3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2025-07-24 13:18:56 +00:00

Moved all tests in arch sub directory

This commit is contained in:
Miodrag Milanovic 2019-10-18 11:06:12 +02:00
parent 3c41599ee1
commit c2ec7ca703
151 changed files with 5 additions and 5 deletions

5
tests/arch/xilinx/.gitignore vendored Normal file
View file

@ -0,0 +1,5 @@
/*.log
/*.out
/run-test.mk
/*_uut.v
/test_macc

View file

@ -0,0 +1,13 @@
module top
(
input [3:0] x,
input [3:0] y,
output [3:0] A,
output [3:0] B
);
assign A = x + y;
assign B = x - y;
endmodule

View file

@ -0,0 +1,11 @@
read_verilog add_sub.v
hierarchy -top top
proc
equiv_opt -assert -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd top # Constrain all select calls below inside the top module
select -assert-count 14 t:LUT2
select -assert-count 6 t:MUXCY
select -assert-count 8 t:XORCY
select -assert-none t:LUT2 t:MUXCY t:XORCY %% t:* %D

47
tests/arch/xilinx/adffs.v Normal file
View file

@ -0,0 +1,47 @@
module adff
( input d, clk, clr, output reg q );
initial begin
q = 0;
end
always @( posedge clk, posedge clr )
if ( clr )
q <= 1'b0;
else
q <= d;
endmodule
module adffn
( input d, clk, clr, output reg q );
initial begin
q = 0;
end
always @( posedge clk, negedge clr )
if ( !clr )
q <= 1'b0;
else
q <= d;
endmodule
module dffs
( input d, clk, pre, clr, output reg q );
initial begin
q = 0;
end
always @( posedge clk )
if ( pre )
q <= 1'b1;
else
q <= d;
endmodule
module ndffnr
( input d, clk, pre, clr, output reg q );
initial begin
q = 0;
end
always @( negedge clk )
if ( !clr )
q <= 1'b0;
else
q <= d;
endmodule

View file

@ -0,0 +1,51 @@
read_verilog adffs.v
design -save read
hierarchy -top adff
proc
equiv_opt -async2sync -assert -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd adff # Constrain all select calls below inside the top module
select -assert-count 1 t:BUFG
select -assert-count 1 t:FDCE
select -assert-none t:BUFG t:FDCE %% t:* %D
design -load read
hierarchy -top adffn
proc
equiv_opt -async2sync -assert -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd adffn # Constrain all select calls below inside the top module
select -assert-count 1 t:BUFG
select -assert-count 1 t:FDCE
select -assert-count 1 t:LUT1
select -assert-none t:BUFG t:FDCE t:LUT1 %% t:* %D
design -load read
hierarchy -top dffs
proc
equiv_opt -async2sync -assert -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd dffs # Constrain all select calls below inside the top module
select -assert-count 1 t:BUFG
select -assert-count 1 t:FDRE
select -assert-count 1 t:LUT2
select -assert-none t:BUFG t:FDRE t:LUT2 %% t:* %D
design -load read
hierarchy -top ndffnr
proc
equiv_opt -async2sync -assert -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd ndffnr # Constrain all select calls below inside the top module
select -assert-count 1 t:BUFG
select -assert-count 1 t:FDRE_1
select -assert-count 1 t:LUT2
select -assert-none t:BUFG t:FDRE_1 t:LUT2 %% t:* %D

View file

@ -0,0 +1,17 @@
module top (
out,
clk,
reset
);
output [7:0] out;
input clk, reset;
reg [7:0] out;
always @(posedge clk, posedge reset)
if (reset) begin
out <= 8'b0 ;
end else
out <= out + 1;
endmodule

View file

@ -0,0 +1,14 @@
read_verilog counter.v
hierarchy -top top
proc
flatten
equiv_opt -async2sync -assert -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd top # Constrain all select calls below inside the top module
select -assert-count 1 t:BUFG
select -assert-count 8 t:FDCE
select -assert-count 1 t:LUT1
select -assert-count 7 t:MUXCY
select -assert-count 8 t:XORCY
select -assert-none t:BUFG t:FDCE t:LUT1 t:MUXCY t:XORCY %% t:* %D

