mirror of
				https://github.com/YosysHQ/yosys
				synced 2025-11-04 05:19:11 +00:00 
			
		
		
		
	Remove need for $currQ port connection
This commit is contained in:
		
							parent
							
								
									5e9ae90cbb
								
							
						
					
					
						commit
						e529872b01
					
				
					 4 changed files with 129 additions and 114 deletions
				
			
		| 
						 | 
				
			
			@ -483,12 +483,12 @@ struct XAigerWriter
 | 
			
		|||
 | 
			
		||||
				if (box_module->get_bool_attribute("\\abc9_flop")) {
 | 
			
		||||
					IdString port_name = "\\$currQ";
 | 
			
		||||
					RTLIL::Wire* w = box_module->wire(port_name);
 | 
			
		||||
					SigSpec rhs = cell->getPort(port_name);
 | 
			
		||||
					Wire *w = box_module->wire(port_name);
 | 
			
		||||
					SigSpec rhs = module->wire(stringf("%s.$currQ", cell->name.c_str()));
 | 
			
		||||
					log_assert(GetSize(w) == GetSize(rhs));
 | 
			
		||||
 | 
			
		||||
					int offset = 0;
 | 
			
		||||
					for (auto b : rhs.bits()) {
 | 
			
		||||
					for (auto b : rhs) {
 | 
			
		||||
						SigBit I = sigmap(b);
 | 
			
		||||
						if (b == RTLIL::Sx)
 | 
			
		||||
							b = State::S0;
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -256,6 +256,14 @@ struct TechmapWorker
 | 
			
		|||
				if (w->attributes.count(ID(src)))
 | 
			
		||||
					w->add_strpool_attribute(ID(src), extra_src_attrs);
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
			if (it.second->name.begins_with("\\_TECHMAP_REPLACE_")) {
 | 
			
		||||
				IdString replace_name = stringf("%s%s", orig_cell_name.c_str(), it.second->name.c_str() + strlen("\\_TECHMAP_REPLACE_"));
 | 
			
		||||
				Wire *replace_w = module->addWire(replace_name, it.second);
 | 
			
		||||
				module->connect(replace_w, w);
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			design->select(module, w);
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -33,34 +33,35 @@
 | 
			
		|||
//   behaviour) with:
 | 
			
		||||
// (a) a special $__ABC_FF_ in front of the FD*'s output, indicating to abc9
 | 
			
		||||
//     the location of its basic D-Q flop
 | 
			
		||||
// (b) a special \$currQ connection that feeds back into the (combinatorial)
 | 
			
		||||
//     FD* cell to facilitate clock-enable behaviour -- note that \$currQ
 | 
			
		||||
//     isn't a real input port, it is one that is understood only by abc9
 | 
			
		||||
// (b) a special TECHMAP_REPLACE_.$currQwire that will be used for feedback
 | 
			
		||||
//     into the (combinatorial) FD* cell to facilitate clock-enable behaviour
 | 
			
