3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2025-04-22 08:35:32 +00:00
This commit is contained in:
Akash Levy 2024-11-11 11:47:58 -08:00
commit ea76abdaee
10 changed files with 167 additions and 21 deletions

View file

@ -832,7 +832,10 @@ struct BtorWorker
}
}
if (constword)
// If not fully defined, undef bits should be able to take a
// different value for each address so we can't initialise from
// one value (and btor2parser doesn't like it)
if (constword && firstword.is_fully_def())
{
if (verbose)
btorf("; initval = %s\n", log_signal(firstword));
@ -1077,6 +1080,7 @@ struct BtorWorker
btorf("%d input %d\n", nid, sid);
ywmap_input(s);
nid_width[nid] = GetSize(s);
add_nid_sig(nid, s);
for (int j = 0; j < GetSize(s); j++)
nidbits.push_back(make_pair(nid, j));

View file

@ -612,7 +612,7 @@ std::string escape_c_string(const std::string &input)
output.push_back('"');
for (auto c : input) {
if (::isprint(c)) {
if (c == '\\')
if (c == '\\' || c == '"')
output.push_back('\\');
output.push_back(c);
} else {

View file

@ -329,13 +329,14 @@ struct Smt2Worker
{
sigmap.apply(bit);
if (bit_driver.count(bit)) {
export_cell(bit_driver.at(bit));
sigmap.apply(bit);
}
if (bit.wire == nullptr)
return bit == RTLIL::State::S1 ? "true" : "false";
if (bit_driver.count(bit))
export_cell(bit_driver.at(bit));
sigmap.apply(bit);
if (fcache.count(bit) == 0) {
if (verbose) log("%*s-> external bool: %s\n", 2+2*GetSize(recursive_cells), "",
log_signal(bit));

View file

@ -630,7 +630,7 @@ std::string escape_cxx_string(const std::string &input)
std::string output = "\"";
for (auto c : input) {
if (::isprint(c)) {
if (c == '\\')
if (c == '\\' || c == '"')
output.push_back('\\');
output.push_back(c);
} else {

View file

@ -375,6 +375,10 @@ class PoolTranslator(PythonListTranslator):
insert_name = ".insert"
orig_name = "pool"
#Sub-type for ObjRange
class ObjRangeTranslator(PythonListTranslator):
orig_name = "RTLIL::ObjRange"
#Translates dict-types (dict, std::map), that only differ in their name and
#the name of the insertion function
class PythonDictTranslator(Translator):
@ -536,13 +540,14 @@ class TupleTranslator(PythonDictTranslator):
#Associate the Translators with their c++ type
known_containers = {
"std::set" : SetTranslator,
"std::vector" : VectorTranslator,
"pool" : PoolTranslator,
"idict" : IDictTranslator,
"dict" : DictTranslator,
"std::pair" : TupleTranslator,
"std::map" : MapTranslator
"std::set" : SetTranslator,
"std::vector" : VectorTranslator,
"pool" : PoolTranslator,
"idict" : IDictTranslator,
"dict" : DictTranslator,
"std::pair" : TupleTranslator,
"std::map" : MapTranslator,
"RTLIL::ObjRange" : ObjRangeTranslator
}
class Attribute:

View file

@ -59,6 +59,7 @@ PEEPOPT_PATTERN += passes/pmgen/peepopt_shiftadd.pmg
PEEPOPT_PATTERN += passes/pmgen/peepopt_muldiv.pmg
PEEPOPT_PATTERN += passes/pmgen/peepopt_muldiv_c.pmg
PEEPOPT_PATTERN += passes/pmgen/peepopt_muxadd.pmg
PEEPOPT_PATTERN += passes/pmgen/peepopt_formal_clockgateff.pmg
passes/pmgen/peepopt_pm.h: passes/pmgen/pmgen.py $(PEEPOPT_PATTERN)
$(P) mkdir -p passes/pmgen && $(PYTHON_EXECUTABLE) $< -o $@ -p peepopt $(filter-out $<,$^)

View file

@ -40,7 +40,7 @@ struct PeepoptPass : public Pass {
log("\n");
log("This pass applies a collection of peephole optimizers to the current design.\n");
log("\n");
log("This pass employs the following rules:\n");
log("This pass employs the following rules by default:\n");
log("\n");
log(" * muxadd - Replace S?(A+B):A with A+(S?B:0)\n");
log("\n");
@ -61,14 +61,26 @@ struct PeepoptPass : public Pass {
log(" limits the amount of padding to a multiple of the data, \n");
log(" to avoid high resource usage from large temporary MUX trees.\n");
log("\n");
log("If -formalclk is specified it instead employs the following rules:\n");
log("\n");
log(" * clockgateff - Replace latch based clock gating patterns with a flip-flop\n");
log(" based pattern to prevent combinational paths from the\n");
log(" output to the enable input after running clk2fflogic.\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override
{
log_header(design, "Executing PEEPOPT pass (run peephole optimizers).\n");
bool formalclk = false;
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++)
{
if (args[argidx] == "-formalclk") {
formalclk = true;
continue;
}
break;
}
extra_args(args, argidx, design);
@ -90,12 +102,16 @@ struct PeepoptPass : public Pass {
pm.setup(module->selected_cells());
pm.run_shiftadd();
pm.run_shiftmul_right();
pm.run_shiftmul_left();
pm.run_muldiv();
pm.run_muldiv_c();
pm.run_muxadd();
if (formalclk) {
pm.run_formal_clockgateff();
} else {
pm.run_shiftadd();
pm.run_shiftmul_right();
pm.run_shiftmul_left();
pm.run_muldiv();
pm.run_muldiv_c();
pm.run_muxadd();
}
}
}
}

