numcycles *2)
throw fst_end_of_data_exception();
if (time==stopCount)
throw fst_end_of_data_exception();
});
} catch(fst_end_of_data_exception) {
// end of data detected
}
write_output_step(5*(cycle-1)+2);
write_output_end();
if (writeback) {
pool<Module*> wbmods;
top->writeback(wbmods);