		||||
module FDRE (output reg Q, input C, CE, D, R);
 | 
			
		||||
  parameter [0:0] INIT = 1'b0;
 | 
			
		||||
  parameter [0:0] IS_C_INVERTED = 1'b0;
 | 
			
		||||
  parameter [0:0] IS_D_INVERTED = 1'b0;
 | 
			
		||||
  parameter [0:0] IS_R_INVERTED = 1'b0;
 | 
			
		||||
  wire \$nextQ ;
 | 
			
		||||
  wire $nextQ;
 | 
			
		||||
  FDRE #(
 | 
			
		||||
    .INIT(INIT),
 | 
			
		||||
    .IS_C_INVERTED(IS_C_INVERTED),
 | 
			
		||||
    .IS_D_INVERTED(IS_D_INVERTED),
 | 
			
		||||
    .IS_R_INVERTED(IS_R_INVERTED)
 | 
			
		||||
  ) _TECHMAP_REPLACE_ (
 | 
			
		||||
    .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .R(R)
 | 
			
		||||
    .D(D), .Q($nextQ), .C(C), .CE(CE), .R(R)
 | 
			
		||||
  );
 | 
			
		||||
  \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
 | 
			
		||||
  wire _TECHMAP_REPLACE_.$currQ = Q;
 | 
			
		||||
  \$__ABC_FF_ abc_dff (.D($nextQ), .Q(Q));
 | 
			
		||||
endmodule
 | 
			
		||||
module FDRE_1 (output reg Q, input C, CE, D, R);
 | 
			
		||||
  parameter [0:0] INIT = 1'b0;
 | 
			
		||||
  wire \$nextQ ;
 | 
			
		||||
  wire $nextQ;
 | 
			
		||||
  FDRE_1 #(
 | 
			
		||||
    .INIT(|0),
 | 
			
		||||
  ) _TECHMAP_REPLACE_ (
 | 
			
		||||
    .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .R(R)
 | 
			
		||||
    .D(D), .Q($nextQ), .C(C), .CE(CE), .R(R)
 | 
			
		||||
  );
 | 
			
		||||
  \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
 | 
			
		||||
  wire _TECHMAP_REPLACE_.$currQ = Q;
 | 
			
		||||
  \$__ABC_FF_ abc_dff (.D($nextQ), .Q(Q));
 | 
			
		||||
endmodule
 | 
			
		||||
 | 
			
		||||
module FDCE (output reg Q, input C, CE, D, CLR);
 | 
			
		||||
| 
						 | 
				
			
			@ -68,28 +69,30 @@ module FDCE (output reg Q, input C, CE, D, CLR);
 | 
			
		|||
  parameter [0:0] IS_C_INVERTED = 1'b0;
 | 
			
		||||
  parameter [0:0] IS_D_INVERTED = 1'b0;
 | 
			
		||||
  parameter [0:0] IS_CLR_INVERTED = 1'b0;
 | 
			
		||||
  wire \$nextQ , \$currQ ;
 | 
			
		||||
  wire $currQ, $nextQ;
 | 
			
		||||
  FDCE #(
 | 
			
		||||
    .INIT(INIT),
 | 
			
		||||
    .IS_C_INVERTED(IS_C_INVERTED),
 | 
			
		||||
    .IS_D_INVERTED(IS_D_INVERTED),
 | 
			
		||||
    .IS_CLR_INVERTED(IS_CLR_INVERTED)
 | 
			
		||||
  ) _TECHMAP_REPLACE_ (
 | 
			
		||||
    .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .CLR(CLR)
 | 
			
		||||
    .D(D), .Q($nextQ),  .C(C), .CE(CE), .CLR(CLR)
 | 
			
		||||
  );
 | 
			
		||||
  \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
 | 
			
		||||
  \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(CLR ^ IS_CLR_INVERTED), .Y(Q));
 | 
			
		||||
  wire _TECHMAP_REPLACE_.$currQ = Q;
 | 
			
		||||
  \$__ABC_FF_ abc_dff (.D($nextQ), .Q($currQ));
 | 
			
		||||
  \$__ABC_ASYNC abc_async (.A($currQ), .S(CLR ^ IS_CLR_INVERTED), .Y(Q));
 | 
			