View file

@ -0,0 +1,59 @@
pattern formal_clockgateff
// Detects the most common clock gating pattern using a latch and replaces it
// with a functionally equivalent pattern based on a flip-flop. The latch
// based pattern has a combinational path from the enable input to output after
// clk2fflogic, but this is a stable loop and the flip-flop based pattern does
// not exhibit this.
//
// This optimization is suitable for formal to prevent false comb loops, but
// should not be used for synthesis where the latch is an intentional choice
//
// Latch style:
// always @* if (!clk_i) latched_en = en;
// assign gated_clk_o = latched_en & clk_i;
//
// Flip-flop style:
// always @(posedge clk) flopped_en <= en;
// assign gated_clk_o = flopped_en & clk_i;
state <SigSpec> clk en latched_en gated_clk
state <IdString> latched_en_port_name
match latch
select latch->type == $dlatch
select param(latch, \WIDTH) == 1
select param(latch, \EN_POLARITY).as_bool() == false
set clk port(latch, \EN)
set en port(latch, \D)
set latched_en port(latch, \Q)
endmatch
match and_gate
select and_gate->type.in($and, $logic_and)
select param(and_gate, \A_WIDTH) == 1
select param(and_gate, \B_WIDTH) == 1
select param(and_gate, \Y_WIDTH) == 1
choice <IdString> clk_port {\A, \B}
define <IdString> latch_port {clk_port == \A ? \B : \A}
index <SigSpec> port(and_gate, clk_port) === clk
index <SigSpec> port(and_gate, latch_port) === latched_en
set gated_clk port(and_gate, \Y)
set latched_en_port_name latch_port
endmatch
code
log("replacing clock gate pattern in %s with ff: latch=%s, and=%s\n",
log_id(module), log_id(latch), log_id(and_gate));
// Add a flip-flop and rewire the AND gate to use the output of this flop
// instead of the latch. We don't delete the latch in case its output is
// used to drive other nodes. If it isn't, it will be trivially removed by
// clean
SigSpec flopped_en = module->addWire(NEW_ID);
module->addDff(NEW_ID, clk, en, flopped_en, true, latch->get_src_attribute());
and_gate->setPort(latched_en_port_name, flopped_en);
did_something = true;
accept;
endcode

View file

@ -51,6 +51,10 @@ struct Clk2fflogicPass : public Pass {
log(" -nolower\n");
log(" Do not automatically run 'chformal -lower' to lower $check cells.\n");
log("\n");
log(" -nopeepopt\n");
log(" Do not automatically run 'peepopt -formalclk' to rewrite clock patterns\n");
log(" to more formal friendly forms.\n");
log("\n");
}
// Active-high sampled and current value of a level-triggered control signal. Initial sampled values is low/non-asserted.
SampledSig sample_control(Module *module, SigSpec sig, bool polarity, bool is_fine) {
@ -121,6 +125,7 @@ struct Clk2fflogicPass : public Pass {
void execute(std::vector<std::string> args, RTLIL::Design *design) override
{
bool flag_nolower = false;
bool flag_nopeepopt = false;
log_header(design, "Executing CLK2FFLOGIC pass (convert clocked FFs to generic $ff cells).\n");
@ -131,10 +136,20 @@ struct Clk2fflogicPass : public Pass {
flag_nolower = true;
continue;
}
if (args[argidx] == "-nopeepopt") {
flag_nopeepopt = true;
continue;
}
break;
}
extra_args(args, argidx, design);
if (!flag_nopeepopt) {
log_push();
Pass::call(design, "peepopt -formalclk");
log_pop();
}
bool have_check_cells = false;
for (auto module : design->selected_modules())

View file

@ -0,0 +1,45 @@
read_verilog -sv <<EOT
module peepopt_formal_clockgateff_0(
input logic clk_i,
input logic ena_i,
input logic enb_i,
output logic clk_o
);
logic en_latched;
always_latch
if (!clk_i)
en_latched <= ena_i | enb_i;
assign clk_o = en_latched & clk_i;
endmodule
EOT
# Check original design has latch
prep -auto-top
select -assert-count 1 t:$dlatch
select -assert-count 0 t:$dff
# Manually execute equiv_opt like pattern so clk2fflogic is called with
# -nopeepopt, otherwise this doesn't test anything
design -save preopt
check -assert
peepopt -formalclk
check -assert
design -stash postopt
# Create miter and clk2fflogic without peepopt
design -copy-from preopt -as gold A:top
design -copy-from postopt -as gate A:top
clk2fflogic -nopeepopt
equiv_make gold gate equiv
equiv_induct equiv
equiv_status -assert equiv
# Check final design has dff instead of latch
design -load postopt
clean
select -assert-count 0 t:$dlatch
select -assert-count 1 t:$dff