15
tests/arch/xilinx/dffs.v Normal file
View file

@ -0,0 +1,15 @@
module dff
( input d, clk, output reg q );
always @( posedge clk )
q <= d;
endmodule
module dffe
( input d, clk, en, output reg q );
initial begin
q = 0;
end
always @( posedge clk )
if ( en )
q <= d;
endmodule

25
tests/arch/xilinx/dffs.ys Normal file
View file

@ -0,0 +1,25 @@
read_verilog dffs.v
design -save read
hierarchy -top dff
proc
equiv_opt -assert -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd dff # Constrain all select calls below inside the top module
select -assert-count 1 t:BUFG
select -assert-count 1 t:FDRE
select -assert-none t:BUFG t:FDRE %% t:* %D
design -load read
hierarchy -top dffe
proc
equiv_opt -assert -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd dffe # Constrain all select calls below inside the top module
select -assert-count 1 t:BUFG
select -assert-count 1 t:FDRE
select -assert-none t:BUFG t:FDRE %% t:* %D

View file

@ -0,0 +1,25 @@
read_verilog <<EOT
module simd(input [12*4-1:0] a, input [12*4-1:0] b, (* use_dsp="simd" *) output [7*12-1:0] o12, (* use_dsp="simd" *) output [2*24-1:0] o24);
generate
genvar i;
// 4 x 12-bit adder
for (i = 0; i < 4; i++)
assign o12[i*12+:12] = a[i*12+:12] + b[i*12+:12];
// 2 x 24-bit subtract
for (i = 0; i < 2; i++)
assign o24[i*24+:24] = a[i*24+:24] - b[i*24+:24];
endgenerate
reg [3*12-1:0] ro;
always @* begin
ro[0*12+:12] = a[0*10+:10] + b[0*10+:10];
ro[1*12+:12] = a[1*10+:10] + b[1*10+:10];
ro[2*12+:12] = a[2*8+:8] + b[2*8+:8];
end
assign o12[4*12+:3*12] = ro;
endmodule
EOT
proc
equiv_opt -assert -map +/xilinx/cells_sim.v synth_xilinx
design -load postopt
select -assert-count 3 t:DSP48E1

55
tests/arch/xilinx/fsm.v Normal file
View file

@ -0,0 +1,55 @@
module fsm (
clock,
reset,
req_0,
req_1,
gnt_0,
gnt_1
);
input clock,reset,req_0,req_1;
output gnt_0,gnt_1;
wire clock,reset,req_0,req_1;
reg gnt_0,gnt_1;
parameter SIZE = 3 ;
parameter IDLE = 3'b001,GNT0 = 3'b010,GNT1 = 3'b100,GNT2 = 3'b101 ;
reg [SIZE-1:0] state;
reg [SIZE-1:0] next_state;
always @ (posedge clock)
begin : FSM
if (reset == 1'b1) begin
state <= #1 IDLE;
gnt_0 <= 0;
gnt_1 <= 0;
end else
case(state)
IDLE : if (req_0 == 1'b1) begin
state <= #1 GNT0;
gnt_0 <= 1;
end else if (req_1 == 1'b1) begin
gnt_1 <= 1;
state <= #1 GNT0;
end else begin
state <= #1 IDLE;
end
GNT0 : if (req_0 == 1'b1) begin
state <= #1 GNT0;
end else begin
gnt_0 <= 0;
state <= #1 IDLE;
end
GNT1 : if (req_1 == 1'b1) begin
state <= #1 GNT2;
gnt_1 <= req_0;
end
GNT2 : if (req_0 == 1'b1) begin
state <= #1 GNT1;
gnt_1 <= req_1;
end
default : state <= #1 IDLE;
endcase
end
endmodule

14
tests/arch/xilinx/fsm.ys Normal file
View file

@ -0,0 +1,14 @@
read_verilog fsm.v
hierarchy -top fsm
proc
flatten
equiv_opt -assert -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd fsm # Constrain all select calls below inside the top module
select -assert-count 1 t:BUFG
select -assert-count 5 t:FDRE
select -assert-count 1 t:LUT3
select -assert-count 2 t:LUT4
select -assert-count 4 t:LUT6
select -assert-none t:BUFG t:FDRE t:LUT3 t:LUT4 t:LUT6 %% t:* %D

View file

@ -0,0 +1,24 @@
module latchp
( input d, clk, en, output reg q );
always @*
if ( en )
q <= d;
endmodule
module latchn
( input d, clk, en, output reg q );
always @*
if ( !en )
q <= d;
endmodule
module latchsr
( input d, clk, en, clr, pre, output reg q );
always @*
if ( clr )
q <= 1'b0;
else if ( pre )
q <= 1'b1;
else if ( en )
q <= d;
endmodule

View file

@ -0,0 +1,35 @@
read_verilog latches.v
design -save read
hierarchy -top latchp
proc
equiv_opt -async2sync -assert -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd latchp # Constrain all select calls below inside the top module
select -assert-count 1 t:LDCE
select -assert-none t:LDCE %% t:* %D
design -load read
hierarchy -top latchn
proc
equiv_opt -async2sync -assert -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd latchn # Constrain all select calls below inside the top module
select -assert-count 1 t:LDCE
select -assert-count 1 t:LUT1
select -assert-none t:LDCE t:LUT1 %% t:* %D
design -load read
hierarchy -top latchsr
proc
equiv_opt -async2sync -assert -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd latchsr # Constrain all select calls below inside the top module
select -assert-count 1 t:LDCE
select -assert-count 2 t:LUT3
select -assert-none t:LDCE t:LUT3 %% t:* %D

18
tests/arch/xilinx/logic.v Normal file
View file

@ -0,0 +1,18 @@
module top
(
input [0:7] in,
output B1,B2,B3,B4,B5,B6,B7,B8,B9,B10
);
assign B1 = in[0] & in[1];
assign B2 = in[0] | in[1];
assign B3 = in[0] ~& in[1];
assign B4 = in[0] ~| in[1];
assign B5 = in[0] ^ in[1];
assign B6 = in[0] ~^ in[1];
assign B7 = ~in[0];
assign B8 = in[0];
assign B9 = in[0:1] && in [2:3];
assign B10 = in[0:1] || in [2:3];
endmodule

View file

@ -0,0 +1,11 @@
read_verilog logic.v
hierarchy -top top
proc
equiv_opt -assert -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd top # Constrain all select calls below inside the top module
select -assert-count 1 t:LUT1
select -assert-count 6 t:LUT2
select -assert-count 2 t:LUT4
select -assert-none t:LUT1 t:LUT2 t:LUT4 %% t:* %D

View file

@ -0,0 +1,3 @@
../../yosys -qp "synth_xilinx -top macc2; rename -top macc2_uut" macc.v -o macc_uut.v
iverilog -o test_macc macc_tb.v macc_uut.v macc.v ../../techlibs/xilinx/cells_sim.v
vvp -N ./test_macc

84
tests/arch/xilinx/macc.v Normal file
View file

@ -0,0 +1,84 @@
// Signed 40-bit streaming accumulator with 16-bit inputs
// File: HDL_Coding_Techniques/multipliers/multipliers4.v
//
// Source:
// https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_2/ug901-vivado-synthesis.pdf p.90
//
module macc # (parameter SIZEIN = 16, SIZEOUT = 40) (
input clk, ce, sload,
input signed [SIZEIN-1:0] a, b,
output signed [SIZEOUT-1:0] accum_out
);
// Declare registers for intermediate values
reg signed [SIZEIN-1:0] a_reg, b_reg;
reg sload_reg;
reg signed [2*SIZEIN-1:0] mult_reg;
reg signed [SIZEOUT-1:0] adder_out, old_result;
always @* /*(adder_out or sload_reg)*/ begin // Modification necessary to fix sim/synth mismatch
if (sload_reg)
old_result <= 0;
else
// 'sload' is now active (=low) and opens the accumulation loop.
// The accumulator takes the next multiplier output in
// the same cycle.
old_result <= adder_out;
end
always @(posedge clk)
if (ce)
begin
a_reg <= a;
b_reg <= b;
mult_reg <= a_reg * b_reg;
sload_reg <= sload;
// Store accumulation result into a register
adder_out <= old_result + mult_reg;
end
// Output accumulation result
assign accum_out = adder_out;
endmodule
// Adapted variant of above
module macc2 # (parameter SIZEIN = 16, SIZEOUT = 40) (
input clk,
input ce,
input rst,
input signed [SIZEIN-1:0] a, b,
output signed [SIZEOUT-1:0] accum_out,
output overflow
);
// Declare registers for intermediate values
reg signed [SIZEIN-1:0] a_reg, b_reg, a_reg2, b_reg2;
reg signed [2*SIZEIN-1:0] mult_reg = 0;
reg signed [SIZEOUT:0] adder_out = 0;
reg overflow_reg;
always @(posedge clk) begin
//if (ce)
begin
a_reg <= a;
b_reg <= b;
a_reg2 <= a_reg;
b_reg2 <= b_reg;
mult_reg <= a_reg2 * b_reg2;
// Store accumulation result into a register
adder_out <= adder_out + mult_reg;
overflow_reg <= overflow;
end
if (rst) begin
a_reg <= 0;
a_reg2 <= 0;
b_reg <= 0;
b_reg2 <= 0;
mult_reg <= 0;
adder_out <= 0;
overflow_reg <= 1'b0;
end
end
assign overflow = (adder_out >= 2**(SIZEOUT-1)) | overflow_reg;
// Output accumulation result
assign accum_out = overflow ? 2**(SIZEOUT-1)-1 : adder_out;
endmodule

31
tests/arch/xilinx/macc.ys Normal file
View file

@ -0,0 +1,31 @@
read_verilog macc.v
design -save read
hierarchy -top macc
proc
#equiv_opt -assert -map +/xilinx/cells_sim.v synth_xilinx ### TODO
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
miter -equiv -flatten -make_assert -make_outputs gold gate miter
sat -verify -prove-asserts -seq 10 -show-inputs -show-outputs miter
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd macc # Constrain all select calls below inside the top module
select -assert-count 1 t:BUFG
select -assert-count 1 t:FDRE
select -assert-count 1 t:DSP48E1
select -assert-none t:BUFG t:FDRE t:DSP48E1 %% t:* %D
design -load read
hierarchy -top macc2
proc
#equiv_opt -assert -map +/xilinx/cells_sim.v synth_xilinx ### TODO
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
miter -equiv -flatten -make_assert -make_outputs gold gate miter
sat -verify -prove-asserts -seq 10 -show-inputs -show-outputs miter
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd macc2 # Constrain all select calls below inside the top module
select -assert-count 1 t:BUFG
select -assert-count 1 t:DSP48E1
select -assert-count 1 t:FDRE
select -assert-count 1 t:LUT2
select -assert-count 41 t:LUT3
select -assert-none t:BUFG t:DSP48E1 t:FDRE t:LUT2 t:LUT3 %% t:* %D

View file

@ -0,0 +1,96 @@
`timescale 1ns / 1ps
module testbench;
parameter SIZEIN = 16, SIZEOUT = 40;
reg clk, ce, rst;
reg signed [SIZEIN-1:0] a, b;
output signed [SIZEOUT-1:0] REF_accum_out, accum_out;
output REF_overflow, overflow;
integer errcount = 0;
reg ERROR_FLAG = 0;
task clkcycle;
begin
#5;
clk = ~clk;
#10;
clk = ~clk;
#2;
ERROR_FLAG = 0;
if (REF_accum_out !== accum_out) begin
$display("ERROR at %1t: REF_accum_out=%b UUT_accum_out=%b DIFF=%b", $time, REF_accum_out, accum_out, REF_accum_out ^ accum_out);
errcount = errcount + 1;
ERROR_FLAG = 1;
end
if (REF_overflow !== overflow) begin
$display("ERROR at %1t: REF_overflow=%b UUT_overflow=%b DIFF=%b", $time, REF_overflow, overflow, REF_overflow ^ overflow);
errcount = errcount + 1;
ERROR_FLAG = 1;
end
#3;
end
endtask
initial begin
//$dumpfile("test_macc.vcd");
//$dumpvars(0, testbench);
#2;
clk = 1'b0;
ce = 1'b0;
a = 0;
b = 0;
rst = 1'b1;
repeat (10) begin
#10;
clk = 1'b1;
#10;
clk = 1'b0;
#10;
clk = 1'b1;
#10;
clk = 1'b0;
end
rst = 1'b0;
repeat (10000) begin
clkcycle;
ce = 1; //$urandom & $urandom;
//rst = $urandom & $urandom & $urandom & $urandom & $urandom & $urandom;
a = $urandom & ~(1 << (SIZEIN-1));
b = $urandom & ~(1 << (SIZEIN-1));
end
if (errcount == 0) begin
$display("All tests passed.");
$finish;
end else begin
$display("Caught %1d errors.", errcount);
$stop;
end
end
macc2 ref (
.clk(clk),
.ce(ce),
.rst(rst),
.a(a),
.b(b),
.accum_out(REF_accum_out),
.overflow(REF_overflow)
);
macc2_uut uut (
.clk(clk),
.ce(ce),
.rst(rst),
.a(a),
.b(b),
.accum_out(accum_out),
.overflow(overflow)
);
endmodule

View file

@ -0,0 +1,21 @@
module top
(
input [7:0] data_a,
input [6:1] addr_a,
input we_a, clk,
output reg [7:0] q_a
);
// Declare the RAM variable
reg [7:0] ram[63:0];
// Port A
always @ (posedge clk)
begin
if (we_a)
begin
ram[addr_a] <= data_a;
q_a <= data_a;
end
q_a <= ram[addr_a];
end
endmodule

View file

@ -0,0 +1,17 @@
read_verilog memory.v
hierarchy -top top
proc
memory -nomap
equiv_opt -run :prove -map +/xilinx/cells_sim.v synth_xilinx
memory
opt -full
miter -equiv -flatten -make_assert -make_outputs gold gate miter
sat -verify -prove-asserts -seq 5 -set-init-zero -show-inputs -show-outputs miter
design -load postopt
cd top
select -assert-count 1 t:BUFG
select -assert-count 8 t:FDRE
select -assert-count 8 t:RAM64X1D
select -assert-none t:BUFG t:FDRE t:RAM64X1D %% t:* %D

11
tests/arch/xilinx/mul.v Normal file
View file

@ -0,0 +1,11 @@
module top
(
input [5:0] x,
input [5:0] y,
output [11:0] A,
);
assign A = x * y;
endmodule

9
tests/arch/xilinx/mul.ys Normal file
View file

@ -0,0 +1,9 @@
read_verilog mul.v
hierarchy -top top
proc
equiv_opt -assert -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd top # Constrain all select calls below inside the top module
select -assert-count 1 t:DSP48E1
select -assert-none t:DSP48E1 %% t:* %D

View file

@ -0,0 +1,30 @@
/*
Example from: https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug901-vivado-synthesis.pdf [p. 89].
*/
// Unsigned 16x24-bit Multiplier
// 1 latency stage on operands
// 3 latency stage after the multiplication
// File: multipliers2.v
//
module mul_unsigned (clk, A, B, RES);
parameter WIDTHA = /*16*/ 6;
parameter WIDTHB = /*24*/ 9;
input clk;
input [WIDTHA-1:0] A;
input [WIDTHB-1:0] B;
output [WIDTHA+WIDTHB-1:0] RES;
reg [WIDTHA-1:0] rA;
reg [WIDTHB-1:0] rB;
reg [WIDTHA+WIDTHB-1:0] M [3:0];
integer i;
always @(posedge clk)
begin
rA <= A;
rB <= B;
M[0] <= rA * rB;
for (i = 0; i < 3; i = i+1)
M[i+1] <= M[i];
end
assign RES = M[3];
endmodule

View file

@ -0,0 +1,11 @@
read_verilog mul_unsigned.v
hierarchy -top mul_unsigned
proc
equiv_opt -assert -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd mul_unsigned # Constrain all select calls below inside the top module
select -assert-count 1 t:BUFG
select -assert-count 1 t:DSP48E1
select -assert-count 30 t:FDRE
select -assert-none t:DSP48E1 t:FDRE t:BUFG %% t:* %D

65
tests/arch/xilinx/mux.v Normal file
View file

@ -0,0 +1,65 @@
module mux2 (S,A,B,Y);
input S;
input A,B;
output reg Y;
always @(*)
Y = (S)? B : A;
endmodule
module mux4 ( S, D, Y );
input[1:0] S;
input[3:0] D;
output Y;
reg Y;
wire[1:0] S;
wire[3:0] D;
always @*
begin
case( S )
0 : Y = D[0];
1 : Y = D[1];
2 : Y = D[2];
3 : Y = D[3];
endcase
end
endmodule
module mux8 ( S, D, Y );
input[2:0] S;
input[7:0] D;
output Y;
reg Y;
wire[2:0] S;
wire[7:0] D;
always @*
begin
case( S )
0 : Y = D[0];
1 : Y = D[1];
2 : Y = D[2];
3 : Y = D[3];
4 : Y = D[4];
5 : Y = D[5];
6 : Y = D[6];
7 : Y = D[7];
endcase
end
endmodule
module mux16 (D, S, Y);
input [15:0] D;
input [3:0] S;
output Y;
assign Y = D[S];
endmodule

45
tests/arch/xilinx/mux.ys Normal file
View file

@ -0,0 +1,45 @@
read_verilog mux.v
design -save read
hierarchy -top mux2
proc
equiv_opt -assert -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd mux2 # Constrain all select calls below inside the top module
select -assert-count 1 t:LUT3
select -assert-none t:LUT3 %% t:* %D
design -load read
hierarchy -top mux4
proc
equiv_opt -assert -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd mux4 # Constrain all select calls below inside the top module
select -assert-count 1 t:LUT6
select -assert-none t:LUT6 %% t:* %D
design -load read
hierarchy -top mux8
proc
equiv_opt -assert -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd mux8 # Constrain all select calls below inside the top module
select -assert-count 1 t:LUT3
select -assert-count 2 t:LUT6
select -assert-none t:LUT3 t:LUT6 %% t:* %D
design -load read
hierarchy -top mux16
proc
equiv_opt -assert -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd mux16 # Constrain all select calls below inside the top module
select -assert-count 5 t:LUT6
select -assert-none t:LUT6 %% t:* %D

View file

@ -0,0 +1,57 @@
read_verilog -icells <<EOT
module \$__XILINX_SHREG_ (input C, input D, input [31:0] L, input E, output Q, output SO);
parameter DEPTH = 1;
parameter [DEPTH-1:0] INIT = 0;
parameter CLKPOL = 1;
parameter ENPOL = 2;
wire pos_clk = C == CLKPOL;
reg pos_en;
always @(E)
if (ENPOL == 2) pos_en = 1'b1;
else pos_en = (E == ENPOL[0]);
reg [DEPTH-1:0] r;
always @(posedge pos_clk)
if (pos_en)
r <= {r[DEPTH-2:0], D};
assign Q = r[L];
assign SO = r[DEPTH-1];
endmodule
EOT
read_verilog +/xilinx/cells_sim.v
proc
design -save model
test_pmgen -generate xilinx_srl.fixed
hierarchy -top pmtest_xilinx_srl_pm_fixed
flatten; opt_clean
design -save gold
xilinx_srl -fixed
techmap -autoproc -map %model
design -stash gate
design -copy-from gold -as gold pmtest_xilinx_srl_pm_fixed
design -copy-from gate -as gate pmtest_xilinx_srl_pm_fixed
dff2dffe -unmap # sat does not support flops-with-enable yet
miter -equiv -flatten -make_assert gold gate miter
sat -set-init-zero -seq 5 -verify -prove-asserts miter
design -load model
test_pmgen -generate xilinx_srl.variable
hierarchy -top pmtest_xilinx_srl_pm_variable
flatten; opt_clean
design -save gold
xilinx_srl -variable
techmap -autoproc -map %model
design -stash gate
design -copy-from gold -as gold pmtest_xilinx_srl_pm_variable
design -copy-from gate -as gate pmtest_xilinx_srl_pm_variable
dff2dffe -unmap # sat does not support flops-with-enable yet
miter -equiv -flatten -make_assert gold gate miter
sat -set-init-zero -seq 5 -verify -prove-asserts miter

20
tests/arch/xilinx/run-test.sh Executable file
View file

@ -0,0 +1,20 @@
#!/usr/bin/env bash
set -e
{
echo "all::"
for x in *.ys; do
echo "all:: run-$x"
echo "run-$x:"
echo " @echo 'Running $x..'"
echo " @../../yosys -ql ${x%.ys}.log -w 'Yosys has only limited support for tri-state logic at the moment.' $x"
done
for s in *.sh; do
if [ "$s" != "run-test.sh" ]; then
echo "all:: run-$s"
echo "run-$s:"
echo " @echo 'Running $s..'"
echo " @bash $s"
fi
done
} > run-test.mk
exec ${MAKE:-make} -f run-test.mk