		||||
endmodule
 | 
			
		||||
module FDCE_1 (output reg Q, input C, CE, D, CLR);
 | 
			
		||||
  parameter [0:0] INIT = 1'b0;
 | 
			
		||||
  wire \$nextQ , \$currQ ;
 | 
			
		||||
  wire $nextQ, $currQ;
 | 
			
		||||
  FDCE_1 #(
 | 
			
		||||
    .INIT(INIT)
 | 
			
		||||
  ) _TECHMAP_REPLACE_ (
 | 
			
		||||
    .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .CLR(CLR)
 | 
			
		||||
    .D(D), .Q($nextQ), .C(C), .CE(CE), .CLR(CLR)
 | 
			
		||||
  );
 | 
			
		||||
  \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
 | 
			
		||||
  \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(CLR), .Y(Q));
 | 
			
		||||
  wire _TECHMAP_REPLACE_.$currQ = Q;
 | 
			
		||||
  \$__ABC_FF_ abc_dff (.D($nextQ), .Q($currQ));
 | 
			
		||||
  \$__ABC_ASYNC abc_async (.A($currQ), .S(CLR), .Y(Q));
 | 
			
		||||
endmodule
 | 
			
		||||
 | 
			
		||||
module FDPE (output reg Q, input C, CE, D, PRE);
 | 
			
		||||
| 
						 | 
				
			
			@ -97,28 +100,30 @@ module FDPE (output reg Q, input C, CE, D, PRE);
 | 
			
		|||
  parameter [0:0] IS_C_INVERTED = 1'b0;
 | 
			
		||||
  parameter [0:0] IS_D_INVERTED = 1'b0;
 | 
			
		||||
  parameter [0:0] IS_PRE_INVERTED = 1'b0;
 | 
			
		||||
  wire \$nextQ , \$currQ ;
 | 
			
		||||
  wire $nextQ, $currQ;
 | 
			
		||||
  FDPE #(
 | 
			
		||||
    .INIT(INIT),
 | 
			
		||||
    .IS_C_INVERTED(IS_C_INVERTED),
 | 
			
		||||
    .IS_D_INVERTED(IS_D_INVERTED),
 | 
			
		||||
    .IS_PRE_INVERTED(IS_PRE_INVERTED),
 | 
			
		||||
  ) _TECHMAP_REPLACE_ (
 | 
			
		||||
    .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .PRE(PRE)
 | 
			
		||||
    .D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(PRE)
 | 
			
		||||
  );
 | 
			
		||||
  \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
 | 
			
		||||
  \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(PRE ^ IS_PRE_INVERTED), .Y(Q));
 | 
			
		||||
  wire _TECHMAP_REPLACE_.$currQ = Q;
 | 
			
		||||
  \$__ABC_FF_ abc_dff (.D($nextQ), .Q($currQ));
 | 
			
		||||
  \$__ABC_ASYNC abc_async (.A($currQ), .S(PRE ^ IS_PRE_INVERTED), .Y(Q));
 | 
			
