3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2025-09-11 04:01:28 +00:00
This commit is contained in:
Robert O'Callahan 2025-09-10 11:49:17 +02:00 committed by GitHub
commit b3baba4522
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
79 changed files with 1002 additions and 484 deletions

View file

@ -709,12 +709,13 @@ struct BtorWorker
}
}
Const initval;
Const::Builder initval_bits(GetSize(sig_q));
for (int i = 0; i < GetSize(sig_q); i++)
if (initbits.count(sig_q[i]))
initval.bits().push_back(initbits.at(sig_q[i]) ? State::S1 : State::S0);
initval_bits.push_back(initbits.at(sig_q[i]) ? State::S1 : State::S0);
else
initval.bits().push_back(State::Sx);
initval_bits.push_back(State::Sx);
Const initval = initval_bits.build();
int nid_init_val = -1;
@ -1043,10 +1044,11 @@ struct BtorWorker
{
if (bit.wire == nullptr)
{
Const c(bit.data);
while (i+GetSize(c) < GetSize(sig) && sig[i+GetSize(c)].wire == nullptr)
c.bits().push_back(sig[i+GetSize(c)].data);
Const::Builder c_bits;
c_bits.push_back(bit.data);
while (i + GetSize(c_bits) < GetSize(sig) && sig[i + GetSize(c_bits)].wire == nullptr)
c_bits.push_back(sig[i + GetSize(c_bits)].data);
Const c = c_bits.build();
if (consts.count(c) == 0) {
int sid = get_bv_sid(GetSize(c));

View file

@ -1668,26 +1668,29 @@ struct CxxrtlWorker {
f << signal_temp << " == ";
dump_sigspec(compare, /*is_lhs=*/false, for_debug);
} else if (compare.is_fully_const()) {
RTLIL::Const compare_mask, compare_value;
RTLIL::Const::Builder compare_mask_builder(compare.size());
RTLIL::Const::Builder compare_value_builder(compare.size());
for (auto bit : compare.as_const()) {
switch (bit) {
case RTLIL::S0:
case RTLIL::S1:
compare_mask.bits().push_back(RTLIL::S1);
compare_value.bits().push_back(bit);
compare_mask_builder.push_back(RTLIL::S1);
compare_value_builder.push_back(bit);
break;
case RTLIL::Sx:
case RTLIL::Sz:
case RTLIL::Sa:
compare_mask.bits().push_back(RTLIL::S0);
compare_value.bits().push_back(RTLIL::S0);
compare_mask_builder.push_back(RTLIL::S0);
compare_value_builder.push_back(RTLIL::S0);
break;
default:
log_assert(false);
}
}
RTLIL::Const compare_mask = compare_mask_builder.build();
RTLIL::Const compare_value = compare_value_builder.build();
f << "and_uu<" << compare.size() << ">(" << signal_temp << ", ";
dump_const(compare_mask);
f << ") == ";
@ -3042,7 +3045,7 @@ struct CxxrtlWorker {
if (init == RTLIL::Const()) {
init = RTLIL::Const(State::Sx, GetSize(bit.wire));
}
init.bits()[bit.offset] = port.init_value[i];
init.set(bit.offset, port.init_value[i]);
}
}
}

View file

@ -105,7 +105,7 @@ struct MemContentsTest {
RTLIL::Const values;
for(addr_t addr = low; addr <= high; addr++) {
RTLIL::Const word(data_dist(rnd), data_width);
values.bits().insert(values.bits().end(), word.begin(), word.end());
values.append(word);
}
insert_concatenated(low, values);
}

View file

@ -657,7 +657,7 @@ struct SimplecWorker
{
SigSpec sig = sigmaps.at(module)(w);
Const val = w->attributes.at(ID::init);
val.bits().resize(GetSize(sig), State::Sx);
val.resize(GetSize(sig), State::Sx);
for (int i = 0; i < GetSize(sig); i++)
if (val[i] == State::S0 || val[i] == State::S1) {

View file

@ -1079,14 +1079,14 @@ struct Smt2Worker
RTLIL::SigSpec sig = sigmap(wire);
Const val = wire->attributes.at(ID::init);
val.bits().resize(GetSize(sig), State::Sx);
val.resize(GetSize(sig), State::Sx);
if (bvmode && GetSize(sig) > 1) {
Const mask(State::S1, GetSize(sig));
bool use_mask = false;
for (int i = 0; i < GetSize(sig); i++)
if (val[i] != State::S0 && val[i] != State::S1) {
val.bits()[i] = State::S0;
mask.bits()[i] = State::S0;
val.set(i, State::S0);
mask.set(i, State::S0);
use_mask = true;
}
if (use_mask)
@ -1361,10 +1361,10 @@ struct Smt2Worker
for (int k = 0; k < GetSize(initword); k++) {
if (initword[k] == State::S0 || initword[k] == State::S1) {
gen_init_constr = true;
initmask.bits()[k] = State::S1;
initmask.set(k, State::S1);
} else {
initmask.bits()[k] = State::S0;
initword.bits()[k] = State::S0;
initmask.set(k, State::S0);
initword.set(k, State::S0);
}
}

View file

@ -327,19 +327,20 @@ void dump_const(std::ostream &f, const RTLIL::Const &data, int width = -1, int o
void dump_reg_init(std::ostream &f, SigSpec sig)
{
Const initval;
bool gotinit = false;
Const::Builder initval_bits(sig.size());
for (auto bit : active_sigmap(sig)) {
if (active_initdata.count(bit)) {
initval.bits().push_back(active_initdata.at(bit));
initval_bits.push_back(active_initdata.at(bit));
gotinit = true;
} else {
initval.bits().push_back(State::Sx);
initval_bits.push_back(State::Sx);
}
}
if (gotinit) {
Const initval = initval_bits.build();
f << " = ";
dump_const(f, initval);
}
@ -767,9 +768,10 @@ void dump_memory(std::ostream &f, std::string indent, Mem &mem)
dump_sigspec(os, port.data.extract(sub * mem.width, mem.width));
os << stringf(" = %s[", mem_id);;
if (port.wide_log2) {
Const addr_lo;
Const::Builder addr_lo_builder(port.wide_log2);
for (int i = 0; i < port.wide_log2; i++)
addr_lo.bits().push_back(State(sub >> i & 1));
addr_lo_builder.push_back(State(sub >> i & 1));
Const addr_lo = addr_lo_builder.build();
os << "{";
os << temp_id;
os << ", ";

View file

@ -448,7 +448,7 @@ void AigerReader::parse_xaiger()
bool success = ce.eval(o);
log_assert(success);
log_assert(o.wire == nullptr);
lut_mask.bits()[gray] = o.data;
lut_mask.set(gray, o.data);
}
RTLIL::Cell *output_cell = module->cell(stringf("$and$aiger%d$%d", aiger_autoidx, rootNodeID));
log_assert(output_cell);

View file

@ -1076,8 +1076,10 @@ RTLIL::Const AstNode::realAsConst(int width)
bool is_negative = v < 0;
if (is_negative)
v *= -1;
RTLIL::Const::Builder b(width);
for (int i = 0; i < width; i++, v /= 2)
result.bits().push_back((fmod(floor(v), 2) != 0) ? RTLIL::State::S1 : RTLIL::State::S0);
b.push_back((fmod(floor(v), 2) != 0) ? RTLIL::State::S1 : RTLIL::State::S0);
result = b.build();
if (is_negative)
result = const_neg(result, result, false, false, result.size());
}

View file

@ -732,16 +732,17 @@ struct AST_INTERNAL::ProcessGenerator
current_case->actions.push_back(SigSig(en, true));
RTLIL::SigSpec triggers;
RTLIL::Const polarity;
RTLIL::Const::Builder polarity_builder;
for (auto sync : proc->syncs) {
if (sync->type == RTLIL::STp) {
triggers.append(sync->signal);
polarity.bits().push_back(RTLIL::S1);
polarity_builder.push_back(RTLIL::S1);
} else if (sync->type == RTLIL::STn) {
triggers.append(sync->signal);
polarity.bits().push_back(RTLIL::S0);
polarity_builder.push_back(RTLIL::S0);
}
}
RTLIL::Const polarity = polarity_builder.build();
RTLIL::Cell *cell = current_module->addCell(sstr.str(), ID($print));
set_src_attr(cell, ast);
@ -829,16 +830,17 @@ struct AST_INTERNAL::ProcessGenerator
current_case->actions.push_back(SigSig(en, true));
RTLIL::SigSpec triggers;
RTLIL::Const polarity;
RTLIL::Const::Builder polarity_builder;
for (auto sync : proc->syncs) {
if (sync->type == RTLIL::STp) {
triggers.append(sync->signal);
polarity.bits().push_back(RTLIL::S1);
polarity_builder.push_back(RTLIL::S1);
} else if (sync->type == RTLIL::STn) {
triggers.append(sync->signal);
polarity.bits().push_back(RTLIL::S0);
polarity_builder.push_back(RTLIL::S0);
}
}
RTLIL::Const polarity = polarity_builder.build();
RTLIL::Cell *cell = current_module->addCell(cellname, ID($check));
set_src_attr(cell, ast);
@ -893,7 +895,7 @@ struct AST_INTERNAL::ProcessGenerator
RTLIL::Const priority_mask = RTLIL::Const(0, cur_idx);
for (int i = 0; i < portid; i++) {
int new_bit = port_map[std::make_pair(memid, i)];
priority_mask.bits()[new_bit] = orig_priority_mask[i];
priority_mask.set(new_bit, orig_priority_mask[i]);
}
action.priority_mask = priority_mask;
sync->mem_write_actions.push_back(action);

View file

@ -4366,7 +4366,7 @@ replace_fcall_later:;
log_assert(a.size() == b.size());
for (auto i = 0; i < a.size(); i++)
if (a[i] != b[i])
a.bits()[i] = RTLIL::State::Sx;
a.set(i, RTLIL::State::Sx);
newNode = mkconst_bits(location, a.to_bits(), sign_hint);
} else if (children[1]->isConst() && children[2]->isConst()) {
newNode = std::make_unique<AstNode>(location, AST_REALVALUE);
@ -5368,8 +5368,11 @@ bool AstNode::replace_variables(std::map<std::string, AstNode::varinfo_t> &varia
offset -= variables.at(str).offset;
if (variables.at(str).range_swapped)
offset = -offset;
std::vector<RTLIL::State> &var_bits = variables.at(str).val.bits();
std::vector<RTLIL::State> new_bits(var_bits.begin() + offset, var_bits.begin() + offset + width);
const RTLIL::Const &val = variables.at(str).val;
std::vector<RTLIL::State> new_bits;
new_bits.reserve(width);
for (int i = 0; i < width; i++)
new_bits.push_back(val[offset+i]);
auto newNode = mkconst_bits(location, new_bits, variables.at(str).is_signed);
newNode->cloneInto(*this);
return true;
@ -5513,7 +5516,7 @@ std::unique_ptr<AstNode> AstNode::eval_const_function(AstNode *fcall, bool must_
int index = i + offset - v.offset;
if (v.range_swapped)
index = -index;
v.val.bits().at(index) = r.at(i);
v.val.set(index, r.at(i));
}
}

View file

@ -149,7 +149,7 @@ void parse_blif(RTLIL::Design *design, std::istream &f, IdString dff_name, bool
if (buffer[0] == '.')
{
if (lutptr) {
for (auto &bit : lutptr->bits())
for (auto bit : *lutptr)
if (bit == RTLIL::State::Sx)
bit = lut_default_state;
lutptr = NULL;
@ -321,9 +321,10 @@ void parse_blif(RTLIL::Design *design, std::istream &f, IdString dff_name, bool
const_v = Const(str);
} else {
int n = strlen(v);
const_v.bits().resize(n);
Const::Builder const_v_builder(n);
for (int i = 0; i < n; i++)
const_v.bits()[i] = v[n-i-1] != '0' ? State::S1 : State::S0;
const_v_builder.push_back(v[n-i-1] != '0' ? State::S1 : State::S0);
const_v = const_v_builder.build();
}
if (!strcmp(cmd, ".attr")) {
if (obj_attributes == nullptr) {
@ -563,21 +564,23 @@ void parse_blif(RTLIL::Design *design, std::istream &f, IdString dff_name, bool
log_assert(sopcell->parameters[ID::WIDTH].as_int() == input_len);
sopcell->parameters[ID::DEPTH] = sopcell->parameters[ID::DEPTH].as_int() + 1;
Const::Builder table_bits_builder(input_len * 2);
for (int i = 0; i < input_len; i++)
switch (input[i]) {
case '0':
sopcell->parameters[ID::TABLE].bits().push_back(State::S1);
sopcell->parameters[ID::TABLE].bits().push_back(State::S0);
table_bits_builder.push_back(State::S1);
table_bits_builder.push_back(State::S0);
break;
case '1':
sopcell->parameters[ID::TABLE].bits().push_back(State::S0);
sopcell->parameters[ID::TABLE].bits().push_back(State::S1);
table_bits_builder.push_back(State::S0);
table_bits_builder.push_back(State::S1);
break;
default:
sopcell->parameters[ID::TABLE].bits().push_back(State::S0);
sopcell->parameters[ID::TABLE].bits().push_back(State::S0);
table_bits_builder.push_back(State::S0);
table_bits_builder.push_back(State::S0);
break;
}
sopcell->parameters[ID::TABLE].append(table_bits_builder.build());
if (sopmode == -1) {
sopmode = (*output == '1');
@ -605,7 +608,7 @@ void parse_blif(RTLIL::Design *design, std::istream &f, IdString dff_name, bool
goto try_next_value;
}
}
lutptr->bits().at(i) = !strcmp(output, "0") ? RTLIL::State::S0 : RTLIL::State::S1;
lutptr->set(i, !strcmp(output, "0") ? RTLIL::State::S0 : RTLIL::State::S1);
try_next_value:;
}

View file

@ -258,7 +258,7 @@ Const json_parse_attr_param_value(JsonNode *node)
}
} else
if (node->type == 'N') {
value = Const(node->data_number, 32);
value = Const(node->data_number);
if (node->data_number < 0)
value.flags |= RTLIL::CONST_FLAG_SIGNED;
} else

View file

@ -455,16 +455,17 @@ constant:
}
while ((int)bits.size() > width)
bits.pop_back();
$$ = new RTLIL::Const;
for (auto it = bits.begin(); it != bits.end(); it++)
$$->bits().push_back(*it);
RTLIL::Const::Builder builder(bits.size());
for (RTLIL::State bit : bits)
builder.push_back(bit);
$$ = new RTLIL::Const(builder.build());
if (is_signed) {
$$->flags |= RTLIL::CONST_FLAG_SIGNED;
}
free($1);
} |
TOK_INT {
$$ = new RTLIL::Const($1, 32);
$$ = new RTLIL::Const($1);
} |
TOK_STRING {
$$ = new RTLIL::Const($1);

View file

@ -267,13 +267,13 @@ static const RTLIL::Const extract_vhdl_bit_vector(std::string &val, std::string
static const RTLIL::Const extract_vhdl_integer(std::string &val)
{
char *end;
return RTLIL::Const((int)std::strtol(val.c_str(), &end, 10), 32);
return RTLIL::Const((int)std::strtol(val.c_str(), &end, 10));
}
static const RTLIL::Const extract_vhdl_char(std::string &val)
{
if (val.size()==3 && val[0]=='\"' && val.back()=='\"')
return RTLIL::Const((int)val[1], 32);
return RTLIL::Const((int)val[1]);
log_error("Error parsing VHDL character.\n");
}
@ -311,7 +311,7 @@ static const RTLIL::Const extract_vhdl_const(const char *value, bool output_sig
} else if ((value[0] == '-' || (value[0] >= '0' && value[0] <= '9')) &&
((decimal = std::strtol(value, &end, 10)), !end[0])) {
is_signed = output_signed;
c = RTLIL::Const((int)decimal, 32);
c = RTLIL::Const((int)decimal);
} else if (val == "false") {
c = RTLIL::Const::from_string("0");
} else if (val == "true") {
@ -344,7 +344,7 @@ static const RTLIL::Const extract_verilog_const(const char *value, bool allow_s
} else if ((value[0] == '-' || (value[0] >= '0' && value[0] <= '9')) &&
((decimal = std::strtol(value, &end, 10)), !end[0])) {
is_signed = output_signed;
c = RTLIL::Const((int)decimal, 32);
c = RTLIL::Const((int)decimal);
} else if (allow_string) {
c = RTLIL::Const(val);
} else {

View file

@ -100,7 +100,7 @@ struct BitPatternPool
bits_t sig2bits(RTLIL::SigSpec sig)
{
bits_t bits;
bits.bitdata = sig.as_const().bits();
bits.bitdata = sig.as_const().to_bits();
for (auto &b : bits.bitdata)
if (b > RTLIL::State::S1)
b = RTLIL::State::Sa;