View file

@ -0,0 +1,16 @@
module top (
out,
clk,
in
);
output [7:0] out;
input signed clk, in;
reg signed [7:0] out = 0;
always @(posedge clk)
begin
out <= out >> 1;
out[7] <= in;
end
endmodule

View file

@ -0,0 +1,11 @@
read_verilog shifter.v
hierarchy -top top
proc
flatten
equiv_opt -assert -map +/xilinx/cells_sim.v synth_xilinx # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd top # Constrain all select calls below inside the top module
select -assert-count 1 t:BUFG
select -assert-count 8 t:FDRE
select -assert-none t:BUFG t:FDRE %% t:* %D

View file

@ -0,0 +1,8 @@
module tristate (en, i, o);
input en;
input i;
output reg o;
always @(en or i)
o <= (en)? i : 1'bZ;
endmodule

View file

@ -0,0 +1,12 @@
read_verilog tribuf.v
hierarchy -top tristate
proc
tribuf
flatten
synth
equiv_opt -assert -map +/xilinx/cells_sim.v -map +/simcells.v synth_xilinx # equivalency check
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd tristate # Constrain all select calls below inside the top module
# TODO :: Tristate logic not yet supported; see https://github.com/YosysHQ/yosys/issues/1225
select -assert-count 1 t:$_TBUF_
select -assert-none t:$_TBUF_ %% t:* %D

View file

@ -0,0 +1,40 @@
module xilinx_srl_static_test(input i, clk, output [1:0] q);
reg head = 1'b0;
reg [3:0] shift1 = 4'b0000;
reg [3:0] shift2 = 4'b0000;
always @(posedge clk) begin
head <= i;
shift1 <= {shift1[2:0], head};
shift2 <= {shift2[2:0], head};
end
assign q = {shift2[3], shift1[3]};
endmodule
module xilinx_srl_variable_test(input i, clk, input [1:0] l1, l2, output [1:0] q);
reg head = 1'b0;
reg [3:0] shift1 = 4'b0000;
reg [3:0] shift2 = 4'b0000;
always @(posedge clk) begin
head <= i;
shift1 <= {shift1[2:0], head};
shift2 <= {shift2[2:0], head};
end
assign q = {shift2[l2], shift1[l1]};
endmodule
module $__XILINX_SHREG_(input C, D, E, input [1:0] L, output Q);
parameter CLKPOL = 1;
parameter ENPOL = 1;
parameter DEPTH = 1;
parameter [DEPTH-1:0] INIT = {DEPTH{1'b0}};
reg [DEPTH-1:0] r = INIT;
wire clk = C ^ CLKPOL;
always @(posedge C)
if (E)
r <= { r[DEPTH-2:0], D };
assign Q = r[L];
endmodule

View file

@ -0,0 +1,67 @@
read_verilog xilinx_srl.v
design -save read
design -copy-to model $__XILINX_SHREG_
hierarchy -top xilinx_srl_static_test
prep
design -save gold
techmap
xilinx_srl -fixed
opt
# stat
# show -width
select -assert-count 1 t:$_DFF_P_
select -assert-count 2 t:$__XILINX_SHREG_
design -stash gate
design -import gold -as gold
design -import gate -as gate
design -copy-from model -as $__XILINX_SHREG_ \$__XILINX_SHREG_
prep
miter -equiv -flatten -make_assert -make_outputs gold gate miter
dump gate
sat -verify -prove-asserts -show-ports -seq 5 miter
#design -load gold
#stat
#design -load gate
#stat
##########
design -load read
design -copy-to model $__XILINX_SHREG_
hierarchy -top xilinx_srl_variable_test
prep
design -save gold
xilinx_srl -variable
opt
#stat
# show -width
# write_verilog -noexpr -norename
select -assert-count 1 t:$dff
select -assert-count 1 t:$dff r:WIDTH=1 %i
select -assert-count 2 t:$__XILINX_SHREG_
design -stash gate
design -import gold -as gold
design -import gate -as gate
design -copy-from model -as $__XILINX_SHREG_ \$__XILINX_SHREG_
prep
miter -equiv -flatten -make_assert -make_outputs gold gate miter
sat -verify -prove-asserts -show-ports -seq 5 miter
# design -load gold
# stat
# design -load gate
# stat