		||||
endmodule
 | 
			
		||||
module FDPE_1 (output reg Q, input C, CE, D, PRE);
 | 
			
		||||
  parameter [0:0] INIT = 1'b0;
 | 
			
		||||
  wire \$nextQ , \$currQ ;
 | 
			
		||||
  wire $nextQ, $currQ;
 | 
			
		||||
  FDPE_1 #(
 | 
			
		||||
    .INIT(INIT)
 | 
			
		||||
  ) _TECHMAP_REPLACE_ (
 | 
			
		||||
    .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .PRE(PRE)
 | 
			
		||||
    .D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(PRE)
 | 
			
		||||
  );
 | 
			
		||||
  \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
 | 
			
		||||
  \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(PRE), .Y(Q));
 | 
			
		||||
  wire _TECHMAP_REPLACE_.$currQ = Q;
 | 
			
		||||
  \$__ABC_FF_ abc_dff (.D($nextQ), .Q($currQ));
 | 
			
		||||
  \$__ABC_ASYNC abc_async (.A($currQ), .S(PRE), .Y(Q));
 | 
			
		||||
endmodule
 | 
			
		||||
 | 
			
		||||
module FDSE (output reg Q, input C, CE, D, S);
 | 
			
		||||
| 
						 | 
				
			
			@ -126,26 +131,28 @@ module FDSE (output reg Q, input C, CE, D, S);
 | 
			
		|||
  parameter [0:0] IS_C_INVERTED = 1'b0;
 | 
			
		||||
  parameter [0:0] IS_D_INVERTED = 1'b0;
 | 
			
		||||
  parameter [0:0] IS_S_INVERTED = 1'b0;
 | 
			
		||||
  wire \$nextQ ;
 | 
			
		||||
  wire $nextQ;
 | 
			
		||||
  FDSE #(
 | 
			
		||||
    .INIT(INIT),
 | 
			
		||||
    .IS_C_INVERTED(IS_C_INVERTED),
 | 
			
		||||
    .IS_D_INVERTED(IS_D_INVERTED),
 | 
			
		||||
    .IS_S_INVERTED(IS_S_INVERTED)
 | 
			
		||||
  ) _TECHMAP_REPLACE_ (
 | 
			
		||||
    .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .S(S)
 | 
			
		||||
    .D(D), .Q($nextQ), .C(C), .CE(CE), .S(S)
 | 
			
		||||
  );
 | 
			
		||||
  \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
 | 
			
		||||
  wire _TECHMAP_REPLACE_.$currQ = Q;
 | 
			
		||||
  \$__ABC_FF_ abc_dff (.D($nextQ), .Q(Q));
 | 
			
		||||
endmodule
 | 
			
		||||
module FDSE_1 (output reg Q, input C, CE, D, S);
 | 
			
		||||
  parameter [0:0] INIT = 1'b0;
 | 
			
		||||
  wire \$nextQ ;
 | 
			
		||||
  wire $nextQ;
 | 
			
		||||
  FDSE_1 #(
 | 
			
		||||
    .INIT(|0),
 | 
			
		||||
  ) _TECHMAP_REPLACE_ (
 | 
			
		||||
    .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .S(S)
 | 
			
		||||
    .D(D), .Q($nextQ), .C(C), .CE(CE), .S(S)
 | 
			
		||||
  );
 | 
			
		||||
  \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
 | 
			
		||||
  wire _TECHMAP_REPLACE_.$currQ = Q;
 | 
			
		||||
  \$__ABC_FF_ abc_dff (.D($nextQ), .Q(Q));
 | 
			
		||||
endmodule
 | 
			
		||||
 | 
			
		||||
module RAM32X1D (
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -258,31 +258,31 @@ module FDRE (
 | 
			
		|||
  parameter [0:0] IS_D_INVERTED = 1'b0;
 | 
			
		||||
  parameter [0:0] IS_R_INVERTED = 1'b0;
 | 
			
		||||
  initial Q <= INIT;
 | 
			
		||||
  wire \$currQ ;
 | 
			
		||||
  reg \$nextQ ;
 | 
			
		||||
  always @* if (R == !IS_R_INVERTED) \$nextQ = 1'b0; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
 | 
			
		||||
  wire $currQ;
 | 
			
		||||
  reg $nextQ;
 | 
			
		||||
  always @* if (R == !IS_R_INVERTED) $nextQ = 1'b0; else if (CE) $nextQ = D ^ IS_D_INVERTED; else $nextQ = $currQ;
 | 
			
		||||
`ifdef _ABC
 | 
			
		||||
  // `abc9' requires that complex flops be split into a combinatorial
 | 
			
		||||
  //   box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
 | 
			
		||||
  //   In order to achieve clock-enable behaviour, the current value
 | 
			
		||||
  //   of the sequential output is required which Yosys will
 | 
			
		||||
  //   connect to the special `\$currQ' wire.
 | 
			
		||||
  //   connect to the special `$currQ' wire.
 | 
			
		||||
 | 
			
		||||
  // Special signal indicating clock domain
 | 
			
		||||
  //   (used to partition the module so that `abc9' only performs
 | 
			
		||||
  //    sequential synthesis (reachability analysis) correctly on
 | 
			
		||||
  //    one domain at a time)
 | 
			
		||||
  wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
 | 
			
		||||
  wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
 | 
			
		||||
  // Special signal indicating control domain
 | 
			
		||||
  //   (which, combined with this spell type, encodes to `abc9'
 | 
			
		||||
  //    which flops may be merged together)
 | 
			
		||||
  wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED};
 | 
			
		||||
  always @* Q = \$nextQ ;
 | 
			
		||||
  wire [3:0] $abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED};
 | 
			
		||||
  always @* Q = $nextQ;
 | 
			
		||||
`else
 | 
			
		||||
  assign \$currQ = Q;
 | 
			
		||||
  assign $currQ = Q;
 | 
			
		||||
  generate case (|IS_C_INVERTED)
 | 
			
		||||
    1'b0: always @(posedge C) Q <= \$nextQ ;
 | 
			
		||||
    1'b1: always @(negedge C) Q <= \$nextQ ;
 | 
			
		||||
    1'b0: always @(posedge C) Q <= $nextQ;
 | 
			
		||||
    1'b1: always @(negedge C) Q <= $nextQ;
 | 
			
		||||
  endcase endgenerate
 | 
			
		||||
`endif
 | 
			
		||||
endmodule
 | 
			
		||||
| 
						 | 
				
			
			@ -297,29 +297,29 @@ module FDRE_1 (
 | 
			
		|||
);
 | 
			
		||||
  parameter [0:0] INIT = 1'b0;
 | 
			
		||||
  initial Q <= INIT;
 | 
			
		||||
  wire \$currQ ;
 | 
			
		||||
  reg \$nextQ ;
 | 
			
		||||
  always @* if (R) Q <= 1'b0; else if (CE) Q <= D; else \$nextQ = \$currQ ;
 | 
			