View file

@ -33,10 +33,7 @@ static void extend_u0(RTLIL::Const &arg, int width, bool is_signed)
if (arg.size() > 0 && is_signed)
padding = arg.back();
while (GetSize(arg) < width)
arg.bits().push_back(padding);
arg.bits().resize(width);
arg.resize(width, padding);
}
static BigInteger const2big(const RTLIL::Const &val, bool as_signed, int &undef_bit_pos)
@ -79,12 +76,12 @@ static RTLIL::Const big2const(const BigInteger &val, int result_len, int undef_b
{
mag--;
for (auto i = 0; i < result_len; i++)
result.bits()[i] = mag.getBit(i) ? RTLIL::State::S0 : RTLIL::State::S1;
result.set(i, mag.getBit(i) ? RTLIL::State::S0 : RTLIL::State::S1);
}
else
{
for (auto i = 0; i < result_len; i++)
result.bits()[i] = mag.getBit(i) ? RTLIL::State::S1 : RTLIL::State::S0;
result.set(i, mag.getBit(i) ? RTLIL::State::S1 : RTLIL::State::S0);
}
}
@ -140,11 +137,11 @@ RTLIL::Const RTLIL::const_not(const RTLIL::Const &arg1, const RTLIL::Const&, boo
RTLIL::Const result(RTLIL::State::Sx, result_len);
for (auto i = 0; i < result_len; i++) {
if (i >= GetSize(arg1_ext))
result.bits()[i] = RTLIL::State::S0;
else if (arg1_ext.bits()[i] == RTLIL::State::S0)
result.bits()[i] = RTLIL::State::S1;
else if (arg1_ext.bits()[i] == RTLIL::State::S1)
result.bits()[i] = RTLIL::State::S0;
result.set(i, RTLIL::State::S0);
else if (arg1_ext[i] == RTLIL::State::S0)
result.set(i, RTLIL::State::S1);
else if (arg1_ext[i] == RTLIL::State::S1)
result.set(i, RTLIL::State::S0);
}
return result;
@ -161,9 +158,9 @@ static RTLIL::Const logic_wrapper(RTLIL::State(*logic_func)(RTLIL::State, RTLIL:
RTLIL::Const result(RTLIL::State::Sx, result_len);
for (auto i = 0; i < result_len; i++) {
RTLIL::State a = i < GetSize(arg1) ? arg1.bits()[i] : RTLIL::State::S0;
RTLIL::State b = i < GetSize(arg2) ? arg2.bits()[i] : RTLIL::State::S0;
result.bits()[i] = logic_func(a, b);
RTLIL::State a = i < GetSize(arg1) ? arg1[i] : RTLIL::State::S0;
RTLIL::State b = i < GetSize(arg2) ? arg2[i] : RTLIL::State::S0;
result.set(i, logic_func(a, b));
}
return result;
@ -197,8 +194,8 @@ static RTLIL::Const logic_reduce_wrapper(RTLIL::State initial, RTLIL::State(*log
temp = logic_func(temp, arg1[i]);
RTLIL::Const result(temp);
while (GetSize(result) < result_len)
result.bits().push_back(RTLIL::State::S0);
if (GetSize(result) < result_len)
result.resize(result_len, RTLIL::State::S0);
return result;
}
@ -222,9 +219,9 @@ RTLIL::Const RTLIL::const_reduce_xnor(const RTLIL::Const &arg1, const RTLIL::Con
RTLIL::Const buffer = logic_reduce_wrapper(RTLIL::State::S0, logic_xor, arg1, result_len);
if (!buffer.empty()) {
if (buffer.front() == RTLIL::State::S0)
buffer.bits().front() = RTLIL::State::S1;
buffer.set(0, RTLIL::State::S1);
else if (buffer.front() == RTLIL::State::S1)
buffer.bits().front() = RTLIL::State::S0;
buffer.set(0, RTLIL::State::S0);
}
return buffer;
}
@ -239,9 +236,8 @@ RTLIL::Const RTLIL::const_logic_not(const RTLIL::Const &arg1, const RTLIL::Const
int undef_bit_pos_a = -1;
BigInteger a = const2big(arg1, signed1, undef_bit_pos_a);
RTLIL::Const result(a.isZero() ? undef_bit_pos_a >= 0 ? RTLIL::State::Sx : RTLIL::State::S1 : RTLIL::State::S0);
while (GetSize(result) < result_len)
result.bits().push_back(RTLIL::State::S0);
if (GetSize(result) < result_len)
result.resize(result_len, RTLIL::State::S0);
return result;
}
@ -254,9 +250,8 @@ RTLIL::Const RTLIL::const_logic_and(const RTLIL::Const &arg1, const RTLIL::Const
RTLIL::State bit_a = a.isZero() ? undef_bit_pos_a >= 0 ? RTLIL::State::Sx : RTLIL::State::S0 : RTLIL::State::S1;
RTLIL::State bit_b = b.isZero() ? undef_bit_pos_b >= 0 ? RTLIL::State::Sx : RTLIL::State::S0 : RTLIL::State::S1;
RTLIL::Const result(logic_and(bit_a, bit_b));
while (GetSize(result) < result_len)
result.bits().push_back(RTLIL::State::S0);
if (GetSize(result) < result_len)
result.resize(result_len, RTLIL::State::S0);
return result;
}
@ -269,9 +264,8 @@ RTLIL::Const RTLIL::const_logic_or(const RTLIL::Const &arg1, const RTLIL::Const
RTLIL::State bit_a = a.isZero() ? undef_bit_pos_a >= 0 ? RTLIL::State::Sx : RTLIL::State::S0 : RTLIL::State::S1;
RTLIL::State bit_b = b.isZero() ? undef_bit_pos_b >= 0 ? RTLIL::State::Sx : RTLIL::State::S0 : RTLIL::State::S1;
RTLIL::Const result(logic_or(bit_a, bit_b));
while (GetSize(result) < result_len)
result.bits().push_back(RTLIL::State::S0);
if (GetSize(result) < result_len)
result.resize(result_len, RTLIL::State::S0);
return result;
}
@ -295,11 +289,11 @@ static RTLIL::Const const_shift_worker(const RTLIL::Const &arg1, const RTLIL::Co
for (int i = 0; i < result_len; i++) {
BigInteger pos = BigInteger(i) + offset;
if (pos < 0)
result.bits()[i] = vacant_bits;
result.set(i, vacant_bits);
else if (pos >= BigInteger(GetSize(arg1)))
result.bits()[i] = sign_ext ? arg1.back() : vacant_bits;
result.set(i, sign_ext ? arg1.back() : vacant_bits);
else
result.bits()[i] = arg1[pos.toInt()];
result.set(i, arg1[pos.toInt()]);
}
return result;
@ -346,9 +340,8 @@ RTLIL::Const RTLIL::const_lt(const RTLIL::Const &arg1, const RTLIL::Const &arg2,
int undef_bit_pos = -1;
bool y = const2big(arg1, signed1, undef_bit_pos) < const2big(arg2, signed2, undef_bit_pos);
RTLIL::Const result(undef_bit_pos >= 0 ? RTLIL::State::Sx : y ? RTLIL::State::S1 : RTLIL::State::S0);
while (GetSize(result) < result_len)
result.bits().push_back(RTLIL::State::S0);
if (GetSize(result) < result_len)
result.resize(result_len, RTLIL::State::S0);
return result;
}
@ -357,9 +350,8 @@ RTLIL::Const RTLIL::const_le(const RTLIL::Const &arg1, const RTLIL::Const &arg2,
int undef_bit_pos = -1;
bool y = const2big(arg1, signed1, undef_bit_pos) <= const2big(arg2, signed2, undef_bit_pos);
RTLIL::Const result(undef_bit_pos >= 0 ? RTLIL::State::Sx : y ? RTLIL::State::S1 : RTLIL::State::S0);
while (GetSize(result) < result_len)
result.bits().push_back(RTLIL::State::S0);
if (GetSize(result) < result_len)
result.resize(result_len, RTLIL::State::S0);
return result;
}
@ -383,7 +375,7 @@ RTLIL::Const RTLIL::const_eq(const RTLIL::Const &arg1, const RTLIL::Const &arg2,
matched_status = RTLIL::State::Sx;
}
result.bits().front() = matched_status;
result.set(0, matched_status);
return result;
}
@ -391,9 +383,9 @@ RTLIL::Const RTLIL::const_ne(const RTLIL::Const &arg1, const RTLIL::Const &arg2,
{
RTLIL::Const result = RTLIL::const_eq(arg1, arg2, signed1, signed2, result_len);
if (result.front() == RTLIL::State::S0)
result.bits().front() = RTLIL::State::S1;
result.set(0, RTLIL::State::S1);
else if (result.front() == RTLIL::State::S1)
result.bits().front() = RTLIL::State::S0;
result.set(0, RTLIL::State::S0);
return result;
}
@ -412,7 +404,7 @@ RTLIL::Const RTLIL::const_eqx(const RTLIL::Const &arg1, const RTLIL::Const &arg2
return result;
}
result.bits().front() = RTLIL::State::S1;
result.set(0, RTLIL::State::S1);
return result;
}
@ -420,9 +412,9 @@ RTLIL::Const RTLIL::const_nex(const RTLIL::Const &arg1, const RTLIL::Const &arg2
{
RTLIL::Const result = RTLIL::const_eqx(arg1, arg2, signed1, signed2, result_len);
if (result.front() == RTLIL::State::S0)
result.bits().front() = RTLIL::State::S1;
result.set(0, RTLIL::State::S1);
else if (result.front() == RTLIL::State::S1)
result.bits().front() = RTLIL::State::S0;
result.set(0, RTLIL::State::S0);
return result;
}
@ -431,9 +423,8 @@ RTLIL::Const RTLIL::const_ge(const RTLIL::Const &arg1, const RTLIL::Const &arg2,
int undef_bit_pos = -1;
bool y = const2big(arg1, signed1, undef_bit_pos) >= const2big(arg2, signed2, undef_bit_pos);
RTLIL::Const result(undef_bit_pos >= 0 ? RTLIL::State::Sx : y ? RTLIL::State::S1 : RTLIL::State::S0);
while (GetSize(result) < result_len)
result.bits().push_back(RTLIL::State::S0);
if (GetSize(result) < result_len)
result.resize(result_len, RTLIL::State::S0);
return result;
}
@ -442,9 +433,8 @@ RTLIL::Const RTLIL::const_gt(const RTLIL::Const &arg1, const RTLIL::Const &arg2,
int undef_bit_pos = -1;
bool y = const2big(arg1, signed1, undef_bit_pos) > const2big(arg2, signed2, undef_bit_pos);
RTLIL::Const result(undef_bit_pos >= 0 ? RTLIL::State::Sx : y ? RTLIL::State::S1 : RTLIL::State::S0);
while (GetSize(result) < result_len)
result.bits().push_back(RTLIL::State::S0);
if (GetSize(result) < result_len)
result.resize(result_len, RTLIL::State::S0);
return result;
}
@ -628,7 +618,7 @@ RTLIL::Const RTLIL::const_mux(const RTLIL::Const &arg1, const RTLIL::Const &arg2
RTLIL::Const ret = arg1;
for (auto i = 0; i < ret.size(); i++)
if (ret[i] != arg2[i])
ret.bits()[i] = State::Sx;
ret.set(i, State::Sx);
return ret;
}
@ -703,7 +693,7 @@ RTLIL::Const RTLIL::const_bweqx(const RTLIL::Const &arg1, const RTLIL::Const &ar
log_assert(arg2.size() == arg1.size());
RTLIL::Const result(RTLIL::State::S0, arg1.size());
for (auto i = 0; i < arg1.size(); i++)
result.bits()[i] = arg1[i] == arg2[i] ? State::S1 : State::S0;
result.set(i, arg1[i] == arg2[i] ? State::S1 : State::S0);
return result;
}
@ -715,7 +705,7 @@ RTLIL::Const RTLIL::const_bwmux(const RTLIL::Const &arg1, const RTLIL::Const &ar
RTLIL::Const result(RTLIL::State::Sx, arg1.size());
for (auto i = 0; i < arg1.size(); i++) {
if (arg3[i] != State::Sx || arg1[i] == arg2[i])
result.bits()[i] = arg3[i] == State::S1 ? arg2[i] : arg1[i];
result.set(i, arg3[i] == State::S1 ? arg2[i] : arg1[i]);
}
return result;

View file

@ -328,7 +328,7 @@ struct CellTypes
static RTLIL::Const eval_not(RTLIL::Const v)
{
for (auto &bit : v.bits())
for (auto bit : v)
if (bit == State::S0) bit = State::S1;
else if (bit == State::S1) bit = State::S0;
return v;
@ -421,16 +421,14 @@ struct CellTypes
static RTLIL::Const eval(RTLIL::Cell *cell, const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool *errp = nullptr)
{
if (cell->type == ID($slice)) {
RTLIL::Const ret;
int width = cell->parameters.at(ID::Y_WIDTH).as_int();
int offset = cell->parameters.at(ID::OFFSET).as_int();
ret.bits().insert(ret.bits().end(), arg1.begin()+offset, arg1.begin()+offset+width);
return ret;
return arg1.extract(offset, width);
}
if (cell->type == ID($concat)) {
RTLIL::Const ret = arg1;
ret.bits().insert(ret.bits().end(), arg2.begin(), arg2.end());
ret.append(arg2);
return ret;
}

View file

@ -115,7 +115,7 @@ struct ConstEval
for (int i = 0; i < GetSize(coval); i++) {
carry = (sig_g[i] == State::S1) || (sig_p[i] == RTLIL::S1 && carry);
coval.bits()[i] = carry ? State::S1 : State::S0;
coval.set(i, carry ? State::S1 : State::S0);
}
set(sig_co, coval);
@ -249,7 +249,7 @@ struct ConstEval
for (int i = 0; i < GetSize(val_y); i++)
if (val_y[i] == RTLIL::Sx)
val_x.bits()[i] = RTLIL::Sx;
val_x.set(i, RTLIL::Sx);
set(sig_y, val_y);
set(sig_x, val_x);

View file

@ -260,7 +260,7 @@ bool DriveChunkMultiple::try_append(DriveBitMultiple const &bit)
switch (single.type())
{
case DriveType::CONSTANT: {
single.constant().bits().push_back(constant);
single.constant().append(RTLIL::Const(constant));
} break;
case DriveType::WIRE: {
single.wire().width += 1;
@ -295,8 +295,7 @@ bool DriveChunkMultiple::try_append(DriveChunkMultiple const &chunk)
switch (single.type())
{
case DriveType::CONSTANT: {
auto &bits = single.constant().bits();
bits.insert(bits.end(), constant.bits().begin(), constant.bits().end());
single.constant().append(constant);
} break;
case DriveType::WIRE: {
single.wire().width += width;
@ -349,7 +348,7 @@ bool DriveChunk::try_append(DriveBit const &bit)
none_ += 1;
return true;
case DriveType::CONSTANT:
constant_.bits().push_back(bit.constant());
constant_.append(RTLIL::Const(bit.constant()));
return true;
case DriveType::WIRE:
return wire_.try_append(bit.wire());
@ -375,7 +374,7 @@ bool DriveChunk::try_append(DriveChunk const &chunk)
none_ += chunk.none_;
return true;
case DriveType::CONSTANT:
constant_.bits().insert(constant_.bits().end(), chunk.constant_.begin(), chunk.constant_.end());
constant_.append(chunk.constant_);
return true;
case DriveType::WIRE:
return wire_.try_append(chunk.wire());

View file

@ -287,6 +287,16 @@ FfData FfData::slice(const std::vector<int> &bits) {
res.pol_clr = pol_clr;
res.pol_set = pol_set;
res.attributes = attributes;
std::optional<Const::Builder> arst_bits;
if (has_arst)
arst_bits.emplace(bits.size());
std::optional<Const::Builder> srst_bits;
if (has_srst)
srst_bits.emplace(bits.size());
std::optional<Const::Builder> init_bits;
if (initvals)
init_bits.emplace(bits.size());
for (int i : bits) {
res.sig_q.append(sig_q[i]);
if (has_clk || has_gclk)
@ -298,12 +308,19 @@ FfData FfData::slice(const std::vector<int> &bits) {
res.sig_set.append(sig_set[i]);
}
if (has_arst)
res.val_arst.bits().push_back(val_arst[i]);
arst_bits->push_back(val_arst[i]);
if (has_srst)
res.val_srst.bits().push_back(val_srst[i]);
srst_bits->push_back(val_srst[i]);
if (initvals)
res.val_init.bits().push_back(val_init[i]);
init_bits->push_back(val_init[i]);
}
if (has_arst)
res.val_arst = arst_bits->build();
if (has_srst)
res.val_srst = srst_bits->build();
if (initvals)
res.val_init = init_bits->build();
res.width = GetSize(res.sig_q);
return res;
}
@ -688,10 +705,10 @@ void FfData::flip_rst_bits(const pool<int> &bits) {
for (auto bit: bits) {
if (has_arst)
val_arst.bits()[bit] = invert(val_arst[bit]);
val_arst.set(bit, invert(val_arst[bit]));
if (has_srst)
val_srst.bits()[bit] = invert(val_srst[bit]);
val_init.bits()[bit] = invert(val_init[bit]);
val_srst.set(bit, invert(val_srst[bit]));
val_init.set(bit, invert(val_init[bit]));
}
}
@ -760,7 +777,7 @@ void FfData::flip_bits(const pool<int> &bits) {
Const mask = Const(State::S0, width);
for (auto bit: bits)
mask.bits()[bit] = State::S1;
mask.set(bit, State::S1);
if (has_clk || has_gclk)
sig_d = module->Xor(NEW_ID, sig_d, mask);