		||||
  wire $currQ;
 | 
			
		||||
  reg $nextQ;
 | 
			
		||||
  always @* if (R) Q <= 1'b0; else if (CE) Q <= D; else $nextQ = $currQ;
 | 
			
		||||
`ifdef _ABC
 | 
			
		||||
  // `abc9' requires that complex flops be split into a combinatorial
 | 
			
		||||
  //   box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
 | 
			
		||||
  //   In order to achieve clock-enable behaviour, the current value
 | 
			
		||||
  //   of the sequential output is required which Yosys will
 | 
			
		||||
  //   connect to the special `\$currQ' wire.
 | 
			
		||||
  //   connect to the special `$currQ' wire.
 | 
			
		||||
 | 
			
		||||
  // Special signal indicating clock domain
 | 
			
		||||
  //   (used to partition the module so that `abc9' only performs
 | 
			
		||||
  //    sequential synthesis (reachability analysis) correctly on
 | 
			
		||||
  //    one domain at a time)
 | 
			
		||||
  wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
 | 
			
		||||
  wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
 | 
			
		||||
  // Special signal indicating control domain
 | 
			
		||||
  //   (which, combined with this spell type, encodes to `abc9'
 | 
			
		||||
  //    which flops may be merged together)
 | 
			
		||||
  wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */};
 | 
			
		||||
  always @* Q = \$nextQ ;
 | 
			
		||||
  wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */};
 | 
			
		||||
  always @* Q = $nextQ;
 | 
			
		||||
`else
 | 
			
		||||
  assign \$currQ = Q;
 | 
			
		||||
  always @(negedge C) Q <= \$nextQ ;
 | 
			
		||||
  assign $currQ = Q;
 | 
			
		||||
  always @(negedge C) Q <= $nextQ;
 | 
			
		||||
`endif
 | 
			
		||||
endmodule
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -341,15 +341,15 @@ module FDCE (
 | 
			
		|||
  parameter [0:0] IS_D_INVERTED = 1'b0;
 | 
			
		||||
  parameter [0:0] IS_CLR_INVERTED = 1'b0;
 | 
			
		||||
  initial Q <= INIT;
 | 
			
		||||
  wire \$currQ ;
 | 
			
		||||
  reg \$nextQ ;
 | 
			
		||||
  always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
 | 
			
		||||
  wire $currQ;
 | 
			
		||||
  reg $nextQ;
 | 
			
		||||
  always @* if (CE) Q <= D ^ IS_D_INVERTED; else $nextQ = $currQ;
 | 
			
		||||
`ifdef _ABC
 | 
			
		||||
  // `abc9' requires that complex flops be split into a combinatorial
 | 
			
		||||
  //   box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
 | 
			
		||||
  //   In order to achieve clock-enable behaviour, the current value
 | 
			
		||||
  //   of the sequential output is required which Yosys will
 | 
			
		||||
  //   connect to the special `\$currQ' wire.
 | 
			
		||||
  //   connect to the special `$currQ' wire.
 | 
			
		||||
  // Since this is an async flop, async behaviour is also dealt with
 | 
			
		||||
  //   using the $_ABC_ASYNC box by abc_map.v
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -357,19 +357,19 @@ module FDCE (
 | 
			
		|||
  //   (used to partition the module so that `abc9' only performs
 | 
			
		||||
  //    sequential synthesis (reachability analysis) correctly on
 | 
			
		||||
  //    one domain at a time)
 | 
			
		||||
  wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
 | 
			
		||||
  wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
 | 
			
		||||
  // Special signal indicating control domain
 | 
			
		||||
  //   (which, combined with this spell type, encodes to `abc9'
 | 
			
		||||
  //    which flops may be merged together)
 | 
			
		||||
  wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED};
 | 
			
		||||
  always @* Q = \$nextQ ;
 | 
			
		||||
  wire [3:0] $abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED};
 | 
			
		||||
  always @* Q = $nextQ;
 | 
			
		||||
`else
 | 
			
		||||
  assign \$currQ = Q;
 | 
			
		||||
  assign $currQ = Q;
 | 
			
		||||
  generate case ({|IS_C_INVERTED, |IS_CLR_INVERTED})
 | 
			
		||||
    2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ;
 | 
			
		||||
    2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ;
 | 
			
		||||
    2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ;
 | 
			
		||||
    2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ;
 | 
			
		||||
    2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= $nextQ;
 | 
			
		||||
    2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= $nextQ;
 | 
			
		||||
    2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= $nextQ;
 | 
			
		||||
    2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= $nextQ;
 | 
			
		||||
  endcase endgenerate
 | 
			
		||||
`endif
 | 
			
		||||
endmodule
 | 
			
		||||
| 
						 | 
				
			
			@ -384,15 +384,15 @@ module FDCE_1 (
 | 
			
		|||
);
 | 
			
		||||
  parameter [0:0] INIT = 1'b0;
 | 
			
		||||
  initial Q <= INIT;
 | 
			
		||||
  wire \$currQ ;
 | 
			
		||||
  reg \$nextQ ;
 | 
			
		||||
  always @* if (CE) Q <= D; else \$nextQ = \$currQ ;
 | 
			
		||||
  wire $currQ;
 | 
			
		||||
  reg $nextQ;
 | 
			
		||||
  always @* if (CE) Q <= D; else $nextQ = $currQ;
 | 
			
		||||
`ifdef _ABC
 | 
			
		||||
  // `abc9' requires that complex flops be split into a combinatorial
 | 
			
		||||
  //   box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
 | 
			
		||||
  //   In order to achieve clock-enable behaviour, the current value
 | 
			
		||||
  //   of the sequential output is required which Yosys will
 | 
			
		||||
  //   connect to the special `\$currQ' wire.
 | 
			
		||||
  //   connect to the special `$currQ' wire.
 | 
			
		||||
  // Since this is an async flop, async behaviour is also dealt with
 | 
			
		||||
  //   using the $_ABC_ASYNC box by abc_map.v
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -400,15 +400,15 @@ module FDCE_1 (
 | 
			
		|||
  //   (used to partition the module so that `abc9' only performs
 | 
			
		||||
  //    sequential synthesis (reachability analysis) correctly on
 | 
			
		||||
  //    one domain at a time)
 | 
			
		||||
  wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
 | 
			
		||||
  wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
 | 
			
		||||
  // Special signal indicating control domain
 | 
			
		||||
  //   (which, combined with this spell type, encodes to `abc9'
 | 
			
		||||
  //    which flops may be merged together)
 | 
			
		||||
  wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */};
 | 
			
		||||
  always @* Q = \$nextQ ;
 | 
			
		||||
  wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */};
 | 
			
		||||
  always @* Q = $nextQ;
 | 
			
		||||
`else
 | 
			
		||||
  assign \$currQ = Q;
 | 
			
		||||
  always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else Q <= \$nextQ ;
 | 
			
		||||
  assign $currQ = Q;
 | 
			
		||||
  always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else Q <= $nextQ;
 | 
			
		||||
`endif
 | 
			
		||||
endmodule
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -430,15 +430,15 @@ module FDPE (
 | 
			
		|||
  parameter [0:0] IS_D_INVERTED = 1'b0;
 | 
			
		||||
  parameter [0:0] IS_PRE_INVERTED = 1'b0;
 | 
			
		||||
  initial Q <= INIT;
 | 
			
		||||
  wire \$currQ ;
 | 
			
		||||
  reg \$nextQ ;
 | 
			
		||||
  always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
 | 
			
		||||
  wire $currQ;
 | 
			
		||||
  reg $nextQ;
 | 
			
		||||
  always @* if (CE) Q <= D ^ IS_D_INVERTED; else $nextQ = $currQ;
 | 
			
		||||
`ifdef _ABC
 | 
			
		||||
  // `abc9' requires that complex flops be split into a combinatorial
 | 
			
		||||
  //   box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
 | 
			
		||||
  //   In order to achieve clock-enable behaviour, the current value
 | 
			
		||||
  //   of the sequential output is required which Yosys will
 | 
			
		||||
  //   connect to the special `\$currQ' wire.
 | 
			
		||||
  //   connect to the special `$currQ' wire.
 | 
			
		||||
  // Since this is an async flop, async behaviour is also dealt with
 | 
			
		||||
  //   using the $_ABC_ASYNC box by abc_map.v
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -446,19 +446,19 @@ module FDPE (
 | 
			
		|||
  //   (used to partition the module so that `abc9' only performs
 | 
			
		||||
  //    sequential synthesis (reachability analysis) correctly on
 | 
			
		||||
  //    one domain at a time)
 | 
			
		||||
  wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
 | 
			
		||||
  wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
 | 
			
		||||
  // Special signal indicating control domain
 | 
			
		||||
  //   (which, combined with this spell type, encodes to `abc9'
 | 
			
		||||
  //    which flops may be merged together)
 | 
			
		||||
  wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED};
 | 
			
		||||
  always @* Q = \$nextQ ;
 | 
			
		||||
  wire [3:0] $abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED};
 | 
			