View file

@ -74,10 +74,10 @@ struct FfInitVals
RTLIL::Const operator()(const RTLIL::SigSpec &sig) const
{
RTLIL::Const res;
RTLIL::Const::Builder res_bits(GetSize(sig));
for (auto bit : sig)
res.bits().push_back((*this)(bit));
return res;
res_bits.push_back((*this)(bit));
return res_bits.build();
}
void set_init(RTLIL::SigBit bit, RTLIL::State val)
@ -93,12 +93,12 @@ struct FfInitVals
initbits[mbit] = std::make_pair(val,abit);
auto it2 = abit.wire->attributes.find(ID::init);
if (it2 != abit.wire->attributes.end()) {
it2->second.bits()[abit.offset] = val;
it2->second.set(abit.offset, val);
if (it2->second.is_fully_undef())
abit.wire->attributes.erase(it2);
} else if (val != State::Sx) {
Const cval(State::Sx, GetSize(abit.wire));
cval.bits()[abit.offset] = val;
cval.set(abit.offset, val);
abit.wire->attributes[ID::init] = cval;
}
}

View file

@ -42,9 +42,9 @@ bool FfMergeHelper::find_output_ff(RTLIL::SigSpec sig, FfData &ff, pool<std::pai
ff.sig_d.append(bit);
ff.sig_clr.append(State::Sx);
ff.sig_set.append(State::Sx);
ff.val_init.bits().push_back(State::Sx);
ff.val_srst.bits().push_back(State::Sx);
ff.val_arst.bits().push_back(State::Sx);
ff.val_init.append(RTLIL::Const(State::Sx));
ff.val_srst.append(RTLIL::Const(State::Sx));
ff.val_arst.append(RTLIL::Const(State::Sx));
continue;
}
@ -147,9 +147,9 @@ bool FfMergeHelper::find_output_ff(RTLIL::SigSpec sig, FfData &ff, pool<std::pai
ff.sig_q.append(cur_ff.sig_q[idx]);
ff.sig_clr.append(ff.has_sr ? cur_ff.sig_clr[idx] : State::S0);
ff.sig_set.append(ff.has_sr ? cur_ff.sig_set[idx] : State::S0);
ff.val_arst.bits().push_back(ff.has_arst ? cur_ff.val_arst[idx] : State::Sx);
ff.val_srst.bits().push_back(ff.has_srst ? cur_ff.val_srst[idx] : State::Sx);
ff.val_init.bits().push_back(cur_ff.val_init[idx]);
ff.val_arst.append(RTLIL::Const(ff.has_arst ? cur_ff.val_arst[idx] : State::Sx));
ff.val_srst.append(RTLIL::Const(ff.has_srst ? cur_ff.val_srst[idx] : State::Sx));
ff.val_init.append(RTLIL::Const(cur_ff.val_init[idx]));
found = true;
}
@ -174,9 +174,9 @@ bool FfMergeHelper::find_input_ff(RTLIL::SigSpec sig, FfData &ff, pool<std::pair
// These two will be fixed up later.
ff.sig_clr.append(State::Sx);
ff.sig_set.append(State::Sx);
ff.val_init.bits().push_back(bit.data);
ff.val_srst.bits().push_back(bit.data);
ff.val_arst.bits().push_back(bit.data);
ff.val_init.append(RTLIL::Const(bit.data));
ff.val_srst.append(RTLIL::Const(bit.data));
ff.val_arst.append(RTLIL::Const(bit.data));
continue;
}
@ -274,9 +274,9 @@ bool FfMergeHelper::find_input_ff(RTLIL::SigSpec sig, FfData &ff, pool<std::pair
ff.sig_q.append(cur_ff.sig_q[idx]);
ff.sig_clr.append(ff.has_sr ? cur_ff.sig_clr[idx] : State::S0);
ff.sig_set.append(ff.has_sr ? cur_ff.sig_set[idx] : State::S0);
ff.val_arst.bits().push_back(ff.has_arst ? cur_ff.val_arst[idx] : State::Sx);
ff.val_srst.bits().push_back(ff.has_srst ? cur_ff.val_srst[idx] : State::Sx);
ff.val_init.bits().push_back(cur_ff.val_init[idx]);
ff.val_arst.append(RTLIL::Const(ff.has_arst ? cur_ff.val_arst[idx] : State::Sx));
ff.val_srst.append(RTLIL::Const(ff.has_srst ? cur_ff.val_srst[idx] : State::Sx));
ff.val_init.append(RTLIL::Const(cur_ff.val_init[idx]));
found = true;
}

View file

@ -168,8 +168,17 @@ struct hash_ops {
} else if constexpr (std::is_pointer_v<T>) {
return hash_ops<uintptr_t>::hash_into((uintptr_t) a, h);
} else if constexpr (std::is_same_v<T, std::string>) {
for (auto c : a)
h.hash32(c);
int size = a.size();
int i = 0;
while (i + 8 < size) {
uint64_t v;
memcpy(&v, a.data() + i, 8);
h.hash64(v);
i += 8;
}
uint64_t v = 0;
memcpy(&v, a.data() + i, size - i);
h.hash64(v);
return h;
} else {
return a.hash_into(h);

View file

@ -262,7 +262,7 @@ struct Macc
bool eval(RTLIL::Const &result) const
{
for (auto &bit : result.bits())
for (auto bit : result)
bit = State::S0;
for (auto &port : terms)

View file

@ -131,9 +131,6 @@ void Mem::emit() {
cell->parameters[ID::WIDTH] = Const(width);
cell->parameters[ID::OFFSET] = Const(start_offset);
cell->parameters[ID::SIZE] = Const(size);
Const rd_wide_continuation, rd_clk_enable, rd_clk_polarity, rd_transparency_mask, rd_collision_x_mask;
Const wr_wide_continuation, wr_clk_enable, wr_clk_polarity, wr_priority_mask;
Const rd_ce_over_srst, rd_arst_value, rd_srst_value, rd_init_value;
SigSpec rd_clk, rd_en, rd_addr, rd_data;
SigSpec wr_clk, wr_en, wr_addr, wr_data;
SigSpec rd_arst, rd_srst;
@ -147,6 +144,15 @@ void Mem::emit() {
for (int i = 0; i < GetSize(wr_ports); i++)
for (int j = 0; j < (1 << wr_ports[i].wide_log2); j++)
wr_port_xlat.push_back(i);
Const::Builder rd_wide_continuation_builder;
Const::Builder rd_clk_enable_builder;
Const::Builder rd_clk_polarity_builder;
Const::Builder rd_transparency_mask_builder;
Const::Builder rd_collision_x_mask_builder;
Const::Builder rd_ce_over_srst_builder;
Const::Builder rd_arst_value_builder;
Const::Builder rd_srst_value_builder;
Const::Builder rd_init_value_builder;
for (auto &port : rd_ports) {
for (auto attr: port.attributes)
if (!cell->has_attribute(attr.first))
@ -157,10 +163,10 @@ void Mem::emit() {
}
for (int sub = 0; sub < (1 << port.wide_log2); sub++)
{
rd_wide_continuation.bits().push_back(State(sub != 0));
rd_clk_enable.bits().push_back(State(port.clk_enable));
rd_clk_polarity.bits().push_back(State(port.clk_polarity));
rd_ce_over_srst.bits().push_back(State(port.ce_over_srst));
rd_wide_continuation_builder.push_back(State(sub != 0));
rd_clk_enable_builder.push_back(State(port.clk_enable));
rd_clk_polarity_builder.push_back(State(port.clk_polarity));
rd_ce_over_srst_builder.push_back(State(port.ce_over_srst));
rd_clk.append(port.clk);
rd_arst.append(port.arst);
rd_srst.append(port.srst);
@ -170,18 +176,27 @@ void Mem::emit() {
rd_addr.append(addr);
log_assert(GetSize(addr) == abits);
for (auto idx : wr_port_xlat) {
rd_transparency_mask.bits().push_back(State(bool(port.transparency_mask[idx])));
rd_collision_x_mask.bits().push_back(State(bool(port.collision_x_mask[idx])));
rd_transparency_mask_builder.push_back(State(bool(port.transparency_mask[idx])));
rd_collision_x_mask_builder.push_back(State(bool(port.collision_x_mask[idx])));
}
}
rd_data.append(port.data);
for (auto bit : port.arst_value)
rd_arst_value.bits().push_back(bit);
rd_arst_value_builder.push_back(bit);
for (auto bit : port.srst_value)
rd_srst_value.bits().push_back(bit);
rd_srst_value_builder.push_back(bit);
for (auto bit : port.init_value)
rd_init_value.bits().push_back(bit);
rd_init_value_builder.push_back(bit);
}
Const rd_wide_continuation = rd_wide_continuation_builder.build();
Const rd_clk_enable = rd_clk_enable_builder.build();
Const rd_clk_polarity = rd_clk_polarity_builder.build();
Const rd_transparency_mask = rd_transparency_mask_builder.build();
Const rd_collision_x_mask = rd_collision_x_mask_builder.build();
Const rd_ce_over_srst = rd_ce_over_srst_builder.build();
Const rd_arst_value = rd_arst_value_builder.build();
Const rd_srst_value = rd_srst_value_builder.build();
Const rd_init_value = rd_init_value_builder.build();
if (rd_ports.empty()) {
rd_wide_continuation = State::S0;
rd_clk_enable = State::S0;
@ -212,6 +227,10 @@ void Mem::emit() {
cell->setPort(ID::RD_SRST, rd_srst);
cell->setPort(ID::RD_ADDR, rd_addr);
cell->setPort(ID::RD_DATA, rd_data);
Const::Builder wr_wide_continuation_builder;
Const::Builder wr_clk_enable_builder;
Const::Builder wr_clk_polarity_builder;
Const::Builder wr_priority_mask_builder;
for (auto &port : wr_ports) {
for (auto attr: port.attributes)
if (!cell->has_attribute(attr.first))
@ -222,12 +241,12 @@ void Mem::emit() {
}
for (int sub = 0; sub < (1 << port.wide_log2); sub++)
{
wr_wide_continuation.bits().push_back(State(sub != 0));
wr_clk_enable.bits().push_back(State(port.clk_enable));
wr_clk_polarity.bits().push_back(State(port.clk_polarity));
wr_wide_continuation_builder.push_back(State(sub != 0));
wr_clk_enable_builder.push_back(State(port.clk_enable));
wr_clk_polarity_builder.push_back(State(port.clk_polarity));
wr_clk.append(port.clk);
for (auto idx : wr_port_xlat)
wr_priority_mask.bits().push_back(State(bool(port.priority_mask[idx])));
wr_priority_mask_builder.push_back(State(bool(port.priority_mask[idx])));
SigSpec addr = port.sub_addr(sub);
addr.extend_u0(abits, false);
wr_addr.append(addr);
@ -236,6 +255,10 @@ void Mem::emit() {
wr_en.append(port.en);
wr_data.append(port.data);
}
Const wr_wide_continuation = wr_wide_continuation_builder.build();
Const wr_clk_enable = wr_clk_enable_builder.build();
Const wr_clk_polarity = wr_clk_polarity_builder.build();
Const wr_priority_mask = wr_priority_mask_builder.build();
if (wr_ports.empty()) {
wr_wide_continuation = State::S0;
wr_clk_enable = State::S0;
@ -414,7 +437,7 @@ void Mem::coalesce_inits() {
if (!init.en.is_fully_ones()) {
for (int i = 0; i < GetSize(init.data); i++)
if (init.en[i % width] != State::S1)
init.data.bits()[i] = State::Sx;
init.data.set(i, State::Sx);
init.en = Const(State::S1, width);
}
continue;
@ -427,7 +450,7 @@ void Mem::coalesce_inits() {
log_assert(offset + GetSize(init.data) <= GetSize(cdata));
for (int i = 0; i < GetSize(init.data); i++)
if (init.en[i % width] == State::S1)
cdata.bits()[i+offset] = init.data[i];
cdata.set(i+offset, init.data[i]);
init.removed = true;
}
MemInit new_init;
@ -446,7 +469,7 @@ Const Mem::get_init_data() const {
int offset = (init.addr.as_int() - start_offset) * width;
for (int i = 0; i < GetSize(init.data); i++)
if (0 <= i+offset && i+offset < GetSize(init_data) && init.en[i % width] == State::S1)
init_data.bits()[i+offset] = init.data[i];
init_data.set(i+offset, init.data[i]);
}
return init_data;
}
@ -1700,7 +1723,7 @@ MemContents::MemContents(Mem *mem) :
RTLIL::Const previous = (*this)[addr + i];
for(int j = 0; j < _data_width; j++)
if(init.en[j] != State::S1)
data.bits()[_data_width * i + j] = previous[j];
data.set(_data_width * i + j, previous[j]);
}
insert_concatenated(init.addr.as_int(), data);
}
@ -1846,7 +1869,7 @@ std::map<MemContents::addr_t, RTLIL::Const>::iterator MemContents::_reserve_rang
// we have two different ranges touching at either end, we need to merge them
auto upper_end = _range_end(upper_it);
// make range bigger (maybe reserve here instead of resize?)
lower_it->second.bits().resize(_range_offset(lower_it, upper_end), State::Sx);
lower_it->second.resize(_range_offset(lower_it, upper_end), State::Sx);
// copy only the data beyond our range
std::copy(_range_data(upper_it, end_addr), _range_data(upper_it, upper_end), _range_data(lower_it, end_addr));
// keep lower_it, but delete upper_it
@ -1854,16 +1877,16 @@ std::map<MemContents::addr_t, RTLIL::Const>::iterator MemContents::_reserve_rang
return lower_it;
} else if (lower_touch) {
// we have a range to the left, just make it bigger and delete any other that may exist.
lower_it->second.bits().resize(_range_offset(lower_it, end_addr), State::Sx);
lower_it->second.resize(_range_offset(lower_it, end_addr), State::Sx);
// keep lower_it and upper_it
_values.erase(std::next(lower_it), upper_it);
return lower_it;
} else if (upper_touch) {
// we have a range to the right, we need to expand it
// since we need to erase and reinsert to a new address, steal the data
RTLIL::Const data = std::move(upper_it->second);
// note that begin_addr is not in upper_it, otherwise the whole range covered check would have tripped
data.bits().insert(data.bits().begin(), (_range_begin(upper_it) - begin_addr) * _data_width, State::Sx);
RTLIL::Const data(State::Sx, (_range_begin(upper_it) - begin_addr) * _data_width);
data.append(std::move(upper_it->second));
// delete lower_it and upper_it, then reinsert
_values.erase(lower_it, std::next(upper_it));
return _values.emplace(begin_addr, std::move(data)).first;
@ -1886,7 +1909,7 @@ void MemContents::insert_concatenated(addr_t addr, RTLIL::Const const &values) {
std::fill(to_begin + values.size(), to_begin + words * _data_width, State::S0);
}
std::vector<State>::iterator MemContents::_range_write(std::vector<State>::iterator it, RTLIL::Const const &word) {
RTLIL::Const::iterator MemContents::_range_write(RTLIL::Const::iterator it, RTLIL::Const const &word) {
auto from_end = word.size() <= _data_width ? word.end() : word.begin() + _data_width;
auto to_end = std::copy(word.begin(), from_end, it);
auto it_next = std::next(it, _data_width);

View file

@ -255,11 +255,13 @@ private:
// return the offset the addr would have in the range at `it`
size_t _range_offset(std::map<addr_t, RTLIL::Const>::iterator it, addr_t addr) const { return (addr - it->first) * _data_width; }
// assuming _range_contains(it, addr), return an iterator pointing to the data at addr
std::vector<State>::iterator _range_data(std::map<addr_t, RTLIL::Const>::iterator it, addr_t addr) { return it->second.bits().begin() + _range_offset(it, addr); }
RTLIL::Const::iterator _range_data(std::map<addr_t, RTLIL::Const>::iterator it, addr_t addr) {
return RTLIL::Const::iterator(it->second, _range_offset(it, addr));
}
// internal version of reserve_range that returns an iterator to the range
std::map<addr_t, RTLIL::Const>::iterator _reserve_range(addr_t begin_addr, addr_t end_addr);
// write a single word at addr, return iterator to next word
std::vector<State>::iterator _range_write(std::vector<State>::iterator it, RTLIL::Const const &data);
RTLIL::Const::iterator _range_write(RTLIL::Const::iterator it, RTLIL::Const const &data);
public:
class range {
int _data_width;

View file

@ -240,12 +240,22 @@ const pool<IdString> &RTLIL::builtin_ff_cell_types() {
#define check(condition) log_assert(condition && "malformed Const union")
Const::bitvectype& Const::get_bits() const {
const Const::bitvectype& Const::get_bits() const {
check(is_bits());
return *get_if_bits();
}
std::string& Const::get_str() const {
const std::string& Const::get_str() const {
check(is_str());
return *get_if_str();
}
Const::bitvectype& Const::get_bits() {
check(is_bits());
return *get_if_bits();
}
std::string& Const::get_str() {
check(is_str());
return *get_if_str();
}
@ -257,9 +267,34 @@ RTLIL::Const::Const(const std::string &str)
tag = backing_tag::string;
}
RTLIL::Const::Const(long long val) // default width 32
{
flags = RTLIL::CONST_FLAG_NONE;
char bytes[] = {
(char)(val >> 24), (char)(val >> 16), (char)(val >> 8), (char)val
};
new ((void*)&str_) std::string(bytes, 4);
tag = backing_tag::string;
}
RTLIL::Const::Const(long long val, int width)
{
flags = RTLIL::CONST_FLAG_NONE;
if ((width & 7) == 0) {
new ((void*)&str_) std::string();
tag = backing_tag::string;
std::string& str = get_str();
int bytes = width >> 3;
signed char sign_byte = val < 0 ? -1 : 0;
str.resize(bytes, sign_byte);
bytes = std::min<int>(bytes, sizeof(val));
for (int i = 0; i < bytes; i++) {
str[str.size() - 1 - i] = val;
val = val >> 8;
}
return;
}
new ((void*)&bits_) bitvectype();
tag = backing_tag::bits;
bitvectype& bv = get_bits();
@ -363,6 +398,11 @@ bool RTLIL::Const::operator<(const RTLIL::Const &other) const
bool RTLIL::Const::operator ==(const RTLIL::Const &other) const
{
if (is_str() && other.is_str())
return get_str() == other.get_str();
if (is_bits() && other.is_bits())
return get_bits() == other.get_bits();
if (size() != other.size())
return false;
@ -378,9 +418,9 @@ bool RTLIL::Const::operator !=(const RTLIL::Const &other) const
return !(*this == other);
}
std::vector<RTLIL::State>& RTLIL::Const::bits()
std::vector<RTLIL::State>& RTLIL::Const::bits_internal()
{
bitvectorize();
bitvectorize_internal();
return get_bits();
}
@ -394,8 +434,14 @@ std::vector<RTLIL::State> RTLIL::Const::to_bits() const
bool RTLIL::Const::as_bool() const
{
bitvectorize();
bitvectype& bv = get_bits();
if (is_str()) {
for (char ch : get_str())
if (ch != 0)
return true;
return false;
}
const bitvectype& bv = get_bits();
for (size_t i = 0; i < bv.size(); i++)
if (bv[i] == State::S1)
return true;
@ -404,15 +450,24 @@ bool RTLIL::Const::as_bool() const
int RTLIL::Const::as_int(bool is_signed) const
{
bitvectorize();
bitvectype& bv = get_bits();
int32_t ret = 0;
for (size_t i = 0; i < bv.size() && i < 32; i++)
if (is_str()) {
const std::string& s = get_str();
int size = GetSize(s);
for (int i = std::min(4, size); i > 0; i--)
ret |= static_cast<unsigned char>(s[size - i]) << ((i - 1) * 8);
if (is_signed && size > 0 && size < 4 && (s[0] & 0x80))
ret |= -1 << size*8;
return ret;
}
const bitvectype& bv = get_bits();
int significant_bits = std::min(GetSize(bv), 32);
for (int i = 0; i < significant_bits; i++)
if (bv[i] == State::S1)
ret |= 1 << i;
if (is_signed && bv.back() == State::S1)
for (size_t i = bv.size(); i < 32; i++)
ret |= 1 << i;
if (is_signed && significant_bits > 0 && significant_bits < 32 && bv.back() == State::S1 )
ret |= -1 << significant_bits;
return ret;
}
@ -432,7 +487,7 @@ bool RTLIL::Const::convertible_to_int(bool is_signed) const
if (size == 32) {
if (is_signed)
return true;
return get_bits().at(31) != State::S1;
return back() != State::S1;
}
return false;
@ -453,7 +508,7 @@ int RTLIL::Const::as_int_saturating(bool is_signed) const
const auto min_size = get_min_size(is_signed);
log_assert(min_size > 0);
const auto neg = get_bits().at(min_size - 1);
const auto neg = (*this)[min_size - 1];
return neg ? std::numeric_limits<int>::min() : std::numeric_limits<int>::max();
}
return as_int(is_signed);
@ -486,7 +541,7 @@ int RTLIL::Const::get_min_size(bool is_signed) const
void RTLIL::Const::compress(bool is_signed)
{
auto idx = get_min_size(is_signed);
bits().erase(bits().begin() + idx, bits().end());
resize(idx, RTLIL::State::S0);
}
std::optional<int> RTLIL::Const::as_int_compress(bool is_signed) const
@ -496,18 +551,17 @@ std::optional<int> RTLIL::Const::as_int_compress(bool is_signed) const
std::string RTLIL::Const::as_string(const char* any) const
{
bitvectorize();
bitvectype& bv = get_bits();
int sz = size();
std::string ret;
ret.reserve(bv.size());
for (size_t i = bv.size(); i > 0; i--)
switch (bv[i-1]) {
case S0: ret += "0"; break;
case S1: ret += "1"; break;
case Sx: ret += "x"; break;
case Sz: ret += "z"; break;
ret.reserve(sz);
for (int i = sz - 1; i >= 0; --i)
switch ((*this)[i]) {
case S0: ret.push_back('0'); break;
case S1: ret.push_back('1'); break;
case Sx: ret.push_back('x'); break;
case Sz: ret.push_back('z'); break;
case Sa: ret += any; break;
case Sm: ret += "m"; break;
case Sm: ret.push_back('m'); break;
}
return ret;
}
@ -534,8 +588,7 @@ std::string RTLIL::Const::decode_string() const
if (auto str = get_if_str())
return *str;
bitvectorize();
bitvectype& bv = get_bits();
const bitvectype& bv = get_bits();
const int n = GetSize(bv);
const int n_over_8 = n / 8;
std::string s;
@ -583,7 +636,7 @@ bool RTLIL::Const::empty() const {
}
}
void RTLIL::Const::bitvectorize() const {
void RTLIL::Const::bitvectorize_internal() {
if (tag == backing_tag::bits)
return;
@ -609,26 +662,33 @@ void RTLIL::Const::bitvectorize() const {
}
void RTLIL::Const::append(const RTLIL::Const &other) {
bitvectorize();
bitvectorize_internal();
bitvectype& bv = get_bits();
bv.insert(bv.end(), other.begin(), other.end());
}
RTLIL::State RTLIL::Const::const_iterator::operator*() const {
if (auto bv = parent.get_if_bits())
if (auto bv = parent->get_if_bits())
return (*bv)[idx];
int char_idx = parent.get_str().size() - idx / 8 - 1;
bool bit = (parent.get_str()[char_idx] & (1 << (idx % 8)));
int char_idx = parent->get_str().size() - idx / 8 - 1;
bool bit = (parent->get_str()[char_idx] & (1 << (idx % 8)));
return bit ? State::S1 : State::S0;
}
bool RTLIL::Const::is_fully_zero() const
{
bitvectorize();
bitvectype& bv = get_bits();
cover("kernel.rtlil.const.is_fully_zero");
if (auto str = get_if_str()) {
for (char ch : *str)
if (ch != 0)
return false;
return true;
}
const bitvectype& bv = get_bits();
for (const auto &bit : bv)
if (bit != RTLIL::State::S0)
return false;
@ -638,10 +698,16 @@ bool RTLIL::Const::is_fully_zero() const
bool RTLIL::Const::is_fully_ones() const
{
bitvectorize();
bitvectype& bv = get_bits();
cover("kernel.rtlil.const.is_fully_ones");
if (auto str = get_if_str()) {
for (char ch : *str)
if (ch != (char)0xff)
return false;
return true;
}
const bitvectype& bv = get_bits();
for (const auto &bit : bv)
if (bit != RTLIL::State::S1)
return false;
@ -653,9 +719,10 @@ bool RTLIL::Const::is_fully_def() const
{
cover("kernel.rtlil.const.is_fully_def");
bitvectorize();
bitvectype& bv = get_bits();
if (is_str())
return true;
const bitvectype& bv = get_bits();
for (const auto &bit : bv)
if (bit != RTLIL::State::S0 && bit != RTLIL::State::S1)
return false;
@ -667,9 +734,10 @@ bool RTLIL::Const::is_fully_undef() const
{
cover("kernel.rtlil.const.is_fully_undef");
bitvectorize();
bitvectype& bv = get_bits();
if (auto str = get_if_str())
return str->empty();
const bitvectype& bv = get_bits();
for (const auto &bit : bv)
if (bit != RTLIL::State::Sx && bit != RTLIL::State::Sz)
return false;
@ -681,9 +749,10 @@ bool RTLIL::Const::is_fully_undef_x_only() const
{
cover("kernel.rtlil.const.is_fully_undef_x_only");
bitvectorize();
bitvectype& bv = get_bits();
if (auto str = get_if_str())
return str->empty();
const bitvectype& bv = get_bits();
for (const auto &bit : bv)
if (bit != RTLIL::State::Sx)
return false;
@ -695,12 +764,10 @@ bool RTLIL::Const::is_onehot(int *pos) const
{
cover("kernel.rtlil.const.is_onehot");
bitvectorize();
bitvectype& bv = get_bits();
bool found = false;
for (int i = 0; i < GetSize(*this); i++) {
auto &bit = bv[i];
int size = GetSize(*this);
for (int i = 0; i < size; i++) {
State bit = (*this)[i];
if (bit != RTLIL::State::S0 && bit != RTLIL::State::S1)
return false;
if (bit == RTLIL::State::S1) {
@ -714,6 +781,40 @@ bool RTLIL::Const::is_onehot(int *pos) const
return found;
}
Hasher RTLIL::Const::hash_into(Hasher h) const
{
if (auto str = get_if_str())
return hashlib::hash_ops<std::string>::hash_into(*str, h);
// If the bits are all 0/1, hash packed bits using the string hash.
// Otherwise hash the leading packed bits with the rest of the bits individually.
const bitvectype &bv = get_bits();
int size = GetSize(bv);
std::string packed;
int packed_size = (size + 7) >> 3;
packed.resize(packed_size, 0);
for (int bi = 0; bi < packed_size; ++bi) {
char ch = 0;
int end = std::min((bi + 1)*8, size);
for (int i = bi*8; i < end; ++i) {
RTLIL::State b = bv[i];
if (b > RTLIL::State::S1) {
// Hash the packed bits we've seen so far, plus the remaining bits.
h = hashlib::hash_ops<std::string>::hash_into(packed, h);
h = hashlib::hash_ops<char>::hash_into(ch, h);
for (; i < size; ++i) {
h = hashlib::hash_ops<RTLIL::State>::hash_into(bv[i], h);
}
h.eat(size);
return h;
}
ch |= static_cast<int>(b) << (i & 7);
}
packed[packed_size - 1 - bi] = ch;
}
return hashlib::hash_ops<std::string>::hash_into(packed, h);
}
RTLIL::Const RTLIL::Const::extract(int offset, int len, RTLIL::State padding) const {
bitvectype ret_bv;
ret_bv.reserve(len);

View file

@ -831,38 +831,61 @@ private:
using bitvectype = std::vector<RTLIL::State>;
enum class backing_tag: bool { bits, string };
// Do not access the union or tag even in Const methods unless necessary
mutable backing_tag tag;
backing_tag tag;
union {
mutable bitvectype bits_;
mutable std::string str_;
bitvectype bits_;
std::string str_;
};
// Use these private utilities instead
bool is_bits() const { return tag == backing_tag::bits; }
bool is_str() const { return tag == backing_tag::string; }
bitvectype* get_if_bits() const { return is_bits() ? &bits_ : NULL; }
std::string* get_if_str() const { return is_str() ? &str_ : NULL; }
bitvectype* get_if_bits() { return is_bits() ? &bits_ : NULL; }
std::string* get_if_str() { return is_str() ? &str_ : NULL; }
const bitvectype* get_if_bits() const { return is_bits() ? &bits_ : NULL; }
const std::string* get_if_str() const { return is_str() ? &str_ : NULL; }
bitvectype& get_bits();
std::string& get_str();
const bitvectype& get_bits() const;
const std::string& get_str() const;
std::vector<RTLIL::State>& bits_internal();
void bitvectorize_internal();
bitvectype& get_bits() const;
std::string& get_str() const;
public:
Const() : flags(RTLIL::CONST_FLAG_NONE), tag(backing_tag::bits), bits_(std::vector<RTLIL::State>()) {}
Const(const std::string &str);
Const(long long val, int width = 32);
Const(long long val); // default width is 32
Const(long long val, int width);
Const(RTLIL::State bit, int width = 1);
Const(const std::vector<RTLIL::State> &bits) : flags(RTLIL::CONST_FLAG_NONE), tag(backing_tag::bits), bits_(bits) {}
Const(std::vector<RTLIL::State> bits) : flags(RTLIL::CONST_FLAG_NONE), tag(backing_tag::bits), bits_(std::move(bits)) {}
Const(const std::vector<bool> &bits);
Const(const RTLIL::Const &other);
Const(RTLIL::Const &&other);
RTLIL::Const &operator =(const RTLIL::Const &other);
~Const();
struct Builder
{
Builder() {}
Builder(int expected_width) { bits.reserve(expected_width); }
void push_back(RTLIL::State b) { bits.push_back(b); }
int size() const { return static_cast<int>(bits.size()); }
Const build() { return Const(std::move(bits)); }
private:
std::vector<RTLIL::State> bits;
};
bool operator <(const RTLIL::Const &other) const;
bool operator ==(const RTLIL::Const &other) const;
bool operator !=(const RTLIL::Const &other) const;
std::vector<RTLIL::State>& bits();
[[deprecated("Don't use direct access to the internal std::vector<State>, that's an implementation detail.")]]
std::vector<RTLIL::State>& bits() { return bits_internal(); }
[[deprecated("Don't call bitvectorize() directly, it's an implementation detail.")]]
void bitvectorize() const { const_cast<Const*>(this)->bitvectorize_internal(); }
bool as_bool() const;
// Convert the constant value to a C++ int.
@ -891,37 +914,42 @@ public:
std::string decode_string() const;
int size() const;
bool empty() const;
void bitvectorize() const;
void append(const RTLIL::Const &other);
void set(int i, RTLIL::State state) {
bits_internal()[i] = state;
}
void resize(int size, RTLIL::State fill) {
bits_internal().resize(size, fill);
}
class const_iterator {
private:
const Const& parent;
const Const* parent;
size_t idx;
public:
using iterator_category = std::input_iterator_tag;
using iterator_category = std::bidirectional_iterator_tag;
using value_type = State;
using difference_type = std::ptrdiff_t;
using pointer = const State*;
using reference = const State&;
const_iterator(const Const& c, size_t i) : parent(c), idx(i) {}
const_iterator(const Const& c, size_t i) : parent(&c), idx(i) {}
State operator*() const;
const_iterator& operator++() { ++idx; return *this; }
const_iterator& operator--() { --idx; return *this; }
const_iterator& operator++(int) { ++idx; return *this; }
const_iterator& operator--(int) { --idx; return *this; }
const_iterator operator++(int) { const_iterator result(*this); ++idx; return result; }
const_iterator operator--(int) { const_iterator result(*this); --idx; return result; }
const_iterator& operator+=(int i) { idx += i; return *this; }
const_iterator operator+(int add) {
return const_iterator(parent, idx + add);
return const_iterator(*parent, idx + add);
}
const_iterator operator-(int sub) {
return const_iterator(parent, idx - sub);
return const_iterator(*parent, idx - sub);
}
int operator-(const const_iterator& other) {
return idx - other.idx;
@ -936,12 +964,69 @@ public:
}
};
class iterator {
private:
Const* parent;
size_t idx;
public:
class proxy {
private:
Const* parent;
size_t idx;
public:
proxy(Const* parent, size_t idx) : parent(parent), idx(idx) {}
operator State() const { return (*parent)[idx]; }
proxy& operator=(State s) { parent->set(idx, s); return *this; }
proxy& operator=(const proxy& other) { parent->set(idx, (*other.parent)[other.idx]); return *this; }
};
using iterator_category = std::bidirectional_iterator_tag;
using value_type = State;
using difference_type = std::ptrdiff_t;
using pointer = proxy*;
using reference = proxy;
iterator(Const& c, size_t i) : parent(&c), idx(i) {}
proxy operator*() const { return proxy(parent, idx); }
iterator& operator++() { ++idx; return *this; }
iterator& operator--() { --idx; return *this; }
iterator operator++(int) { iterator result(*this); ++idx; return result; }
iterator operator--(int) { iterator result(*this); --idx; return result; }
iterator& operator+=(int i) { idx += i; return *this; }
iterator operator+(int add) {
return iterator(*parent, idx + add);
}
iterator operator-(int sub) {
return iterator(*parent, idx - sub);
}
int operator-(const iterator& other) {
return idx - other.idx;
}
bool operator==(const iterator& other) const {
return idx == other.idx;
}
bool operator!=(const iterator& other) const {
return !(*this == other);
}
};
const_iterator begin() const {
return const_iterator(*this, 0);
}
const_iterator end() const {
return const_iterator(*this, size());
}
iterator begin() {
return iterator(*this, 0);
}
iterator end() {
return iterator(*this, size());
}
State back() const {
return *(end() - 1);
}
@ -973,20 +1058,14 @@ public:
std::optional<int> as_int_compress(bool is_signed) const;
void extu(int width) {
bits().resize(width, RTLIL::State::S0);
resize(width, RTLIL::State::S0);
}
void exts(int width) {
bitvectype& bv = bits();
bv.resize(width, bv.empty() ? RTLIL::State::Sx : bv.back());
resize(width, empty() ? RTLIL::State::Sx : back());
}
[[nodiscard]] Hasher hash_into(Hasher h) const {
h.eat(size());
for (auto b : *this)
h.eat(b);
return h;
}
[[nodiscard]] Hasher hash_into(Hasher h) const;
};
struct RTLIL::AttrObject
@ -1041,7 +1120,8 @@ struct RTLIL::SigChunk
SigChunk(RTLIL::Wire *wire) : wire(wire), width(GetSize(wire)), offset(0) {}
SigChunk(RTLIL::Wire *wire, int offset, int width = 1) : wire(wire), width(width), offset(offset) {}
SigChunk(const std::string &str) : SigChunk(RTLIL::Const(str)) {}
SigChunk(int val, int width = 32) : SigChunk(RTLIL::Const(val, width)) {}
SigChunk(int val) /*default width 32*/ : SigChunk(RTLIL::Const(val)) {}
SigChunk(int val, int width) : SigChunk(RTLIL::Const(val, width)) {}
SigChunk(RTLIL::State bit, int width = 1) : SigChunk(RTLIL::Const(bit, width)) {}
SigChunk(const RTLIL::SigBit &bit);

View file

@ -214,18 +214,19 @@ bool mp_int_to_const(mp_int *a, Const &b, bool is_signed)
buf.resize(mp_unsigned_bin_size(a));
mp_to_unsigned_bin(a, buf.data());
b.bits().reserve(mp_count_bits(a) + is_signed);
Const::Builder b_bits(mp_count_bits(a) + is_signed);
for (int i = 0; i < mp_count_bits(a);) {
for (int j = 0; j < 8 && i < mp_count_bits(a); j++, i++) {
bool bv = ((buf.back() & (1 << j)) != 0) ^ negative;
b.bits().push_back(bv ? RTLIL::S1 : RTLIL::S0);
b_bits.push_back(bv ? RTLIL::S1 : RTLIL::S0);
}
buf.pop_back();
}
if (is_signed) {
b.bits().push_back(negative ? RTLIL::S1 : RTLIL::S0);
b_bits.push_back(negative ? RTLIL::S1 : RTLIL::S0);
}
b = b_bits.build();
return true;
}

View file

@ -185,7 +185,6 @@ RTLIL::Const ReadWitness::get_bits(int t, int bits_offset, int width) const
const std::string &bits = steps[t].bits;
RTLIL::Const result(State::Sa, width);
result.bits().reserve(width);
int read_begin = GetSize(bits) - 1 - bits_offset;
int read_end = max(-1, read_begin - width);
@ -200,7 +199,7 @@ RTLIL::Const ReadWitness::get_bits(int t, int bits_offset, int width) const
default:
log_abort();
}
result.bits()[j] = bit;
result.set(j, bit);
}
return result;

View file

@ -405,7 +405,11 @@ struct BugpointPass : public Pass {
for (auto it2 = sy->mem_write_actions.begin(); it2 != sy->mem_write_actions.end(); ++it2) {
auto &mask = it2->priority_mask;
if (GetSize(mask) > i) {
mask.bits().erase(mask.bits().begin() + i);
RTLIL::Const::Builder new_mask_builder(GetSize(mask) - 1);
for (int k = 0; k < GetSize(mask); k++)
if (k != i)
new_mask_builder.push_back(mask[k]);
mask = new_mask_builder.build();
}
}
return design_copy;

View file

@ -158,11 +158,11 @@ struct CleanZeroWidthPass : public Pass {
continue;
if (GetSize(memwr.address) == 0)
memwr.address = State::S0;
Const priority_mask;
RTLIL::Const::Builder new_mask_bits(swizzle.size());
for (auto x : swizzle) {
priority_mask.bits().push_back(memwr.priority_mask[x]);
new_mask_bits.push_back(memwr.priority_mask[x]);
}
memwr.priority_mask = priority_mask;
memwr.priority_mask = new_mask_bits.build();
swizzle.push_back(i);
new_memwr_actions.push_back(memwr);
}

View file

@ -884,8 +884,10 @@ struct DftTagWorker {
{
if (sig_a.is_fully_const()) {
auto const_val = sig_a.as_const();
for (State& bit : const_val.bits())
bit = bit == State::S0 ? State::S1 : bit == State::S1 ? State::S0 : bit;
for (auto bit : const_val) {
State b = bit;
bit = b == State::S0 ? State::S1 : b == State::S1 ? State::S0 : b;
}
return const_val;
}
return module->Not(name, sig_a);

View file

@ -243,7 +243,7 @@ struct SetundefPass : public Pass {
{
for (auto *cell : module->selected_cells()) {
for (auto &parameter : cell->parameters) {
for (auto &bit : parameter.second.bits()) {
for (auto bit : parameter.second) {
if (bit > RTLIL::State::S1)
bit = worker.next_bit();
}
@ -390,12 +390,12 @@ struct SetundefPass : public Pass {
for (auto wire : initwires)
{
Const &initval = wire->attributes[ID::init];
initval.bits().resize(GetSize(wire), State::Sx);
initval.resize(GetSize(wire), State::Sx);
for (int i = 0; i < GetSize(wire); i++) {
SigBit bit = sigmap(SigBit(wire, i));
if (initval[i] == State::Sx && ffbits.count(bit)) {
initval.bits()[i] = worker.next_bit();
initval.set(i, worker.next_bit());
ffbits.erase(bit);
}
}
@ -421,7 +421,7 @@ struct SetundefPass : public Pass {
continue;
Const &initval = wire->attributes[ID::init];
initval.bits().resize(GetSize(wire), State::Sx);
initval.resize(GetSize(wire), State::Sx);
if (initval.is_fully_undef()) {
wire->attributes.erase(ID::init);

View file

@ -75,10 +75,11 @@ struct SplitnetsWorker
it = wire->attributes.find(ID::init);
if (it != wire->attributes.end()) {
Const old_init = it->second, new_init;
Const old_init = it->second;
RTLIL::Const::Builder new_init_bits_builder(width);
for (int i = offset; i < offset+width; i++)
new_init.bits().push_back(i < GetSize(old_init) ? old_init.at(i) : State::Sx);
new_wire->attributes.emplace(ID::init, new_init);
new_init_bits_builder.push_back(i < GetSize(old_init) ? old_init.at(i) : State::Sx);
new_wire->attributes.emplace(ID::init, new_init_bits_builder.build());
}
std::vector<RTLIL::SigBit> sigvec = RTLIL::SigSpec(new_wire).to_sigbit_vector();

View file

@ -828,9 +828,9 @@ struct XpropWorker
auto init_q_is_1 = init_q;
auto init_q_is_x = init_q;
for (auto &bit : init_q_is_1.bits())
for (auto bit : init_q_is_1)
bit = bit == State::S1 ? State::S1 : State::S0;
for (auto &bit : init_q_is_x.bits())
for (auto bit : init_q_is_x)
bit = bit == State::Sx ? State::S1 : State::S0;
initvals.remove_init(sig_q);
@ -865,14 +865,14 @@ struct XpropWorker
auto init_q_is_x = init_q;
if (ff.is_anyinit) {
for (auto &bit : init_q_is_1.bits())
for (auto bit : init_q_is_1)
bit = State::Sx;
for (auto &bit : init_q_is_x.bits())
for (auto bit : init_q_is_x)
bit = State::S0;
} else {
for (auto &bit : init_q_is_1.bits())
for (auto bit : init_q_is_1)
bit = bit == State::S1 ? State::S1 : State::S0;
for (auto &bit : init_q_is_x.bits())
for (auto bit : init_q_is_x)
bit = bit == State::Sx ? State::S1 : State::S0;
}

View file

@ -171,7 +171,7 @@ undef_bit_in_next_state:
if (tr.ctrl_in.at(it.second) == State::S1 && exclusive_ctrls.count(it.first) != 0)
for (auto &dc_bit : exclusive_ctrls.at(it.first))
if (ctrl_in_bit_indices.count(dc_bit))
tr.ctrl_in.bits().at(ctrl_in_bit_indices.at(dc_bit)) = RTLIL::State::Sa;
tr.ctrl_in.set(ctrl_in_bit_indices.at(dc_bit), RTLIL::State::Sa);
RTLIL::Const log_state_in = RTLIL::Const(RTLIL::State::Sx, fsm_data.state_bits);
if (state_in >= 0)

View file

@ -176,7 +176,7 @@ static void map_fsm(RTLIL::Cell *fsm_cell, RTLIL::Module *module)
state_dff->type = ID($adff);
state_dff->parameters[ID::ARST_POLARITY] = fsm_cell->parameters[ID::ARST_POLARITY];
state_dff->parameters[ID::ARST_VALUE] = fsm_data.state_table[fsm_data.reset_state];
for (auto &bit : state_dff->parameters[ID::ARST_VALUE].bits())
for (auto bit : state_dff->parameters[ID::ARST_VALUE])
if (bit != RTLIL::State::S1)
bit = RTLIL::State::S0;
state_dff->setPort(ID::ARST, fsm_cell->getPort(ID::ARST));

View file

@ -169,13 +169,16 @@ struct FsmOpt
for (auto tr : fsm_data.transition_table)
{
RTLIL::State &si = tr.ctrl_in.bits()[i];
RTLIL::State &sj = tr.ctrl_in.bits()[j];
RTLIL::State si = tr.ctrl_in[i];
RTLIL::State sj = tr.ctrl_in[j];
if (si > RTLIL::State::S1)
if (si > RTLIL::State::S1) {
si = sj;
else if (sj > RTLIL::State::S1)
tr.ctrl_in.set(i, si);
} else if (sj > RTLIL::State::S1) {
sj = si;
tr.ctrl_in.set(j, sj);
}
if (si == sj) {
RTLIL::SigSpec tmp(tr.ctrl_in);
@ -207,8 +210,8 @@ struct FsmOpt
for (auto tr : fsm_data.transition_table)
{
RTLIL::State &si = tr.ctrl_in.bits()[i];
RTLIL::State &sj = tr.ctrl_out.bits()[j];
RTLIL::State si = tr.ctrl_in[i];
RTLIL::State sj = tr.ctrl_out[j];
if (si > RTLIL::State::S1 || si == sj) {
RTLIL::SigSpec tmp(tr.ctrl_in);
@ -240,14 +243,14 @@ struct FsmOpt
RTLIL::Const other_pattern = pattern;
if (pattern[bit] == RTLIL::State::S1)
other_pattern.bits()[bit] = RTLIL::State::S0;
other_pattern.set(bit, RTLIL::State::S0);
else
other_pattern.bits()[bit] = RTLIL::State::S1;
other_pattern.set(bit, RTLIL::State::S1);
if (set.count(other_pattern) > 0) {
log(" Merging pattern %s and %s from group (%d %d %s).\n", log_signal(pattern), log_signal(other_pattern),
tr.state_in, tr.state_out, log_signal(tr.ctrl_out));
other_pattern.bits()[bit] = RTLIL::State::Sa;
other_pattern.set(bit, RTLIL::State::Sa);
new_set.insert(other_pattern);
did_something = true;
continue;

View file

@ -106,7 +106,7 @@ static void fsm_recode(RTLIL::Cell *cell, RTLIL::Module *module, FILE *fm_set_fs
if (encoding == "one-hot") {
new_code = RTLIL::Const(RTLIL::State::Sa, fsm_data.state_bits);
new_code.bits()[state_idx] = RTLIL::State::S1;
new_code.set(state_idx, RTLIL::State::S1);
} else
if (encoding == "binary") {
new_code = RTLIL::Const(state_idx, fsm_data.state_bits);

View file

@ -45,35 +45,27 @@ struct FsmData
cell->parameters[ID::STATE_NUM] = RTLIL::Const(state_table.size());
cell->parameters[ID::STATE_NUM_LOG2] = RTLIL::Const(state_num_log2);
cell->parameters[ID::STATE_RST] = RTLIL::Const(reset_state);
cell->parameters[ID::STATE_TABLE] = RTLIL::Const();
for (int i = 0; i < int(state_table.size()); i++) {
std::vector<RTLIL::State> &bits_table = cell->parameters[ID::STATE_TABLE].bits();
std::vector<RTLIL::State> &bits_state = state_table[i].bits();
bits_table.insert(bits_table.end(), bits_state.begin(), bits_state.end());
}
RTLIL::Const cell_state_table;
for (const RTLIL::Const &c : state_table)
cell_state_table.append(c);
cell->parameters[ID::STATE_TABLE] = std::move(cell_state_table);
cell->parameters[ID::TRANS_NUM] = RTLIL::Const(transition_table.size());
cell->parameters[ID::TRANS_TABLE] = RTLIL::Const();
RTLIL::Const cell_trans_table;
for (int i = 0; i < int(transition_table.size()); i++)
{
std::vector<RTLIL::State> &bits_table = cell->parameters[ID::TRANS_TABLE].bits();
transition_t &tr = transition_table[i];
RTLIL::Const const_state_in = RTLIL::Const(tr.state_in, state_num_log2);
RTLIL::Const const_state_out = RTLIL::Const(tr.state_out, state_num_log2);
std::vector<RTLIL::State> &bits_state_in = const_state_in.bits();
std::vector<RTLIL::State> &bits_state_out = const_state_out.bits();
std::vector<RTLIL::State> &bits_ctrl_in = tr.ctrl_in.bits();
std::vector<RTLIL::State> &bits_ctrl_out = tr.ctrl_out.bits();
// append lsb first
bits_table.insert(bits_table.end(), bits_ctrl_out.begin(), bits_ctrl_out.end());
bits_table.insert(bits_table.end(), bits_state_out.begin(), bits_state_out.end());
bits_table.insert(bits_table.end(), bits_ctrl_in.begin(), bits_ctrl_in.end());
bits_table.insert(bits_table.end(), bits_state_in.begin(), bits_state_in.end());
cell_trans_table.append(tr.ctrl_out);
cell_trans_table.append(const_state_out);
cell_trans_table.append(tr.ctrl_in);
cell_trans_table.append(const_state_in);
}
cell->parameters[ID::TRANS_TABLE] = std::move(cell_trans_table);
}
void copy_from_cell(RTLIL::Cell *cell)
@ -95,25 +87,18 @@ struct FsmData
const RTLIL::Const &trans_table = cell->parameters[ID::TRANS_TABLE];
for (int i = 0; i < state_num; i++) {
RTLIL::Const state_code;
int off_begin = i*state_bits, off_end = off_begin + state_bits;
state_code.bits().insert(state_code.bits().begin(), state_table.begin()+off_begin, state_table.begin()+off_end);
int off_begin = i*state_bits;
RTLIL::Const state_code = state_table.extract(off_begin, state_bits);
this->state_table.push_back(state_code);
}
for (int i = 0; i < trans_num; i++)
{
auto off_ctrl_out = trans_table.begin() + i*(num_inputs+num_outputs+2*state_num_log2);
auto off_state_out = off_ctrl_out + num_outputs;
auto off_ctrl_in = off_state_out + state_num_log2;
auto off_state_in = off_ctrl_in + num_inputs;
auto off_end = off_state_in + state_num_log2;
RTLIL::Const state_in, state_out, ctrl_in, ctrl_out;
ctrl_out.bits().insert(ctrl_out.bits().begin(), off_ctrl_out, off_state_out);
state_out.bits().insert(state_out.bits().begin(), off_state_out, off_ctrl_in);
ctrl_in.bits().insert(ctrl_in.bits().begin(), off_ctrl_in, off_state_in);
state_in.bits().insert(state_in.bits().begin(), off_state_in, off_end);
int base_offset = i*(num_inputs+num_outputs+2*state_num_log2);
RTLIL::Const ctrl_out = trans_table.extract(base_offset, num_outputs);
RTLIL::Const state_out = trans_table.extract(base_offset + num_outputs, state_num_log2);
RTLIL::Const ctrl_in = trans_table.extract(base_offset + num_outputs + state_num_log2, num_inputs);
RTLIL::Const state_in = trans_table.extract(base_offset + num_outputs + state_num_log2 + num_inputs, state_num_log2);
transition_t tr;
tr.state_in = state_in.as_int();

View file

@ -79,7 +79,7 @@ struct SubmodWorker
flag_wire(c.wire, create, set_int_used, set_ext_driven, set_ext_used);
if (set_int_driven)
for (int i = c.offset; i < c.offset+c.width; i++) {
wire_flags.at(c.wire).is_int_driven.bits()[i] = State::S1;
wire_flags.at(c.wire).is_int_driven.set(i, State::S1);
flag_found_something = true;
}
}
@ -185,8 +185,8 @@ struct SubmodWorker
auto it = sig[i].wire->attributes.find(ID::init);
if (it != sig[i].wire->attributes.end()) {
auto jt = new_wire->attributes.insert(std::make_pair(ID::init, Const(State::Sx, GetSize(sig)))).first;
jt->second.bits()[i] = it->second[sig[i].offset];
it->second.bits()[sig[i].offset] = State::Sx;
jt->second.set(i, it->second[sig[i].offset]);
it->second.set(sig[i].offset, State::Sx);
}
}
}

View file

@ -848,9 +848,9 @@ grow_read_ports:;
for (int i = 0; i < mem.width; i++)
if (shuffle_map[i] != -1) {
module->connect(port.data[shuffle_map[i]], new_data[i]);
new_init_value.bits()[i] = port.init_value[shuffle_map[i]];
new_arst_value.bits()[i] = port.arst_value[shuffle_map[i]];
new_srst_value.bits()[i] = port.srst_value[shuffle_map[i]];
new_init_value.set(i, port.init_value[shuffle_map[i]]);
new_arst_value.set(i, port.arst_value[shuffle_map[i]]);
new_srst_value.set(i, port.srst_value[shuffle_map[i]]);
}
port.data = new_data;
port.init_value = new_init_value;
@ -887,9 +887,9 @@ grow_read_ports:;
for (int i = 0; i < init_size; i++)
for (int j = 0; j < bram.dbits; j++)
if (init_offset+i < GetSize(initdata) && init_offset+i >= 0)
initparam.bits()[i*bram.dbits+j] = initdata[init_offset+i][init_shift+j];
initparam.set(i*bram.dbits+j, initdata[init_offset+i][init_shift+j]);
else
initparam.bits()[i*bram.dbits+j] = State::Sx;
initparam.set(i*bram.dbits+j, State::Sx);
c->setParam(ID::INIT, initparam);
}

View file

@ -60,16 +60,17 @@ struct MemoryShareWorker
bool merge_rst_value(Mem &mem, Const &res, int wide_log2, const Const &src1, int sub1, const Const &src2, int sub2) {
res = Const(State::Sx, mem.width << wide_log2);
for (int i = 0; i < GetSize(src1); i++)
res.bits()[i + sub1 * mem.width] = src1[i];
res.set(i + sub1 * mem.width, src1[i]);
for (int i = 0; i < GetSize(src2); i++) {
if (src2[i] == State::Sx)
continue;
auto &dst = res.bits()[i + sub2 * mem.width];
int idx = i + sub2 * mem.width;
RTLIL::State dst = res[idx];
if (dst == src2[i])
continue;
if (dst != State::Sx)
return false;
dst = src2[i];
res.set(idx, src2[i]);
}
return true;
}

View file

@ -406,7 +406,7 @@ bool rmunused_module_signals(RTLIL::Module *module, bool purge_mode, bool verbos
for (int i = 0; i < wire->width; i++) {
auto it = init_bits.find(RTLIL::SigBit(wire, i));
if (it != init_bits.end()) {
val.bits()[i] = it->second;
val.set(i, it->second);
found = true;
}
}
@ -425,7 +425,7 @@ bool rmunused_module_signals(RTLIL::Module *module, bool purge_mode, bool verbos
if (wire->attributes.count(ID::init))
initval = wire->attributes.at(ID::init);
if (GetSize(initval) != GetSize(wire))
initval.bits().resize(GetSize(wire), State::Sx);
initval.resize(GetSize(wire), State::Sx);
if (initval.is_fully_undef())
wire->attributes.erase(ID::init);
@ -457,7 +457,7 @@ bool rmunused_module_signals(RTLIL::Module *module, bool purge_mode, bool verbos
if (s1[i] != s2[i]) {
if (s2[i] == State::Sx && (initval[i] == State::S0 || initval[i] == State::S1)) {
s2[i] = initval[i];
initval.bits()[i] = State::Sx;
initval.set(i, State::Sx);
}
new_conn.first.append(s1[i]);
new_conn.second.append(s2[i]);

View file

@ -405,27 +405,29 @@ struct OptDffWorker
} else if (ff.pol_clr == ff.pol_set) {
// Try a more complex conversion to plain async reset.
State val_neutral = ff.pol_set ? State::S0 : State::S1;
Const val_arst;
SigBit sig_arst;
if (ff.sig_clr[0] == val_neutral)
sig_arst = ff.sig_set[0];
else
sig_arst = ff.sig_clr[0];
bool failed = false;
Const::Builder val_arst_builder(ff.width);
for (int i = 0; i < ff.width; i++) {
if (ff.sig_clr[i] == sig_arst && ff.sig_set[i] == val_neutral)
val_arst.bits().push_back(State::S0);
val_arst_builder.push_back(State::S0);
else if (ff.sig_set[i] == sig_arst && ff.sig_clr[i] == val_neutral)
val_arst.bits().push_back(State::S1);
else
val_arst_builder.push_back(State::S1);
else {
failed = true;
break;
}
}
if (!failed) {
log("Converting CLR/SET to ARST on %s (%s) from module %s.\n",
log_id(cell), log_id(cell->type), log_id(module));
ff.has_sr = false;
ff.has_arst = true;
ff.val_arst = val_arst;
ff.val_arst = val_arst_builder.build();
ff.sig_arst = sig_arst;
ff.pol_arst = ff.pol_clr;
changed = true;
@ -637,7 +639,7 @@ struct OptDffWorker
// Try to merge sync resets.
std::map<ctrls_t, std::vector<int>> groups;
std::vector<int> remaining_indices;
Const val_srst;
Const::Builder val_srst_builder(ff.width);
for (int i = 0 ; i < ff.width; i++) {
ctrls_t resets;
@ -679,16 +681,18 @@ struct OptDffWorker
groups[resets].push_back(i);
} else
remaining_indices.push_back(i);
val_srst.bits().push_back(reset_val);
val_srst_builder.push_back(reset_val);
}
Const val_srst = val_srst_builder.build();
for (auto &it : groups) {
FfData new_ff = ff.slice(it.second);
new_ff.val_srst = Const();
Const::Builder new_val_srst_builder(new_ff.width);
for (int i = 0; i < new_ff.width; i++) {
int j = it.second[i];
new_ff.val_srst.bits().push_back(val_srst[j]);
new_val_srst_builder.push_back(val_srst[j]);
}
new_ff.val_srst = new_val_srst_builder.build();
ctrl_t srst = combine_resets(it.first, ff.is_fine);
new_ff.has_srst = true;

View file

@ -83,7 +83,7 @@ void replace_undriven(RTLIL::Module *module, const CellTypes &ct)
auto cursor = initbits.find(bit);
if (cursor != initbits.end()) {
revisit_initwires.insert(cursor->second.first);
val.bits()[i] = cursor->second.second;
val.set(i, cursor->second.second);
}
}
@ -101,7 +101,7 @@ void replace_undriven(RTLIL::Module *module, const CellTypes &ct)
Const initval = wire->attributes.at(ID::init);
for (int i = 0; i < GetSize(initval) && i < GetSize(wire); i++) {
if (SigBit(initval[i]) == sig[i])
initval.bits()[i] = State::Sx;
initval.set(i, State::Sx);
}
if (initval.is_fully_undef()) {
log_debug("Removing init attribute from %s/%s.\n", log_id(module), log_id(wire));

View file

@ -96,10 +96,10 @@ struct OptFfInvWorker
}
}
Const mask = lut->getParam(ID::LUT);
Const new_mask;
for (int j = 0; j < (1 << GetSize(sig_a)); j++) {
new_mask.bits().push_back(mask[j ^ flip_mask]);
}
Const::Builder new_mask_builder(1 << GetSize(sig_a));
for (int j = 0; j < (1 << GetSize(sig_a)); j++)
new_mask_builder.push_back(mask[j ^ flip_mask]);
Const new_mask = new_mask_builder.build();
if (GetSize(sig_a) == 1 && new_mask.as_int() == 2) {
module->connect(lut->getPort(ID::Y), ff.sig_q);
module->remove(lut);
@ -178,13 +178,14 @@ struct OptFfInvWorker
if (d_lut->type == ID($lut)) {
Const mask = d_lut->getParam(ID::LUT);
Const new_mask;
Const::Builder new_mask_builder(GetSize(mask));
for (int i = 0; i < GetSize(mask); i++) {
if (mask[i] == State::S0)
new_mask.bits().push_back(State::S1);
new_mask_builder.push_back(State::S1);
else
new_mask.bits().push_back(State::S0);
new_mask_builder.push_back(State::S0);
}
Const new_mask = new_mask_builder.build();
d_lut->setParam(ID::LUT, new_mask);
if (d_lut->getParam(ID::WIDTH) == 1 && new_mask.as_int() == 2) {
module->connect(ff.sig_d, d_lut->getPort(ID::A));

View file

@ -493,7 +493,7 @@ struct OptLutWorker
eval_inputs[lutM_new_inputs[i]] = (eval >> i) & 1;
}
eval_inputs[lutA_output] = evaluate_lut(lutA, eval_inputs);
lutM_new_table.bits()[eval] = (RTLIL::State) evaluate_lut(lutB, eval_inputs);
lutM_new_table.set(eval, (RTLIL::State) evaluate_lut(lutB, eval_inputs));
}
log_debug(" Cell A truth table: %s.\n", lutA->getParam(ID::LUT).as_string().c_str());

View file

@ -213,7 +213,7 @@ struct OptLutInsPass : public Pass {
}
lidx |= val << j;
}
new_lut.bits()[i] = lut[lidx];
new_lut.set(i, lut[lidx]);
}
// For lattice, and gowin do not replace with a const driver — the nextpnr
// packer requires a complete set of LUTs for wide LUT muxes.

View file

@ -175,36 +175,36 @@ struct OptMemPass : public Pass {
}
for (auto &port: mem.rd_ports) {
SigSpec new_data;
Const new_init;
Const new_arst;
Const new_srst;
Const::Builder new_init_bits;
Const::Builder new_arst_bits;
Const::Builder new_srst_bits;
for (int sub = 0; sub < (1 << port.wide_log2); sub++) {
for (auto i: swizzle) {
int bidx = sub * mem.width + i;
new_data.append(port.data[bidx]);
new_init.bits().push_back(port.init_value[bidx]);
new_arst.bits().push_back(port.arst_value[bidx]);
new_srst.bits().push_back(port.srst_value[bidx]);
new_init_bits.push_back(port.init_value[bidx]);
new_arst_bits.push_back(port.arst_value[bidx]);
new_srst_bits.push_back(port.srst_value[bidx]);
}
}
port.data = new_data;
port.init_value = new_init;
port.arst_value = new_arst;
port.srst_value = new_srst;
port.init_value = new_init_bits.build();
port.arst_value = new_arst_bits.build();
port.srst_value = new_srst_bits.build();
}
for (auto &init: mem.inits) {
Const new_data;
Const new_en;
Const::Builder new_data_bits;
for (int s = 0; s < GetSize(init.data); s += mem.width) {
for (auto i: swizzle) {
new_data.bits().push_back(init.data[s + i]);
new_data_bits.push_back(init.data[s + i]);
}
}
init.data = new_data_bits.build();
Const::Builder new_en_bits;
for (auto i: swizzle) {
new_en.bits().push_back(init.en[i]);
new_en_bits.push_back(init.en[i]);
}
init.data = new_data;
init.en = new_en;
init.en = new_en_bits.build();
}
mem.width = GetSize(swizzle);
changed = true;

View file

@ -321,11 +321,12 @@ struct Pmux2ShiftxPass : public Pass {
bits.sort();
pair<SigSpec, Const> entry;
RTLIL::Const::Builder entry_bits_builder(GetSize(bits));
for (auto it : bits) {
entry.first.append(it.first);
entry.second.bits().push_back(it.second);
entry_bits_builder.push_back(it.second);
}
entry.second = entry_bits_builder.build();
eqdb[sigmap(cell->getPort(ID::Y)[0])] = entry;
goto next_cell;
@ -342,11 +343,12 @@ struct Pmux2ShiftxPass : public Pass {
bits.sort();
pair<SigSpec, Const> entry;
RTLIL::Const::Builder entry_bits_builder(GetSize(bits));
for (auto it : bits) {
entry.first.append(it.first);
entry.second.bits().push_back(it.second);
entry_bits_builder.push_back(it.second);
}
entry.second = entry_bits_builder.build();
eqdb[sigmap(cell->getPort(ID::Y)[0])] = entry;
goto next_cell;
@ -591,7 +593,7 @@ struct Pmux2ShiftxPass : public Pass {
used_src_columns[best_src_col] = true;
perm_new_from_old[dst_col] = best_src_col;
perm_xormask.bits()[dst_col] = best_inv ? State::S1 : State::S0;
perm_xormask.set(dst_col, best_inv ? State::S1 : State::S0);
}
}
@ -614,7 +616,7 @@ struct Pmux2ShiftxPass : public Pass {
Const new_c(State::S0, GetSize(old_c));
for (int i = 0; i < GetSize(old_c); i++)
new_c.bits()[i] = old_c[perm_new_from_old[i]];
new_c.set(i, old_c[perm_new_from_old[i]]);
Const new_c_before_xor = new_c;
new_c = const_xor(new_c, perm_xormask, false, false, GetSize(new_c));
@ -687,7 +689,7 @@ struct Pmux2ShiftxPass : public Pass {
if (!full_case) {
Const enable_mask(State::S0, max_choice+1);
for (auto &it : perm_choices)
enable_mask.bits()[it.first.as_int()] = State::S1;
enable_mask.set(it.first.as_int(), State::S1);
en = module->addWire(NEW_ID);
module->addShift(NEW_ID, enable_mask, cmp, en, false, src);
}

View file

@ -790,12 +790,13 @@ struct ShareWorker
}
p.first = RTLIL::SigSpec();
p.second.bits().clear();
RTLIL::Const::Builder new_bits(p_bits.size());
for (auto &it : p_bits) {
p.first.append(it.first);
p.second.bits().push_back(it.second);
new_bits.push_back(it.second);
}
p.second = new_bits.build();
return true;
}
@ -818,9 +819,9 @@ struct ShareWorker
auto otherval = val;
if (otherval[i] == State::S0)
otherval.bits()[i] = State::S1;
otherval.set(i, State::S1);
else if (otherval[i] == State::S1)
otherval.bits()[i] = State::S0;
otherval.set(i, State::S0);
else
continue;
@ -829,8 +830,11 @@ struct ShareWorker
auto newsig = sig;
newsig.remove(i);
auto newval = val;
newval.bits().erase(newval.bits().begin() + i);
RTLIL::Const::Builder new_bits(val.size() - 1);
for (int j = 0; j < val.size(); ++j)
if (j != i)
new_bits.push_back(val[j]);
RTLIL::Const newval = new_bits.build();
db[newsig].insert(newval);
db[sig].erase(otherval);
@ -926,7 +930,8 @@ struct ShareWorker
if (used_in_a)
for (auto p : c_patterns) {
for (int i = 0; i < GetSize(sig_s); i++)
p.first.append(sig_s[i]), p.second.bits().push_back(RTLIL::State::S0);
p.first.append(sig_s[i]);
p.second.append(RTLIL::Const(RTLIL::State::S0, GetSize(sig_s)));
if (sort_check_activation_pattern(p))
if (!insert_capped(activation_patterns_cache[cell], p)) {
recursion_state.erase(cell);
@ -936,7 +941,8 @@ struct ShareWorker
for (int idx : used_in_b_parts)
for (auto p : c_patterns) {
p.first.append(sig_s[idx]), p.second.bits().push_back(RTLIL::State::S1);
p.first.append(sig_s[idx]);
p.second.append(RTLIL::Const(RTLIL::State::S1));
if (sort_check_activation_pattern(p))
if (!insert_capped(activation_patterns_cache[cell], p)) {
recursion_state.erase(cell);
@ -989,12 +995,14 @@ struct ShareWorker
{
std::vector<RTLIL::SigBit> p_first = p.first;
ssc_pair_t new_p;
RTLIL::Const::Builder new_p_second_bits;
for (int i = 0; i < GetSize(p_first); i++)
if (filter_bits.count(p_first[i]) == 0) {
new_p.first.append(p_first[i]);
new_p.second.bits().push_back(p.second.at(i));
new_p_second_bits.push_back(p.second.at(i));
}
new_p.second = new_p_second_bits.build();
out.insert(new_p);
}

View file

@ -220,10 +220,10 @@ struct WreduceWorker
// Narrow ARST_VALUE parameter to new size.
if (cell->parameters.count(ID::ARST_VALUE)) {
rst_value.bits().resize(GetSize(sig_q));
rst_value.resize(GetSize(sig_q), State::S0);
cell->setParam(ID::ARST_VALUE, rst_value);
} else if (cell->parameters.count(ID::SRST_VALUE)) {
rst_value.bits().resize(GetSize(sig_q));
rst_value.resize(GetSize(sig_q), State::S0);
cell->setParam(ID::SRST_VALUE, rst_value);
}

View file

@ -52,17 +52,15 @@ void proc_init(RTLIL::Module *mod, SigMap &sigmap, RTLIL::Process *proc)
Const value = valuesig.as_const();
Const &wireinit = lhs_c.wire->attributes[ID::init];
while (GetSize(wireinit) < lhs_c.wire->width)
wireinit.bits().push_back(State::Sx);
if (GetSize(wireinit) < lhs_c.wire->width)
wireinit.resize(lhs_c.wire->width, State::Sx);
for (int i = 0; i < lhs_c.width; i++) {
auto &initbit = wireinit.bits()[i + lhs_c.offset];
int index = i + lhs_c.offset;
State initbit = wireinit[index];
if (initbit != State::Sx && initbit != value[i])
log_cmd_error("Conflicting initialization values for %s.\n", log_signal(lhs_c));
initbit = value[i];
wireinit.set(index, value[i]);
}
log(" Set init value: %s = %s\n", log_signal(lhs_c.wire), log_signal(wireinit));
}
offset += lhs_c.width;

View file

@ -39,7 +39,7 @@ void proc_memwr(RTLIL::Module *mod, RTLIL::Process *proc, dict<IdString, int> &n
Const priority_mask(State::S0, port_id);
for (int i = 0; i < GetSize(prev_port_ids); i++)
if (memwr.priority_mask[i] == State::S1)
priority_mask.bits()[prev_port_ids[i]] = State::S1;
priority_mask.set(prev_port_ids[i], State::S1);
prev_port_ids.push_back(port_id);
RTLIL::Cell *cell = mod->addCell(NEW_ID, ID($memwr_v2));

View file

@ -97,7 +97,7 @@ struct RomWorker
log_debug("rejecting switch: lhs not uniform\n");
return;
}
val.bits()[it2->second] = it.second[i].data;
val.set(it2->second, it.second[i].data);
}
}
for (auto bit: val) {
@ -114,7 +114,7 @@ struct RomWorker
}
Const c = addr.as_const();
while (GetSize(c) && c.back() == State::S0)
c.bits().pop_back();
c.resize(c.size() - 1, State::S0);
if (GetSize(c) > swsigbits)
continue;
if (GetSize(c) > 30) {
@ -155,22 +155,22 @@ struct RomWorker
Mem mem(module, NEW_ID, GetSize(lhs), 0, 1 << abits);
mem.attributes = sw->attributes;
Const init_data;
Const::Builder builder(mem.size * GetSize(lhs));
for (int i = 0; i < mem.size; i++) {
auto it = vals.find(i);
if (it == vals.end()) {
log_assert(got_default);
for (auto bit: default_val)
init_data.bits().push_back(bit);
builder.push_back(bit);
} else {
for (auto bit: it->second)
init_data.bits().push_back(bit);
builder.push_back(bit);
}
}
MemInit init;
init.addr = 0;
init.data = init_data;
init.data = builder.build();
init.en = Const(State::S1, GetSize(lhs));
mem.inits.push_back(std::move(init));

View file

@ -256,7 +256,7 @@ struct VlogHammerReporter
for (int j = input_widths[i]-1; j >= 0; j--) {
ce.set(RTLIL::SigSpec(wire, j), bits.back());
recorded_set_vars.append(RTLIL::SigSpec(wire, j));
recorded_set_vals.bits().push_back(bits.back());
recorded_set_vars.append(RTLIL::Const(bits.back()));
bits.pop_back();
}
if (module == modules.front()) {
@ -346,7 +346,7 @@ struct VlogHammerReporter
log_error("Pattern %s is to short!\n", pattern.c_str());
patterns.push_back(sig.as_const());
if (invert_pattern) {
for (auto &bit : patterns.back().bits())
for (auto bit : patterns.back())
if (bit == RTLIL::State::S0)
bit = RTLIL::State::S1;
else if (bit == RTLIL::State::S1)

View file

@ -851,7 +851,7 @@ struct FormalFfPass : public Pass {
auto before = ff.val_init;
for (int i = 0; i < ff.width; i++)
if (ff.val_init[i] == State::Sx && !worker.is_initval_used(ff.sig_q[i]))
ff.val_init.bits()[i] = State::S0;
ff.val_init.set(i, State::S0);
if (ff.val_init != before) {
log("Setting unused undefined initial value of %s.%s (%s) from %s to %s\n",

View file

@ -620,14 +620,18 @@ struct SatHelper
int last_timestep = -2;
for (auto &info : modelInfo)
{
RTLIL::Const value;
bool found_undef = false;
RTLIL::Const::Builder value_builder(info.width);
for (int i = 0; i < info.width; i++) {
value.bits().push_back(modelValues.at(info.offset+i) ? RTLIL::State::S1 : RTLIL::State::S0);
if (enable_undef && modelValues.at(modelExpressions.size()/2 + info.offset + i))
value.bits().back() = RTLIL::State::Sx, found_undef = true;
RTLIL::State bit = modelValues.at(info.offset+i) ? RTLIL::State::S1 : RTLIL::State::S0;
if (enable_undef && modelValues.at(modelExpressions.size()/2 + info.offset + i)) {
bit = RTLIL::State::Sx;
found_undef = true;
}
value_builder.push_back(bit);
}
RTLIL::Const value = value_builder.build();
if (info.timestep != last_timestep) {
const char *hline = "---------------------------------------------------------------------------------------------------"
@ -732,13 +736,14 @@ struct SatHelper
int last_timestep = -2;
for (auto &info : modelInfo)
{
RTLIL::Const value;
RTLIL::Const::Builder value_builder(info.width);
for (int i = 0; i < info.width; i++) {
value.bits().push_back(modelValues.at(info.offset+i) ? RTLIL::State::S1 : RTLIL::State::S0);
RTLIL::State bit = modelValues.at(info.offset+i) ? RTLIL::State::S1 : RTLIL::State::S0;
if (enable_undef && modelValues.at(modelExpressions.size()/2 + info.offset + i))
value.bits().back() = RTLIL::State::Sx;
bit = RTLIL::State::Sx;
value_builder.push_back(bit);
}
RTLIL::Const value = value_builder.build();
if (info.timestep != last_timestep) {
if(last_timestep == 0)
@ -779,12 +784,14 @@ struct SatHelper
for (auto &info : modelInfo)
{
Const value;
RTLIL::Const::Builder value_builder(info.width);
for (int i = 0; i < info.width; i++) {
value.bits().push_back(modelValues.at(info.offset+i) ? RTLIL::State::S1 : RTLIL::State::S0);
RTLIL::State bit = modelValues.at(info.offset+i) ? RTLIL::State::S1 : RTLIL::State::S0;
if (enable_undef && modelValues.at(modelExpressions.size()/2 + info.offset + i))
value.bits().back() = RTLIL::State::Sx;
bit = RTLIL::State::Sx;
value_builder.push_back(bit);
}
Const value = value_builder.build();
wavedata[info.description].first = info.width;
wavedata[info.description].second[info.timestep] = value;

View file

@ -127,16 +127,11 @@ struct SimShared
bool initstate = true;
};
void zinit(State &v)
{
if (v != State::S1)
v = State::S0;
}
void zinit(Const &v)
{
for (auto &bit : v.bits())
zinit(bit);
for (auto bit : v)
if (bit != State::S1)
bit = State::S0;
}
struct SimInstance
@ -419,16 +414,17 @@ struct SimInstance
Const get_state(SigSpec sig)
{
Const value;
Const::Builder builder(GetSize(sig));
for (auto bit : sigmap(sig))
if (bit.wire == nullptr)
value.bits().push_back(bit.data);
builder.push_back(bit.data);
else if (state_nets.count(bit))
value.bits().push_back(state_nets.at(bit));
builder.push_back(state_nets.at(bit));
else
value.bits().push_back(State::Sz);
builder.push_back(State::Sz);
Const value = builder.build();
if (shared->debug)
log("[%s] get %s: %s\n", hiername().c_str(), log_signal(sig), log_signal(value));
return value;
@ -488,7 +484,7 @@ struct SimInstance
for (int i = 0; i < GetSize(data); i++)
if (0 <= i+offset && i+offset < state.mem->size * state.mem->width && data[i] != State::Sa)
if (state.data[i+offset] != data[i])
dirty = true, state.data.bits()[i+offset] = data[i];
dirty = true, state.data.set(i+offset, data[i]);
if (dirty)
dirty_memories.insert(memid);
@ -500,7 +496,7 @@ struct SimInstance
if (offset >= state.mem->size * state.mem->width)
log_error("Addressing out of bounds bit %d/%d of memory %s\n", offset, state.mem->size * state.mem->width, log_id(memid));
if (state.data[offset] != data) {
state.data.bits()[offset] = data;
state.data.set(offset, data);
dirty_memories.insert(memid);
}
}
@ -717,10 +713,10 @@ struct SimInstance
for(int i=0;i<ff.past_d.size();i++) {
if (current_clr[i] == (ff_data.pol_clr ? State::S1 : State::S0)) {
current_q.bits()[i] = State::S0;
current_q.set(i, State::S0);
}
else if (current_set[i] == (ff_data.pol_set ? State::S1 : State::S0)) {
current_q.bits()[i] = State::S1;
current_q.set(i, State::S1);
}
}
}
@ -770,7 +766,7 @@ struct SimInstance
if (index >= 0 && index < mem.size)
for (int i = 0; i < (mem.width << port.wide_log2); i++)
if (enable[i] == State::S1 && mdb.data.at(index*mem.width+i) != data[i]) {
mdb.data.bits().at(index*mem.width+i) = data[i];
mdb.data.set(index*mem.width+i, data[i]);
dirty_memories.insert(mem.memid);
did_something = true;
}
@ -971,7 +967,7 @@ struct SimInstance
if (w->attributes.count(ID::init) == 0)
w->attributes[ID::init] = Const(State::Sx, GetSize(w));
w->attributes[ID::init].bits()[sig_q[i].offset] = initval[i];
w->attributes[ID::init].set(sig_q[i].offset, initval[i]);
}
}

View file

@ -1216,7 +1216,7 @@ void reintegrate(RTLIL::Module *module, bool dff_mode)
auto Qi = initmap(Q);
auto it = Qi.wire->attributes.find(ID::init);
if (it != Qi.wire->attributes.end())
it->second.bits()[Qi.offset] = State::Sx;
it->second.set(Qi.offset, State::Sx);
}
else if (cell->type.in(ID($_AND_), ID($_NOT_)))
module->remove(cell);
@ -1526,8 +1526,11 @@ void reintegrate(RTLIL::Module *module, bool dff_mode)
log_assert(index < GetSize(A));
int i = 0;
while (i < GetSize(mask)) {
for (int j = 0; j < (1 << index); j++)
std::swap(mask.bits()[i+j], mask.bits()[i+j+(1 << index)]);
for (int j = 0; j < (1 << index); j++) {
State bit = mask[i+j];
mask.set(i+j, mask[i+j+(1 << index)]);
mask.set(i+j+(1 << index), bit);
}
i += 1 << (index+1);
}
A[index] = y_bit;
@ -1542,7 +1545,7 @@ void reintegrate(RTLIL::Module *module, bool dff_mode)
// and get cleaned away
clone_lut:
driver_mask = driver_lut->getParam(ID::LUT);
for (auto &b : driver_mask.bits()) {
for (auto b : driver_mask) {
if (b == RTLIL::State::S0) b = RTLIL::State::S1;
else if (b == RTLIL::State::S1) b = RTLIL::State::S0;
}

View file

@ -118,13 +118,13 @@ struct DffinitPass : public Pass {
for (int i = 0; i < GetSize(sig); i++) {
if (initval[i] == State::Sx)
continue;
while (GetSize(value) <= i)
value.bits().push_back(State::S0);
if (GetSize(value) <= i)
value.resize(i + 1, State::S0);
if (noreinit && value[i] != State::Sx && value[i] != initval[i])
log_error("Trying to assign a different init value for %s.%s.%s which technically "
"have a conflicted init value.\n",
log_id(module), log_id(cell), log_id(it.second));
value.bits()[i] = initval[i];
value.set(i, initval[i]);
}
if (highlow_mode && GetSize(value) != 0) {

View file

@ -869,17 +869,17 @@ struct DffLegalizePass : public Pass {
if (ff.has_arst) {
if (ff.val_arst[i] == State::Sx) {
if (!(supported & (mask << 8)))
ff.val_arst.bits()[i] = State::S0;
ff.val_arst.set(i, State::S0);
if (!(supported & (mask << 4)))
ff.val_arst.bits()[i] = State::S1;
ff.val_arst.set(i, State::S1);
}
}
if (ff.has_srst) {
if (ff.val_srst[i] == State::Sx) {
if (!(supported & (mask << 8)))
ff.val_srst.bits()[i] = State::S0;
ff.val_srst.set(i, State::S0);
if (!(supported & (mask << 4)))
ff.val_srst.bits()[i] = State::S1;
ff.val_srst.set(i, State::S1);
}
}
}

View file

@ -1401,7 +1401,7 @@ struct FlowmapWorker
log_signal(node), log_signal(undef), env.c_str());
}
lut_table.bits()[i] = value.as_bool() ? State::S1 : State::S0;
lut_table.set(i, value.as_bool() ? State::S1 : State::S0);
ce.pop();
}

View file

@ -680,15 +680,16 @@ struct TechmapWorker
for (auto &conn : cell->connections())
if (tpl->avail_parameters.count(stringf("\\_TECHMAP_CONNMAP_%s_", log_id(conn.first))) != 0) {
RTLIL::Const value;
for (auto &bit : sigmap(conn.second)) {
SigSpec sm = sigmap(conn.second);
RTLIL::Const::Builder builder(GetSize(sm) * bits);
for (auto &bit : sm) {
int val = unique_bit_id.at(bit);
for (int i = 0; i < bits; i++) {
value.bits().push_back((val & 1) != 0 ? State::S1 : State::S0);
builder.push_back((val & 1) != 0 ? State::S1 : State::S0);
val = val >> 1;
}
}
parameters.emplace(stringf("\\_TECHMAP_CONNMAP_%s_", log_id(conn.first)), value);
parameters.emplace(stringf("\\_TECHMAP_CONNMAP_%s_", log_id(conn.first)), builder.build());
}
}

View file

@ -76,7 +76,7 @@ struct ZinitPass : public Pass {
if (ff.val_init[i] == State::S1)
bits.insert(i);
else if (ff.val_init[i] != State::S0 && all_mode)
ff.val_init.bits()[i] = State::S0;
ff.val_init.set(i, State::S0);
}
ff.flip_bits(bits);
ff.emit();

View file

@ -641,15 +641,16 @@ static void run_eval_test(RTLIL::Design *design, bool verbose, bool nosat, std::
if (!gold_wire->port_input)
continue;
RTLIL::Const in_value;
RTLIL::Const::Builder in_value_builder(GetSize(gold_wire));
for (int i = 0; i < GetSize(gold_wire); i++)
in_value.bits().push_back(xorshift32(2) ? State::S1 : State::S0);
in_value_builder.push_back(xorshift32(2) ? State::S1 : State::S0);
RTLIL::Const in_value = in_value_builder.build();
if (xorshift32(4) == 0) {
int inv_chance = 1 + xorshift32(8);
for (int i = 0; i < GetSize(gold_wire); i++)
if (xorshift32(inv_chance) == 0)
in_value.bits()[i] = RTLIL::Sx;
in_value.set(i, RTLIL::Sx);
}
if (verbose)

View file

@ -82,7 +82,7 @@ struct FoldInvWorker {
Const result(State::S0, GetSize(lut));
for (int i = 0; i < GetSize(lut); i++) {
int j = i ^ (1 << bit);
result.bits()[j] = lut[i];
result.set(j, lut[i]);
}
return result;
}
@ -91,7 +91,7 @@ struct FoldInvWorker {
{
Const result(State::S0, GetSize(lut));
for (int i = 0; i < GetSize(lut); i++)
result.bits()[i] = (lut[i] == State::S1) ? State::S0 : State::S1;
result.set(i, (lut[i] == State::S1) ? State::S0 : State::S1);
return result;
}

View file

@ -36,9 +36,9 @@ void invert_gp_dff(Cell *cell, bool invert_input)
Const initval = cell->getParam(ID::INIT);
if (GetSize(initval) >= 1) {
if (initval[0] == State::S0)
initval.bits()[0] = State::S1;
initval.set(0, State::S1);
else if (initval[0] == State::S1)
initval.bits()[0] = State::S0;
initval.set(0, State::S0);
cell->setParam(ID::INIT, initval);
}
@ -47,9 +47,9 @@ void invert_gp_dff(Cell *cell, bool invert_input)
Const srmode = cell->getParam(ID(SRMODE));
if (GetSize(srmode) >= 1) {
if (srmode[0] == State::S0)
srmode.bits()[0] = State::S1;
srmode.set(0, State::S1);
else if (srmode[0] == State::S1)
srmode.bits()[0] = State::S0;
srmode.set(0, State::S0);
cell->setParam(ID(SRMODE), srmode);
}
}

View file

@ -82,7 +82,7 @@ void create_ice40_dsp(ice40_dsp_pm &pm)
SigSpec CD = st.sigCD;
if (CD.empty())
CD = RTLIL::Const(0, 32);
CD = RTLIL::Const(0);
else
log_assert(GetSize(CD) == 32);

View file

@ -93,7 +93,7 @@ bool merge_lut(LutData &result, const LutData &data, const LutData select, bool
int lut_idx = i >> idx_data & ((1 << GetSize(data.second)) - 1);
new_bit = data.first[lut_idx] == State::S1;
}
result.first.bits()[i] = new_bit ? State::S1 : State::S0;
result.first.set(i, new_bit ? State::S1 : State::S0);
}
return true;
}

View file

@ -128,7 +128,7 @@ void microchip_dsp_pack(microchip_dsp_pm &pm)
continue;
for (int i = c.offset; i < c.offset + c.width; i++) {
log_assert(it->second[i] == State::S0 || it->second[i] == State::Sx);
it->second.bits()[i] = State::Sx;
it->second.set(i, State::Sx);
}
}
};
@ -244,7 +244,7 @@ void microchip_dsp_packC(microchip_dsp_CREG_pm &pm)
continue;
for (int i = c.offset; i < c.offset + c.width; i++) {
log_assert(it->second[i] == State::S0 || it->second[i] == State::Sx);
it->second.bits()[i] = State::Sx;
it->second.set(i, State::Sx);
}
}
};

View file

@ -45,7 +45,7 @@ struct QlBramMergeWorker {
{
if(cell->type != split_cell_type) continue;
if(!cell->hasParam(ID(OPTION_SPLIT))) continue;
if(cell->getParam(ID(OPTION_SPLIT)) != RTLIL::Const(1, 32)) continue;
if(cell->getParam(ID(OPTION_SPLIT)) != RTLIL::Const(1)) continue;
mergeable_groups[get_key(cell)].insert(cell);
}
}

View file

@ -200,10 +200,8 @@ struct QlDspSimdPass : public Pass {
auto val_a = dsp_a->getParam(it);
auto val_b = dsp_b->getParam(it);
mode_bits.bits().insert(mode_bits.bits().end(),
val_a.begin(), val_a.end());
mode_bits.bits().insert(mode_bits.bits().end(),
val_b.begin(), val_b.end());
mode_bits.append(val_a);
mode_bits.append(val_b);
}
// Enable the fractured mode by connecting the control

View file

@ -92,7 +92,7 @@ bool merge_lut(LutData &result, const LutData &data, const LutData select, bool
int lut_idx = i >> idx_data & ((1 << GetSize(data.second)) - 1);
new_bit = data.first[lut_idx] == State::S1;
}
result.first.bits()[i] = new_bit ? State::S1 : State::S0;
result.first.set(i, new_bit ? State::S1 : State::S0);
}
return true;
}
@ -211,8 +211,8 @@ lut_sigin_done:
Cell *cell_d = it_D->second.second;
if (cell->hasParam(ID(IS_D_INVERTED)) && cell->getParam(ID(IS_D_INVERTED)).as_bool()) {
// Flip all bits in the LUT.
for (int i = 0; i < GetSize(lut_d.first); i++)
lut_d.first.bits()[i] = (lut_d.first[i] == State::S1) ? State::S0 : State::S1;
for (auto bit : lut_d.first)
bit = (bit == State::S1) ? State::S0 : State::S1;
}
LutData lut_d_post_ce;

View file

@ -343,7 +343,7 @@ void xilinx_dsp_pack(xilinx_dsp_pm &pm)
// Since B is an exact power of 2, subtract 1
// by inverting all bits up until hitting
// that one hi bit
for (auto &b : B.bits())
for (auto b : B)
if (b == State::S0) b = State::S1;
else if (b == State::S1) {
b = State::S0;
@ -392,7 +392,7 @@ void xilinx_dsp_pack(xilinx_dsp_pm &pm)
continue;
for (int i = c.offset; i < c.offset+c.width; i++) {
log_assert(it->second[i] == State::S0 || it->second[i] == State::Sx);
it->second.bits()[i] = State::Sx;
it->second.set(i, State::Sx);
}
}
};
@ -579,7 +579,7 @@ void xilinx_dsp48a_pack(xilinx_dsp48a_pm &pm)
continue;
for (int i = c.offset; i < c.offset+c.width; i++) {
log_assert(it->second[i] == State::S0 || it->second[i] == State::Sx);
it->second.bits()[i] = State::Sx;
it->second.set(i, State::Sx);
}
}
};
@ -702,7 +702,7 @@ void xilinx_dsp_packC(xilinx_dsp_CREG_pm &pm)
continue;
for (int i = c.offset; i < c.offset+c.width; i++) {
log_assert(it->second[i] == State::S0 || it->second[i] == State::Sx);
it->second.bits()[i] = State::Sx;
it->second.set(i, State::Sx);
}
}
};

View file

@ -40,9 +40,8 @@ void run_fixed(xilinx_srl_pm &pm)
log_assert(Q.wire);
auto it = Q.wire->attributes.find(ID::init);
if (it != Q.wire->attributes.end()) {
auto &i = it->second.bits()[Q.offset];
initval.append(i);
i = State::Sx;
initval.append(it->second[Q.offset]);
it->second.set(Q.offset, State::Sx);
}
else
initval.append(State::Sx);
@ -121,9 +120,8 @@ void run_variable(xilinx_srl_pm &pm)
log_assert(Q.wire);
auto it = Q.wire->attributes.find(ID::init);
if (it != Q.wire->attributes.end()) {
auto &i = it->second.bits()[Q.offset];
initval.append(i);
i = State::Sx;
initval.append(it->second[Q.offset]);
it->second.set(Q.offset, State::Sx);
}
else
initval.append(State::Sx);

View file

@ -80,14 +80,282 @@ namespace RTLIL {
EXPECT_EQ(i, 16);
EXPECT_TRUE(cs1.is_str());
// It can be mutated with the bits() view
// and decays into unpacked
for (auto& bit : cs1.bits()) {
bit = State::Sx;
// It can be mutated via bit iteration and decays into unpacked
// when an non-defined bit is set.
for (auto b : cs1) {
b = State::Sx;
}
EXPECT_TRUE(cs1.is_bits());
}
{
Const c(0x12345678);
EXPECT_TRUE(c.is_str());
EXPECT_EQ(c.as_int(), 0x12345678);
EXPECT_TRUE(c.is_str());
}
{
Const c(0xab, 8);
EXPECT_TRUE(c.is_str());
EXPECT_EQ(c.as_int(), 0xab);
EXPECT_TRUE(c.is_str());
}
{
Const c(0x12345678, 80);
EXPECT_TRUE(c.is_str());
EXPECT_EQ(c.as_int(), 0x12345678);
EXPECT_EQ(c[79], S0);
EXPECT_TRUE(c.is_str());
}
{
Const c(-1, 80);
EXPECT_TRUE(c.is_str());
EXPECT_EQ(c.as_int(), -1);
EXPECT_EQ(c[79], S1);
EXPECT_TRUE(c.is_str());
}
{
Const c(1 << 24);
EXPECT_TRUE(c.is_str());
EXPECT_TRUE(c.as_bool());
EXPECT_TRUE(c.is_str());
}
{
Const c(0x2, 8);
EXPECT_TRUE(c.is_str());
EXPECT_EQ(c.as_string(), "00000010");
EXPECT_TRUE(c.is_str());
}
{
Const c(" ");
EXPECT_TRUE(c.is_str());
EXPECT_EQ(c.decode_string(), " ");
EXPECT_TRUE(c.is_str());
}
{
Const c(" ");
EXPECT_TRUE(c.is_str());
EXPECT_EQ(c.decode_string(), " ");
EXPECT_TRUE(c.is_str());
}
{
std::vector<State> v = {S0, S0, S0, S0, S0, S1, S0, S0};
Const c(v);
EXPECT_EQ(c.decode_string(), " ");
}
{
std::vector<State> v = {S0, S0, S0, S0, S0, S1, S0, Sx};
Const c(v);
EXPECT_EQ(c.decode_string(), " ");
}
{
Const c(" ");
EXPECT_TRUE(c.is_str());
EXPECT_FALSE(c.is_fully_zero());
EXPECT_TRUE(c.is_str());
}
{
Const c(" ");
EXPECT_TRUE(c.is_str());
EXPECT_FALSE(c.is_fully_ones());
EXPECT_TRUE(c.is_str());
}
{
Const c(" ");
EXPECT_TRUE(c.is_str());
EXPECT_TRUE(c.is_fully_def());
EXPECT_TRUE(c.is_str());
}
{
Const c(" ");
EXPECT_TRUE(c.is_str());
EXPECT_FALSE(c.is_fully_undef());
EXPECT_TRUE(c.is_str());
}
{
Const c(" ");
EXPECT_TRUE(c.is_str());
EXPECT_FALSE(c.is_fully_undef_x_only());
EXPECT_TRUE(c.is_str());
}
{
Const c(" ");
EXPECT_TRUE(c.is_str());
int pos;
EXPECT_TRUE(c.is_onehot(&pos));
EXPECT_EQ(pos, 5);
EXPECT_TRUE(c.is_str());
}
}
TEST_F(KernelRtlilTest, ConstConstIteratorWorks) {
const Const c(0x2, 2);
Const::const_iterator it = c.begin();
ASSERT_NE(it, c.end());
EXPECT_EQ(*it, State::S0);
++it;
ASSERT_NE(it, c.end());
EXPECT_EQ(*it, State::S1);
++it;
EXPECT_EQ(it, c.end());
}
TEST_F(KernelRtlilTest, ConstConstIteratorPreincrement) {
const Const c(0x2, 2);
Const::const_iterator it = c.begin();
EXPECT_EQ(*++it, State::S1);
}
TEST_F(KernelRtlilTest, ConstConstIteratorPostincrement) {
const Const c(0x2, 2);
Const::const_iterator it = c.begin();
EXPECT_EQ(*it++, State::S0);
}
TEST_F(KernelRtlilTest, ConstIteratorWorks) {
Const c(0x2, 2);
Const::iterator it = c.begin();
ASSERT_NE(it, c.end());
EXPECT_EQ(*it, State::S0);
++it;
ASSERT_NE(it, c.end());
EXPECT_EQ(*it, State::S1);
++it;
ASSERT_EQ(it, c.end());
}
TEST_F(KernelRtlilTest, ConstIteratorPreincrement) {
Const c(0x2, 2);
Const::iterator it = c.begin();
EXPECT_EQ(*++it, State::S1);
}
TEST_F(KernelRtlilTest, ConstIteratorPostincrement) {
Const c(0x2, 2);
Const::iterator it = c.begin();
EXPECT_EQ(*it++, State::S0);
}
TEST_F(KernelRtlilTest, ConstIteratorWriteWorks) {
Const c(0x2, 2);
Const::iterator it = c.begin();
EXPECT_EQ(*it, State::S0);
*it = State::S1;
EXPECT_EQ(*it, State::S1);
}
TEST_F(KernelRtlilTest, ConstBuilder) {
Const::Builder b;
EXPECT_EQ(GetSize(b), 0);
b.push_back(S0);
EXPECT_EQ(GetSize(b), 1);
b.push_back(S1);
EXPECT_EQ(GetSize(b), 2);
EXPECT_EQ(b.build(), Const(0x2, 2));
}
TEST_F(KernelRtlilTest, ConstSet) {
Const c(0x2, 2);
c.set(0, S1);
EXPECT_EQ(c, Const(0x3, 2));
}
TEST_F(KernelRtlilTest, ConstResize) {
Const c(0x2, 2);
c.resize(4, S1);
EXPECT_EQ(c, Const(0xe, 4));
}
TEST_F(KernelRtlilTest, ConstEqualStr) {
EXPECT_EQ(Const("abc"), Const("abc"));
EXPECT_NE(Const("abc"), Const("def"));
}
TEST_F(KernelRtlilTest, ConstEqualBits) {
std::vector<State> v1 = {S0, S1};
std::vector<State> v2 = {S1, S0};
EXPECT_EQ(Const(v1), Const(v1));
EXPECT_NE(Const(v1), Const(v2));
}
TEST_F(KernelRtlilTest, ConstEqualStrBits) {
std::vector<State> v1 = {S0, S0, S0, S0, S0, S1, S0, S0};
EXPECT_EQ(Const(v1), Const(" "));
EXPECT_NE(Const(v1), Const("a"));
}
static Hasher::hash_t hash(const Const &c) {
Hasher h;
h = c.hash_into(h);
return h.yield();
}
TEST_F(KernelRtlilTest, ConstEqualHashStrBits) {
std::vector<State> v1 = {S0, S0, S0, S0, S0, S1, S0, S0};
EXPECT_EQ(hash(Const(v1)), hash(Const(" ")));
EXPECT_NE(hash(Const(v1)), hash(Const("a")));
}
TEST_F(KernelRtlilTest, ConstIsFullyZero) {
EXPECT_TRUE(Const(0, 8).is_fully_zero());
EXPECT_FALSE(Const(8, 8).is_fully_zero());
EXPECT_TRUE(Const().is_fully_zero());
}
TEST_F(KernelRtlilTest, ConstIsFullyOnes) {
EXPECT_TRUE(Const(0xf, 4).is_fully_ones());
EXPECT_FALSE(Const(3, 4).is_fully_ones());
EXPECT_TRUE(Const().is_fully_ones());
}
TEST_F(KernelRtlilTest, ConstIsFullyDef) {
EXPECT_TRUE(Const(0xf, 4).is_fully_def());
std::vector<State> v1 = {S0, Sx};
EXPECT_FALSE(Const(v1).is_fully_def());
EXPECT_TRUE(Const().is_fully_def());
}
TEST_F(KernelRtlilTest, ConstIsFullyUndef) {
std::vector<State> v1 = {S0, Sx};
EXPECT_FALSE(Const(v1).is_fully_undef());
EXPECT_TRUE(Const(Sz, 2).is_fully_undef());
EXPECT_TRUE(Const().is_fully_undef());
}
TEST_F(KernelRtlilTest, ConstIsFullyUndefXOnly) {
std::vector<State> v1 = {Sx, Sz};
EXPECT_FALSE(Const(v1).is_fully_undef_x_only());
EXPECT_TRUE(Const(Sx, 2).is_fully_undef_x_only());
EXPECT_TRUE(Const().is_fully_undef_x_only());
}
TEST_F(KernelRtlilTest, ConstIsOnehot) {
int pos;
EXPECT_TRUE(Const(0x80, 8).is_onehot(&pos));
EXPECT_EQ(pos, 7);
EXPECT_FALSE(Const(0x82, 8).is_onehot(&pos));
EXPECT_FALSE(Const(0, 8).is_onehot(&pos));
EXPECT_TRUE(Const(1, 1).is_onehot(&pos));
EXPECT_EQ(pos, 0);
EXPECT_FALSE(Const(Sx, 1).is_onehot(&pos));
std::vector<State> v1 = {Sx, S1};
EXPECT_FALSE(Const(v1).is_onehot(&pos));
EXPECT_FALSE(Const().is_onehot(&pos));
}
class WireRtlVsHdlIndexConversionTest :