		||||
  always @* Q = $nextQ;
 | 
			
		||||
`else
 | 
			
		||||
  assign \$currQ = Q;
 | 
			
		||||
  assign $currQ = Q;
 | 
			
		||||
  generate case ({|IS_C_INVERTED, |IS_PRE_INVERTED})
 | 
			
		||||
    2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ;
 | 
			
		||||
    2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ;
 | 
			
		||||
    2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ;
 | 
			
		||||
    2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ;
 | 
			
		||||
    2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= $nextQ;
 | 
			
		||||
    2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= $nextQ;
 | 
			
		||||
    2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= $nextQ;
 | 
			
		||||
    2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= $nextQ;
 | 
			
		||||
  endcase endgenerate
 | 
			
		||||
`endif
 | 
			
		||||
endmodule
 | 
			
		||||
| 
						 | 
				
			
			@ -473,15 +473,15 @@ module FDPE_1 (
 | 
			
		|||
);
 | 
			
		||||
  parameter [0:0] INIT = 1'b1;
 | 
			
		||||
  initial Q <= INIT;
 | 
			
		||||
  wire \$currQ ;
 | 
			
		||||
  reg \$nextQ ;
 | 
			
		||||
  always @* if (CE) Q <= D; else \$nextQ = \$currQ ;
 | 
			
		||||
  wire $currQ;
 | 
			
		||||
  reg $nextQ;
 | 
			
		||||
  always @* if (CE) Q <= D; else $nextQ = $currQ;
 | 
			
		||||
`ifdef _ABC
 | 
			
		||||
  // `abc9' requires that complex flops be split into a combinatorial
 | 
			
		||||
  //   box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
 | 
			
		||||
  //   In order to achieve clock-enable behaviour, the current value
 | 
			
		||||
  //   of the sequential output is required which Yosys will
 | 
			
		||||
  //   connect to the special `\$currQ' wire.
 | 
			
		||||
  //   connect to the special `$currQ' wire.
 | 
			
		||||
  // Since this is an async flop, async behaviour is also dealt with
 | 
			
		||||
  //   using the $_ABC_ASYNC box by abc_map.v
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -489,15 +489,15 @@ module FDPE_1 (
 | 
			
		|||
  //   (used to partition the module so that `abc9' only performs
 | 
			
		||||
  //    sequential synthesis (reachability analysis) correctly on
 | 
			
		||||
  //    one domain at a time)
 | 
			
		||||
  wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
 | 
			
		||||
  wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
 | 
			
		||||
  // Special signal indicating control domain
 | 
			
		||||
  //   (which, combined with this spell type, encodes to `abc9'
 | 
			
		||||
  //    which flops may be merged together)
 | 
			
		||||
  wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */};
 | 
			
		||||
  always @* Q = \$nextQ ;
 | 
			
		||||
  wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */};
 | 
			
		||||
  always @* Q = $nextQ;
 | 
			
		||||
`else
 | 
			
		||||
  assign \$currQ = Q;
 | 
			
		||||
  always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else Q <= \$nextQ ;
 | 
			
		||||
  assign $currQ = Q;
 | 
			
		||||
  always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else Q <= $nextQ;
 | 
			
		||||
`endif
 | 
			
		||||
endmodule
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -519,31 +519,31 @@ module FDSE (
 | 
			
		|||
  parameter [0:0] IS_D_INVERTED = 1'b0;
 | 
			
		||||
  parameter [0:0] IS_S_INVERTED = 1'b0;
 | 
			
		||||
  initial Q <= INIT;
 | 
			
		||||
  wire \$currQ ;
 | 
			
		||||
  reg \$nextQ ;
 | 
			
		||||
  always @* if (S == !IS_S_INVERTED) \$nextQ = 1'b1; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
 | 
			
		||||
  wire $currQ;
 | 
			
		||||
  reg $nextQ;
 | 
			
		||||
  always @* if (S == !IS_S_INVERTED) $nextQ = 1'b1; else if (CE) $nextQ = D ^ IS_D_INVERTED; else $nextQ = $currQ;
 | 
			
		||||
`ifdef _ABC
 | 
			
		||||
  // `abc9' requires that complex flops be split into a combinatorial
 | 
			
		||||
  //   box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
 | 
			
		||||
  //   In order to achieve clock-enable behaviour, the current value
 | 
			
		||||
  //   of the sequential output is required which Yosys will
 | 
			
		||||
  //   connect to the special `\$currQ' wire.
 | 
			
		||||
  //   connect to the special `$currQ' wire.
 | 
			
		||||
 | 
			
		||||
  // Special signal indicating clock domain
 | 
			
		||||
  //   (used to partition the module so that `abc9' only performs
 | 
			
		||||
  //    sequential synthesis (reachability analysis) correctly on
 | 
			
		||||
  //    one domain at a time)
 | 
			
		||||
  wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
 | 
			
		||||
  wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
 | 
			
		||||
  // Special signal indicating control domain
 | 
			
		||||
  //   (which, combined with this spell type, encodes to `abc9'
 | 
			
		||||
  //    which flops may be merged together)
 | 
			
		||||
  wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED};
 | 
			
		||||
  always @* Q = \$nextQ ;
 | 
			
		||||
  wire [3:0] $abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED};
 | 
			
		||||
  always @* Q = $nextQ;
 | 
			
		||||
`else
 | 
			
		||||
  assign \$currQ = Q;
 | 
			
		||||
  assign $currQ = Q;
 | 
			
		||||
  generate case (|IS_C_INVERTED)
 | 
			
		||||
    1'b0: always @(posedge C) Q <= \$nextQ ;
 | 
			
		||||
    1'b1: always @(negedge C) Q <= \$nextQ ;
 | 
			
		||||
    1'b0: always @(posedge C) Q <= $nextQ;
 | 
			
		||||
    1'b1: always @(negedge C) Q <= $nextQ;
 | 
			
		||||
  endcase endgenerate
 | 
			
		||||
`endif
 | 
			
		||||
endmodule
 | 
			
		||||
| 
						 | 
				
			
			@ -558,29 +558,29 @@ module FDSE_1 (
 | 
			
		|||
);
 | 
			
		||||
  parameter [0:0] INIT = 1'b1;
 | 
			
		||||
  initial Q <= INIT;
 | 
			
		||||
  wire \$currQ ;
 | 
			
		||||
  reg \$nextQ ;
 | 
			
		||||
  always @* if (S) \$nextQ = 1'b1; else if (CE) \$nextQ = D; else \$nextQ = \$currQ ;
 | 
			
		||||
  wire $currQ;
 | 
			
		||||
  reg $nextQ;
 | 
			
		||||
  always @* if (S) $nextQ = 1'b1; else if (CE) $nextQ = D; else $nextQ = $currQ;
 | 
			
		||||
`ifdef _ABC
 | 
			
		||||
  // `abc9' requires that complex flops be split into a combinatorial
 | 
			
		||||
  //   box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
 | 
			
		||||
  //   In order to achieve clock-enable behaviour, the current value
 | 
			
		||||
  //   of the sequential output is required which Yosys will
 | 
			
		||||
  //   connect to the special `\$currQ' wire.
 | 
			
		||||
  //   connect to the special `$currQ' wire.
 | 
			
		||||
 | 
			
		||||
  // Special signal indicating clock domain
 | 
			
		||||
  //   (used to partition the module so that `abc9' only performs
 | 
			
		||||
  //    sequential synthesis (reachability analysis) correctly on
 | 
			
		||||
  //    one domain at a time)
 | 
			
		||||
  wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
 | 
			
		||||
  wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
 | 
			
		||||
  // Special signal indicating control domain
 | 
			
		||||
  //   (which, combined with this spell type, encodes to `abc9'
 | 
			
		||||
  //    which flops may be merged together)
 | 
			
		||||
  wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */};
 | 
			
		||||
  always @* Q = \$nextQ ;
 | 
			
		||||
  wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */};
 | 
			
		||||
  always @* Q = $nextQ;
 | 
			
		||||
`else
 | 
			
		||||
  assign \$currQ = Q;
 | 
			
		||||
  always @(negedge C) Q <= \$nextQ ;
 | 
			
		||||
  assign $currQ = Q;
 | 
			
		||||
  always @(negedge C) Q <= $nextQ;
 | 
			
		||||
`endif
 | 
			
		||||
endmodule
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue