mirror of
https://github.com/YosysHQ/yosys
synced 2025-04-23 09:05:32 +00:00
add PolarFire FPGA support
This commit is contained in:
parent
a739e21a5f
commit
acddc36389
59 changed files with 5389 additions and 0 deletions
|
@ -37,6 +37,17 @@ $(eval $(call add_extra_objs,passes/pmgen/xilinx_dsp_cascade_pm.h))
|
|||
|
||||
# --------------------------------------
|
||||
|
||||
OBJS += passes/pmgen/mchp_dsp.o
|
||||
GENFILES += passes/pmgen/mchp_dsp_pm.h
|
||||
GENFILES += passes/pmgen/mchp_dsp_CREG_pm.h
|
||||
GENFILES += passes/pmgen/mchp_dsp_cascade_pm.h
|
||||
passes/pmgen/mchp_dsp.o: passes/pmgen/mchp_dsp_pm.h passes/pmgen/mchp_dsp_CREG_pm.h passes/pmgen/mchp_dsp_cascade_pm.h
|
||||
$(eval $(call add_extra_objs,passes/pmgen/mchp_dsp_pm.h))
|
||||
$(eval $(call add_extra_objs,passes/pmgen/mchp_dsp_CREG_pm.h))
|
||||
$(eval $(call add_extra_objs,passes/pmgen/mchp_dsp_cascade_pm.h))
|
||||
|
||||
# --------------------------------------
|
||||
|
||||
OBJS += passes/pmgen/peepopt.o
|
||||
GENFILES += passes/pmgen/peepopt_pm.h
|
||||
passes/pmgen/peepopt.o: passes/pmgen/peepopt_pm.h
|
||||
|
|
373
passes/pmgen/mchp_dsp.cc
Normal file
373
passes/pmgen/mchp_dsp.cc
Normal file
|
@ -0,0 +1,373 @@
|
|||
/*
|
||||
ISC License
|
||||
|
||||
Copyright (C) 2024 Microchip Technology Inc. and its subsidiaries
|
||||
|
||||
Permission to use, copy, modify, and/or distribute this software for any
|
||||
purpose with or without fee is hereby granted, provided that the above
|
||||
copyright notice and this permission notice appear in all copies.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||||
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||||
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||||
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
#include "kernel/yosys.h"
|
||||
#include "kernel/sigtools.h"
|
||||
#include <deque>
|
||||
|
||||
USING_YOSYS_NAMESPACE
|
||||
PRIVATE_NAMESPACE_BEGIN
|
||||
|
||||
#include "passes/pmgen/mchp_dsp_pm.h"
|
||||
#include "passes/pmgen/mchp_dsp_CREG_pm.h"
|
||||
#include "passes/pmgen/mchp_dsp_cascade_pm.h"
|
||||
|
||||
void mchp_dsp_pack(mchp_dsp_pm &pm)
|
||||
{
|
||||
auto &st = pm.st_mchp_dsp_pack;
|
||||
|
||||
log("Analysing %s.%s for MCHP MACC_PA packing.\n", log_id(pm.module), log_id(st.dsp));
|
||||
|
||||
Cell *cell = st.dsp;
|
||||
//pack pre-adder
|
||||
if (st.preAdderStatic) {
|
||||
SigSpec &pasub = cell->connections_.at(ID(PASUB));
|
||||
log(" static PASUB preadder %s (%s)\n", log_id(st.preAdderStatic), log_id(st.preAdderStatic->type));
|
||||
bool D_SIGNED = st.preAdderStatic->getParam(ID::B_SIGNED).as_bool();
|
||||
bool B_SIGNED = st.preAdderStatic->getParam(ID::A_SIGNED).as_bool();
|
||||
st.sigB.extend_u0(18, B_SIGNED);
|
||||
st.sigD.extend_u0(18, D_SIGNED);
|
||||
if (st.moveBtoA)
|
||||
{
|
||||
cell->setPort(ID::A, st.sigA); // if pre-adder feeds into A, original sigB will be moved to port A
|
||||
}
|
||||
cell->setPort(ID::B, st.sigB);
|
||||
cell->setPort(ID::D, st.sigD);
|
||||
// MACC_PA supports both addition and subtraction with the pre-adder.
|
||||
// Affects the sign of the 'D' port.
|
||||
if (st.preAdderStatic->type == ID($add))
|
||||
pasub[0] = State::S0;
|
||||
else if (st.preAdderStatic->type == ID($sub))
|
||||
pasub[0] = State::S1;
|
||||
else
|
||||
log_assert(!"strange pre-adder type");
|
||||
|
||||
pm.autoremove(st.preAdderStatic);
|
||||
}
|
||||
//pack post-adder
|
||||
if (st.postAdderStatic) {
|
||||
log(" postadder %s (%s)\n", log_id(st.postAdderStatic), log_id(st.postAdderStatic->type));
|
||||
SigSpec &sub = cell->connections_.at(ID(SUB));
|
||||
// Post-adder in MACC_PA also supports subtraction
|
||||
// Determines the sign of the output from the multiplier.
|
||||
if (st.postAdderStatic->type == ID($add))
|
||||
sub[0] = State::S0;
|
||||
else if (st.postAdderStatic->type == ID($sub))
|
||||
sub[0] = State::S1;
|
||||
else
|
||||
log_assert(!"strange post-adder type");
|
||||
|
||||
if (st.useFeedBack) {
|
||||
cell->setPort(ID(CDIN_FDBK_SEL), {State::S0, State::S1});
|
||||
} else {
|
||||
st.sigC.extend_u0(48, st.postAdderStatic->getParam(ID::A_SIGNED).as_bool());
|
||||
cell->setPort(ID::C, st.sigC);
|
||||
}
|
||||
|
||||
|
||||
pm.autoremove(st.postAdderStatic);
|
||||
}
|
||||
|
||||
// pack registers
|
||||
if (st.clock != SigBit())
|
||||
{
|
||||
cell->setPort(ID::CLK, st.clock);
|
||||
|
||||
// function to absorb a register
|
||||
auto f = [&pm,cell](SigSpec &A, Cell* ff, IdString ceport, IdString rstport, IdString bypass) {
|
||||
|
||||
// input/output ports
|
||||
SigSpec D = ff->getPort(ID::D);
|
||||
SigSpec Q = pm.sigmap(ff->getPort(ID::Q));
|
||||
|
||||
if (!A.empty())
|
||||
A.replace(Q, D);
|
||||
if (rstport != IdString()) {
|
||||
if (ff->type.in(ID($sdff), ID($sdffe))) {
|
||||
SigSpec srst = ff->getPort(ID::SRST);
|
||||
bool rstpol_n = !ff->getParam(ID::SRST_POLARITY).as_bool();
|
||||
// active low sync rst
|
||||
cell->setPort(rstport, rstpol_n ? srst : pm.module->Not(NEW_ID, srst));
|
||||
} else if (ff->type.in(ID($adff), ID($adffe))) {
|
||||
SigSpec arst = ff->getPort(ID::ARST);
|
||||
bool rstpol_n = !ff->getParam(ID::ARST_POLARITY).as_bool();
|
||||
// active low async rst
|
||||
cell->setPort(rstport, rstpol_n ? arst : pm.module->Not(NEW_ID, arst));
|
||||
} else {
|
||||
// active low async/sync rst
|
||||
cell->setPort(rstport, State::S1);
|
||||
}
|
||||
}
|
||||
if (ff->type.in(ID($dffe), ID($sdffe), ID($adffe))) {
|
||||
SigSpec ce = ff->getPort(ID::EN);
|
||||
bool cepol = ff->getParam(ID::EN_POLARITY).as_bool();
|
||||
// enables are all active high
|
||||
cell->setPort(ceport, cepol ? ce : pm.module->Not(NEW_ID, ce));
|
||||
}
|
||||
else {
|
||||
// enables are all active high
|
||||
cell->setPort(ceport, State::S1);
|
||||
}
|
||||
|
||||
// bypass set to 0
|
||||
cell->setPort(bypass, State::S0);
|
||||
|
||||
|
||||
for (auto c : Q.chunks()) {
|
||||
auto it = c.wire->attributes.find(ID::init);
|
||||
if (it == c.wire->attributes.end())
|
||||
continue;
|
||||
for (int i = c.offset; i < c.offset+c.width; i++) {
|
||||
log_assert(it->second[i] == State::S0 || it->second[i] == State::Sx);
|
||||
it->second[i] = State::Sx;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// NOTE: flops are not autoremoved because it is possible that they
|
||||
// are only partially absorbed into DSP, or have fanouts.
|
||||
if (st.ffA) {
|
||||
SigSpec A = cell->getPort(ID::A);
|
||||
if (st.ffA) {
|
||||
f(A, st.ffA, ID(A_EN), ID(A_SRST_N), ID(A_BYPASS));
|
||||
}
|
||||
pm.add_siguser(A, cell);
|
||||
cell->setPort(ID::A, A);
|
||||
}
|
||||
if (st.ffB) {
|
||||
SigSpec B = cell->getPort(ID::B);
|
||||
if (st.ffB) {
|
||||
f(B, st.ffB, ID(B_EN), ID(B_SRST_N), ID(B_BYPASS));
|
||||
}
|
||||
pm.add_siguser(B, cell);
|
||||
cell->setPort(ID::B, B);
|
||||
}
|
||||
if (st.ffD) {
|
||||
SigSpec D = cell->getPort(ID::D);
|
||||
if (st.ffD->type.in(ID($adff), ID($adffe))) {
|
||||
f(D, st.ffD, ID(D_EN), ID(D_ARST_N), ID(D_BYPASS));
|
||||
} else {
|
||||
f(D, st.ffD, ID(D_EN), ID(D_SRST_N), ID(D_BYPASS));
|
||||
}
|
||||
|
||||
pm.add_siguser(D, cell);
|
||||
cell->setPort(ID::D, D);
|
||||
}
|
||||
if (st.ffP) {
|
||||
SigSpec P; // unused
|
||||
f(P, st.ffP, ID(P_EN), ID(P_SRST_N), ID(P_BYPASS));
|
||||
st.ffP->connections_.at(ID::Q).replace(st.sigP, pm.module->addWire(NEW_ID, GetSize(st.sigP)));
|
||||
}
|
||||
|
||||
log(" clock: %s (%s)\n", log_signal(st.clock), "posedge");
|
||||
|
||||
if (st.ffA)
|
||||
log(" \t ffA:%s\n", log_id(st.ffA));
|
||||
if (st.ffB)
|
||||
log(" \t ffB:%s\n", log_id(st.ffB));
|
||||
if (st.ffD)
|
||||
log(" \t ffD:%s\n", log_id(st.ffD));
|
||||
if (st.ffP)
|
||||
log(" \t ffP:%s\n", log_id(st.ffP));
|
||||
}
|
||||
log("\n");
|
||||
|
||||
SigSpec P = st.sigP;
|
||||
if (GetSize(P) < 48)
|
||||
P.append(pm.module->addWire(NEW_ID, 48-GetSize(P)));
|
||||
cell->setPort(ID::P, P);
|
||||
|
||||
pm.blacklist(cell);
|
||||
}
|
||||
|
||||
// For packing cascaded DSPs
|
||||
void mchp_dsp_packC(mchp_dsp_CREG_pm &pm)
|
||||
{
|
||||
auto &st = pm.st_mchp_dsp_packC;
|
||||
|
||||
log_debug("Analysing %s.%s for MCHP DSP packing (REG_C).\n", log_id(pm.module), log_id(st.dsp));
|
||||
log_debug("ffC: %s\n", log_id(st.ffC, "--"));
|
||||
|
||||
Cell *cell = st.dsp;
|
||||
|
||||
if (st.clock != SigBit())
|
||||
{
|
||||
cell->setPort(ID::CLK, st.clock);
|
||||
|
||||
// same function as above, used for the last CREG we need to absorb
|
||||
auto f = [&pm,cell](SigSpec &A, Cell* ff, IdString ceport, IdString rstport, IdString bypass) {
|
||||
|
||||
// input/output ports
|
||||
SigSpec D = ff->getPort(ID::D);
|
||||
SigSpec Q = pm.sigmap(ff->getPort(ID::Q));
|
||||
if (!A.empty())
|
||||
A.replace(Q, D);
|
||||
if (rstport != IdString()) {
|
||||
if (ff->type.in(ID($sdff), ID($sdffe))) {
|
||||
SigSpec srst = ff->getPort(ID::SRST);
|
||||
bool rstpol_n = !ff->getParam(ID::SRST_POLARITY).as_bool();
|
||||
// active low sync rst
|
||||
cell->setPort(rstport, rstpol_n ? srst : pm.module->Not(NEW_ID, srst));
|
||||
} else if (ff->type.in(ID($adff), ID($adffe))) {
|
||||
SigSpec arst = ff->getPort(ID::ARST);
|
||||
bool rstpol_n = !ff->getParam(ID::ARST_POLARITY).as_bool();
|
||||
// active low async rst
|
||||
cell->setPort(rstport, rstpol_n ? arst : pm.module->Not(NEW_ID, arst));
|
||||
} else {
|
||||
// active low async/sync rst
|
||||
cell->setPort(rstport, State::S1);
|
||||
}
|
||||
}
|
||||
if (ff->type.in(ID($dffe), ID($sdffe), ID($adffe))) {
|
||||
SigSpec ce = ff->getPort(ID::EN);
|
||||
bool cepol = ff->getParam(ID::EN_POLARITY).as_bool();
|
||||
// enables are all active high
|
||||
cell->setPort(ceport, cepol ? ce : pm.module->Not(NEW_ID, ce));
|
||||
} else {
|
||||
// enables are all active high
|
||||
cell->setPort(ceport, State::S1);
|
||||
}
|
||||
|
||||
// bypass set to 0
|
||||
cell->setPort(bypass, State::S0);
|
||||
|
||||
|
||||
for (auto c : Q.chunks()) {
|
||||
auto it = c.wire->attributes.find(ID::init);
|
||||
if (it == c.wire->attributes.end())
|
||||
continue;
|
||||
for (int i = c.offset; i < c.offset+c.width; i++) {
|
||||
log_assert(it->second[i] == State::S0 || it->second[i] == State::Sx);
|
||||
it->second[i] = State::Sx;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
if (st.ffC) {
|
||||
SigSpec C = cell->getPort(ID::C);
|
||||
|
||||
if (st.ffC->type.in(ID($adff), ID($adffe))) {
|
||||
f(C, st.ffC, ID(C_EN), ID(C_ARST_N), ID(C_BYPASS));
|
||||
} else {
|
||||
f(C, st.ffC, ID(C_EN), ID(C_SRST_N), ID(C_BYPASS));
|
||||
}
|
||||
pm.add_siguser(C, cell);
|
||||
cell->setPort(ID::C, C);
|
||||
}
|
||||
|
||||
log(" clock: %s (%s)", log_signal(st.clock), "posedge");
|
||||
|
||||
if (st.ffC)
|
||||
log(" ffC:%s", log_id(st.ffC));
|
||||
log("\n");
|
||||
}
|
||||
|
||||
pm.blacklist(cell);
|
||||
}
|
||||
|
||||
struct MchpDspPass : public Pass {
|
||||
MchpDspPass() : Pass("mchp_dsp", "MCHP: pack resources into DSPs") { }
|
||||
void help() override
|
||||
{
|
||||
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
||||
log("\n");
|
||||
log(" mchp_dsp [options] [selection]\n");
|
||||
log("\n");
|
||||
log("Pack input registers 'A', 'B', 'C', and 'D' (with optional enable/reset),\n");
|
||||
log("output register 'P' (with optional enable/reset), pre-adder and/or post-adder into\n");
|
||||
log("MCHP DSP resources.\n");
|
||||
log("\n");
|
||||
log("Multiply-accumulate operations using the post-adder with feedback on the 'C'\n");
|
||||
log("input will be folded into the DSP. In this scenario only, the 'C' input can be\n");
|
||||
log("used to override the current accumulation result with a new value. This will\n");
|
||||
log("be added to the multiplier result to form the next accumulation result.\n");
|
||||
log("\n");
|
||||
log("Use of the dedicated 'PCOUT' -> 'PCIN' cascade path is detected for 'P' -> 'C'\n");
|
||||
log("connections (optionally, where 'P' is right-shifted by 17-bits and used as an\n");
|
||||
log("input to the post-adder. This pattern is common for summing partial products to\n");
|
||||
log("implement wide multipliers). Cascade chains are limited to a mazimum length \n");
|
||||
log("of 24 cells, corresponding to PolarFire (pf) devices.\n");
|
||||
log("\n");
|
||||
log("This pass is a no-op if the scratchpad variable 'mchp_dsp.multonly' is set\n");
|
||||
log("to 1.\n");
|
||||
log("\n");
|
||||
log("\n");
|
||||
log(" -family {pf}\n");
|
||||
log(" select the family to target\n");
|
||||
log(" default: pf\n");
|
||||
log("\n");
|
||||
}
|
||||
void execute(std::vector<std::string> args, RTLIL::Design *design) override
|
||||
{
|
||||
log_header(design, "Executing MCHP_DSP pass (pack resources into DSPs).\n");
|
||||
|
||||
std::string family = "pf";
|
||||
size_t argidx;
|
||||
for (argidx = 1; argidx < args.size(); argidx++)
|
||||
{
|
||||
if ((args[argidx] == "-family") && argidx+1 < args.size()) {
|
||||
family = args[++argidx];
|
||||
continue;
|
||||
}
|
||||
break;
|
||||
}
|
||||
extra_args(args, argidx, design);
|
||||
|
||||
for (auto module : design->selected_modules()) {
|
||||
|
||||
if (design->scratchpad_get_bool("mchp_dsp.multonly"))
|
||||
continue;
|
||||
|
||||
{
|
||||
// For more details on PolarFire MACC_PA, consult
|
||||
// the "PolarFire FPGA Macro Library Guide"
|
||||
|
||||
// Main pattern matching step to capture a DSP cell.
|
||||
// Match for pre-adder, post-adder, as well as
|
||||
// registers 'A', 'B', 'D', and 'P'. Additionally,
|
||||
// check for an accumulator pattern based on whether
|
||||
// a post-adder and PREG are both present AND
|
||||
// if PREG feeds into this post-adder.
|
||||
mchp_dsp_pm pm(module, module->selected_cells());
|
||||
pm.run_mchp_dsp_pack(mchp_dsp_pack);
|
||||
}
|
||||
|
||||
// Separating out CREG packing is necessary since there
|
||||
// is no guarantee that the cell ordering corresponds
|
||||
// to the "expected" case (i.e. the order in which
|
||||
// they appear in the source). There existed the possibility
|
||||
// where a register got packed as a CREG into a
|
||||
// downstream DSP that should have otherwise been a
|
||||
// PREG of an upstream DSP that had not been visited
|
||||
// yet
|
||||
{
|
||||
mchp_dsp_CREG_pm pm(module, module->selected_cells());
|
||||
pm.run_mchp_dsp_packC(mchp_dsp_packC);
|
||||
}
|
||||
|
||||
// Lastly, identify and utilise PCOUT -> PCIN chains
|
||||
{
|
||||
mchp_dsp_cascade_pm pm(module, module->selected_cells());
|
||||
pm.run_mchp_dsp_cascade();
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
} MchpDspPass;
|
||||
|
||||
PRIVATE_NAMESPACE_END
|
440
passes/pmgen/mchp_dsp.pmg
Normal file
440
passes/pmgen/mchp_dsp.pmg
Normal file
|
@ -0,0 +1,440 @@
|
|||
// ISC License
|
||||
//
|
||||
// Copyright (C) 2024 Microchip Technology Inc. and its subsidiaries
|
||||
//
|
||||
// Permission to use, copy, modify, and/or distribute this software for any
|
||||
// purpose with or without fee is hereby granted, provided that the above
|
||||
// copyright notice and this permission notice appear in all copies.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||||
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||||
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||||
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||||
|
||||
|
||||
// This file describes the main pattern matcher setup (of three total) that
|
||||
// forms the `mchp_dsp` pass described in mchp_dsp.cc - version for
|
||||
// DSP48A/DSP48A1 (Spartan 3A DSP, Spartan 6).
|
||||
// At a high level, it works as follows:
|
||||
// ( 1) Starting from a DSP cell. Capture DSP configurations as states
|
||||
// ( 2) Match for pre-adder
|
||||
// ( 3) Match for post-adder
|
||||
// ( 4) Match register 'A', 'B', 'D', 'P'
|
||||
// ( 5) If post-adder and PREG both present, check if PREG feeds into post-adder.
|
||||
// This indicates an accumulator situation like the ASCII diagram below:
|
||||
// +--------------------------------+
|
||||
// |_________ |
|
||||
// | /-------\ +----+ |
|
||||
// +----+ +-| post- |___|PREG|---+ 'P'
|
||||
// |MULT|------ | adder | +----+
|
||||
// +----+ \-------/
|
||||
|
||||
pattern mchp_dsp_pack
|
||||
|
||||
state <SigBit> clock
|
||||
state <SigSpec> sigA sigB sigC sigD sigP
|
||||
state <Cell*> ffA ffB ffD ffP
|
||||
state <Cell*> preAdderStatic postAdderStatic
|
||||
state <bool> moveBtoA useFeedBack
|
||||
|
||||
// static ports, used to detect dsp configuration
|
||||
state <SigSpec> bypassA bypassB bypassC bypassD bypassP
|
||||
state <SigSpec> bypassPASUB
|
||||
|
||||
// Variables used for subpatterns
|
||||
state <SigSpec> argQ argD
|
||||
udata <bool> allowAsync
|
||||
udata <SigSpec> dffD dffQ
|
||||
udata <SigBit> dffclock
|
||||
udata <Cell*> dff
|
||||
udata <Cell*> u_preAdderStatic u_postAdderStatic
|
||||
udata <IdString> u_postAddAB
|
||||
state <IdString> postAddAB
|
||||
|
||||
// (1) Starting from a DSP cell
|
||||
match dsp
|
||||
select dsp->type.in(\MACC_PA)
|
||||
endmatch
|
||||
|
||||
// detect existing signals connected to DSP
|
||||
// detect configuration ports
|
||||
code sigA sigB sigC sigD clock sigP
|
||||
//helper function to remove unused bits
|
||||
auto unextend = [](const SigSpec &sig) {
|
||||
int i;
|
||||
for (i = GetSize(sig)-1; i > 0; i--)
|
||||
if (sig[i] != sig[i-1])
|
||||
break;
|
||||
// Do not remove non-const sign bit
|
||||
if (sig[i].wire)
|
||||
++i;
|
||||
return sig.extract(0, i);
|
||||
};
|
||||
|
||||
//unextend to remove unused bits
|
||||
sigA = unextend(port(dsp, \A));
|
||||
sigB = unextend(port(dsp, \B));
|
||||
|
||||
//update signals
|
||||
sigC = port(dsp, \C, SigSpec());
|
||||
sigD = port(dsp, \D, SigSpec());
|
||||
|
||||
|
||||
SigSpec P = port(dsp, \P);
|
||||
// Only care about bits that are used
|
||||
int i;
|
||||
for (i = GetSize(P)-1; i >= 0; i--)
|
||||
if (nusers(P[i]) > 1)
|
||||
break;
|
||||
i++;
|
||||
log_assert(nusers(P.extract_end(i)) <= 1);
|
||||
// This sigP could have no users if downstream sinks (e.g. $add) is
|
||||
// narrower than $mul result, for example
|
||||
if (i == 0)
|
||||
reject;
|
||||
sigP = P.extract(0, i);
|
||||
clock = port(dsp, \CLK, SigBit());
|
||||
|
||||
endcode
|
||||
|
||||
// capture static configuration ports
|
||||
code bypassA bypassB bypassC bypassD bypassPASUB bypassP
|
||||
bypassA = port(dsp, \A_BYPASS, SigSpec());
|
||||
bypassB = port(dsp, \B_BYPASS, SigSpec());
|
||||
bypassC = port(dsp, \C_BYPASS, SigSpec());
|
||||
bypassD = port(dsp, \D_BYPASS, SigSpec());
|
||||
bypassPASUB = port(dsp, \PASUB_BYPASS, SigSpec());
|
||||
bypassP = port(dsp, \P_BYPASS, SigSpec());
|
||||
endcode
|
||||
|
||||
// (2) Match for pre-adder
|
||||
//
|
||||
code sigA sigB sigD preAdderStatic moveBtoA
|
||||
subpattern(preAddMatching);
|
||||
preAdderStatic = u_preAdderStatic;
|
||||
moveBtoA = false;
|
||||
|
||||
if (preAdderStatic) {
|
||||
|
||||
if (port(preAdderStatic, \Y) == sigA)
|
||||
{
|
||||
//used for packing
|
||||
moveBtoA = true;
|
||||
|
||||
// sigA should be the input to the multiplier without the preAdd. sigB and sigD should be
|
||||
//the preAdd inputs. If our "A" input into the multiplier is from the preAdd (not sigA), then
|
||||
// we basically swap it.
|
||||
sigA = port(dsp, \B);
|
||||
}
|
||||
|
||||
// port B of preAdderStatic must be mapped to port D of DSP for subtraction
|
||||
sigD = port(preAdderStatic, \B);
|
||||
sigB = port(preAdderStatic, \A);
|
||||
}
|
||||
endcode
|
||||
|
||||
// (3) Match for post-adder
|
||||
//
|
||||
code postAdderStatic sigP sigC
|
||||
u_postAdderStatic = nullptr;
|
||||
subpattern(postAddMatching);
|
||||
postAdderStatic = u_postAdderStatic;
|
||||
|
||||
if (postAdderStatic) {
|
||||
//sigC will be whichever input to the postAdder that is NOT from the multiplier
|
||||
// u_postAddAB is the input to the postAdder from the multiplier
|
||||
sigC = port(postAdderStatic, u_postAddAB == \A ? \B : \A);
|
||||
sigP = port(postAdderStatic, \Y);
|
||||
}
|
||||
endcode
|
||||
|
||||
|
||||
// (4) Matching registers
|
||||
//
|
||||
// 'A' input for REG_A
|
||||
code argQ bypassA sigA clock ffA
|
||||
if (bypassA.is_fully_ones()){
|
||||
argQ = sigA;
|
||||
allowAsync = false;
|
||||
subpattern(in_dffe);
|
||||
if (dff) {
|
||||
ffA = dff;
|
||||
clock = dffclock;
|
||||
sigA = dffD;
|
||||
}
|
||||
}
|
||||
endcode
|
||||
|
||||
// 'B' input for REG_B
|
||||
code argQ bypassB sigB clock ffB
|
||||
if (bypassB.is_fully_ones()){
|
||||
argQ = sigB;
|
||||
allowAsync = false;
|
||||
subpattern(in_dffe);
|
||||
if (dff) {
|
||||
ffB = dff;
|
||||
clock = dffclock;
|
||||
sigB = dffD;
|
||||
}
|
||||
}
|
||||
endcode
|
||||
|
||||
// 'D' input for REG_D
|
||||
code argQ bypassP sigD clock ffD
|
||||
if (bypassD.is_fully_ones()){
|
||||
argQ = sigD;
|
||||
allowAsync = true;
|
||||
subpattern(in_dffe);
|
||||
if (dff) {
|
||||
ffD = dff;
|
||||
clock = dffclock;
|
||||
sigD = dffD;
|
||||
}
|
||||
}
|
||||
endcode
|
||||
|
||||
// 'P' output for REG_P
|
||||
code argD ffP sigP clock bypassP
|
||||
if (bypassP.is_fully_ones() && nusers(sigP) == 2) {
|
||||
argD = sigP;
|
||||
allowAsync = false;
|
||||
subpattern(out_dffe);
|
||||
if (dff) {
|
||||
ffP = dff;
|
||||
clock = dffclock;
|
||||
sigP = dffQ;
|
||||
}
|
||||
}
|
||||
endcode
|
||||
|
||||
// (5) If post-adder and PREG both present, check if PREG feeds into post-adder via port C.
|
||||
// This indicates an accumulator situation. Port C can be freed
|
||||
// +--------------------------------+
|
||||
// |_________ |
|
||||
// | /-------\ +----+ |
|
||||
// +----+ +-| post- |___|PREG|---+ 'P'
|
||||
// |MULT|------ | adder | +----+
|
||||
// +----+ \-------/
|
||||
code useFeedBack
|
||||
useFeedBack = false;
|
||||
if (postAdderStatic && ffP) {
|
||||
if (sigC == sigP) {
|
||||
useFeedBack = true;
|
||||
}
|
||||
}
|
||||
|
||||
endcode
|
||||
|
||||
// if any cells are absorbed, invoke the callback function
|
||||
code
|
||||
if (preAdderStatic || postAdderStatic)
|
||||
accept;
|
||||
if (ffA || ffB || ffD || ffP)
|
||||
accept;
|
||||
endcode
|
||||
|
||||
|
||||
// #######################
|
||||
// Subpattern for matching against post-adder
|
||||
// Match 'P' output that exclusively drives one of two inputs to an $add
|
||||
// cell (post-adder).
|
||||
// The other input to the adder is assumed to come in from the 'C' input
|
||||
|
||||
subpattern postAddMatching
|
||||
arg sigP
|
||||
|
||||
match postAdd
|
||||
|
||||
select postAdd->type.in($add, $sub)
|
||||
select GetSize(port(postAdd, \Y)) <= 48
|
||||
|
||||
// AB is the port that connects MUL to ADD
|
||||
choice <IdString> AB {\A, \B}
|
||||
select nusers(port(postAdd, AB)) == 2
|
||||
|
||||
// has one input coming from multiplier
|
||||
index <SigBit> port(postAdd, AB)[0] === sigP[0]
|
||||
filter GetSize(port(postAdd, AB)) >= GetSize(sigP)
|
||||
filter port(postAdd, AB).extract(0, GetSize(sigP)) == sigP
|
||||
// Check that remainder of AB is a sign- or zero-extension
|
||||
filter port(postAdd, AB).extract_end(GetSize(sigP)) == SigSpec(sigP[GetSize(sigP)-1], GetSize(port(postAdd, AB))-GetSize(sigP)) || port(postAdd, AB).extract_end(GetSize(sigP)) == SigSpec(State::S0, GetSize(port(postAdd, AB))-GetSize(sigP))
|
||||
|
||||
set postAddAB AB
|
||||
// optional
|
||||
endmatch
|
||||
|
||||
code
|
||||
if (postAdd)
|
||||
{
|
||||
if (postAdd->type.in(ID($sub)) && postAddAB == \A) {
|
||||
// if $sub, the multiplier output must match to $sub.B, otherwise no match
|
||||
} else {
|
||||
u_postAddAB = postAddAB;
|
||||
u_postAdderStatic = postAdd;
|
||||
}
|
||||
|
||||
}
|
||||
endcode
|
||||
|
||||
|
||||
// #######################
|
||||
// Subpattern for matching against pre-adder
|
||||
// support static PASUB only
|
||||
|
||||
subpattern preAddMatching
|
||||
arg sigA sigB sigD bypassB bypassD bypassPASUB
|
||||
|
||||
code
|
||||
u_preAdderStatic = nullptr;
|
||||
|
||||
// Ensure that preAdder not already used
|
||||
// Assume we can inspect port D to see if its all zeros.
|
||||
if (!(sigD.empty() || sigD.is_fully_zero())) reject;
|
||||
if (!bypassB.is_fully_ones()) reject;
|
||||
if (!bypassD.is_fully_ones()) reject;
|
||||
if (!bypassPASUB.is_fully_ones()) reject;
|
||||
endcode
|
||||
|
||||
match preAdd
|
||||
|
||||
// can handle add or sub
|
||||
select preAdd->type.in($add, $sub)
|
||||
|
||||
// Output has to be 18 bits or less, and only has single fanout
|
||||
select GetSize(port(preAdd, \Y)) <= 18
|
||||
select nusers(port(preAdd, \Y)) == 2
|
||||
|
||||
// Adder inputs must be 18 bits or less
|
||||
select GetSize(port(preAdd, \A)) <= 18
|
||||
select GetSize(port(preAdd, \B)) <= 18
|
||||
|
||||
// Output feeds into one of multiplier input
|
||||
filter port(preAdd, \Y) == sigB || port(preAdd, \Y) == sigA
|
||||
|
||||
// optional
|
||||
endmatch
|
||||
|
||||
code
|
||||
if (preAdd)
|
||||
{
|
||||
u_preAdderStatic = preAdd;
|
||||
}
|
||||
endcode
|
||||
|
||||
// #######################
|
||||
// Subpattern for matching against input registers, based on knowledge of the
|
||||
// 'Q' input.
|
||||
subpattern in_dffe
|
||||
arg argQ clock
|
||||
|
||||
code
|
||||
dff = nullptr;
|
||||
if (argQ.empty())
|
||||
reject;
|
||||
for (const auto &c : argQ.chunks()) {
|
||||
// Abandon matches when 'Q' is a constant
|
||||
if (!c.wire)
|
||||
reject;
|
||||
// Abandon matches when 'Q' has the keep attribute set
|
||||
if (c.wire->get_bool_attribute(\keep))
|
||||
reject;
|
||||
// Abandon matches when 'Q' has a non-zero init attribute set
|
||||
Const init = c.wire->attributes.at(\init, Const());
|
||||
if (!init.empty())
|
||||
for (auto b : init.extract(c.offset, c.width))
|
||||
if (b != State::Sx && b != State::S0)
|
||||
reject;
|
||||
}
|
||||
endcode
|
||||
|
||||
match ff
|
||||
// reg D has async rst
|
||||
// reg A, B has sync rst
|
||||
select ff->type.in($dff, $dffe, $sdff, $sdffe, $adff, $adffe)
|
||||
// does not support clock inversion
|
||||
select param(ff, \CLK_POLARITY).as_bool()
|
||||
|
||||
// it is possible that only part of a dff output matches argQ
|
||||
slice offset GetSize(port(ff, \D))
|
||||
index <SigBit> port(ff, \Q)[offset] === argQ[0]
|
||||
|
||||
// Check that the rest of argQ is present
|
||||
filter GetSize(port(ff, \Q)) >= offset + GetSize(argQ)
|
||||
filter port(ff, \Q).extract(offset, GetSize(argQ)) == argQ
|
||||
|
||||
// only consider async rst flops when flag is set
|
||||
filter !ff->type.in($adff, $adffe) || allowAsync
|
||||
|
||||
// clock must be consistent
|
||||
filter clock == SigBit() || port(ff, \CLK) == clock
|
||||
endmatch
|
||||
|
||||
code argQ
|
||||
// Check that reset value, if present, is fully 0.
|
||||
bool noResetFlop = ff->type.in($dff, $dffe);
|
||||
bool srstZero = ff->type.in($sdff, $sdffe) && param(ff, \SRST_VALUE).is_fully_zero();
|
||||
bool arstZero = ff->type.in($adff, $adffe) && param(ff, \ARST_VALUE).is_fully_zero();
|
||||
bool resetLegal = noResetFlop || srstZero || arstZero;
|
||||
if (resetLegal)
|
||||
{
|
||||
SigSpec Q = port(ff, \Q);
|
||||
dff = ff;
|
||||
dffclock = port(ff, \CLK);
|
||||
dffD = argQ;
|
||||
SigSpec D = port(ff, \D);
|
||||
argQ = Q;
|
||||
dffD.replace(argQ, D);
|
||||
}
|
||||
|
||||
endcode
|
||||
// #######################
|
||||
|
||||
|
||||
subpattern out_dffe
|
||||
arg argD argQ clock
|
||||
|
||||
code
|
||||
dff = nullptr;
|
||||
for (auto c : argD.chunks())
|
||||
// Abandon matches when 'D' has the keep attribute set
|
||||
if (c.wire->get_bool_attribute(\keep))
|
||||
reject;
|
||||
endcode
|
||||
|
||||
match ff
|
||||
select ff->type.in($dff, $dffe, $sdff, $sdffe)
|
||||
// does not support clock inversion
|
||||
select param(ff, \CLK_POLARITY).as_bool()
|
||||
|
||||
slice offset GetSize(port(ff, \D))
|
||||
index <SigBit> port(ff, \D)[offset] === argD[0]
|
||||
|
||||
// Check that the rest of argD is present
|
||||
filter GetSize(port(ff, \D)) >= offset + GetSize(argD)
|
||||
filter port(ff, \D).extract(offset, GetSize(argD)) == argD
|
||||
|
||||
filter clock == SigBit() || port(ff, \CLK) == clock
|
||||
endmatch
|
||||
|
||||
code argQ
|
||||
SigSpec D = port(ff, \D);
|
||||
SigSpec Q = port(ff, \Q);
|
||||
argQ = argD;
|
||||
argQ.replace(D, Q);
|
||||
|
||||
// Abandon matches when 'Q' has a non-zero init attribute set
|
||||
for (auto c : argQ.chunks()) {
|
||||
Const init = c.wire->attributes.at(\init, Const());
|
||||
if (!init.empty())
|
||||
for (auto b : init.extract(c.offset, c.width))
|
||||
if (b != State::Sx && b != State::S0)
|
||||
reject;
|
||||
}
|
||||
|
||||
dff = ff;
|
||||
dffQ = argQ;
|
||||
dffclock = port(ff, \CLK);
|
||||
endcode
|
169
passes/pmgen/mchp_dsp_CREG.pmg
Normal file
169
passes/pmgen/mchp_dsp_CREG.pmg
Normal file
|
@ -0,0 +1,169 @@
|
|||
// ISC License
|
||||
//
|
||||
// Copyright (C) 2024 Microchip Technology Inc. and its subsidiaries
|
||||
//
|
||||
// Permission to use, copy, modify, and/or distribute this software for any
|
||||
// purpose with or without fee is hereby granted, provided that the above
|
||||
// copyright notice and this permission notice appear in all copies.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||||
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||||
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||||
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||||
|
||||
|
||||
// This file describes the second of three pattern matcher setups that
|
||||
// forms the `mchp_dsp` pass described in mchp_dsp.cc
|
||||
// At a high level, it works as follows:
|
||||
// (1) Starting from a DSP cell that (a) doesn't have a CREG already,
|
||||
// and (b) uses the 'C' port
|
||||
// (2) Match the driver of the 'C' input to a possible $dff cell (CREG)
|
||||
// (attached to at most two $mux cells that implement clock-enable or
|
||||
// reset functionality, using a subpattern discussed below)
|
||||
// Notes:
|
||||
// - Running CREG packing after mchp_dsp_pack is necessary since there is no
|
||||
// guarantee that the cell ordering corresponds to the "expected" case (i.e.
|
||||
// the order in which they appear in the source) thus the possiblity existed
|
||||
// where a register got packed as a CREG into a downstream DSP, while it should
|
||||
// have otherwise been a PREG of an upstream DSP that had not been visited.
|
||||
// yet.
|
||||
// - The reason this is separated out from the mchp_dsp.pmg file is
|
||||
// for efficiency --- each *.pmg file creates a class of the same basename,
|
||||
// which when constructed, creates a custom database tailored to the
|
||||
// pattern(s) contained within. Since the pattern in this file must be
|
||||
// executed after the pattern contained in mchp_dsp.pmg, it is necessary
|
||||
// to reconstruct this database. Separating the two patterns into
|
||||
// independent files causes two smaller, more specific, databases.
|
||||
|
||||
pattern mchp_dsp_packC
|
||||
|
||||
udata <std::function<SigSpec(const SigSpec&)>> unextend
|
||||
state <SigBit> clock
|
||||
state <SigSpec> sigC sigP
|
||||
state <Cell*> ffC
|
||||
|
||||
// Variables used for subpatterns
|
||||
state <SigSpec> argQ argD
|
||||
state <int> ffoffset
|
||||
udata <SigSpec> dffD dffQ
|
||||
udata <SigBit> dffclock
|
||||
udata <Cell*> dff
|
||||
|
||||
// (1) Starting from a DSP cell that (a) doesn't have a CREG already,
|
||||
// and (b) uses the 'C' port
|
||||
match dsp
|
||||
select dsp->type.in(\MACC_PA)
|
||||
select port(dsp, \C_BYPASS, SigSpec()).is_fully_ones()
|
||||
select nusers(port(dsp, \C, SigSpec())) > 1
|
||||
endmatch
|
||||
|
||||
code sigC sigP clock
|
||||
//helper function to remove unused bits
|
||||
unextend = [](const SigSpec &sig) {
|
||||
int i;
|
||||
for (i = GetSize(sig)-1; i > 0; i--)
|
||||
if (sig[i] != sig[i-1])
|
||||
break;
|
||||
// Do not remove non-const sign bit
|
||||
if (sig[i].wire)
|
||||
++i;
|
||||
return sig.extract(0, i);
|
||||
};
|
||||
sigC = unextend(port(dsp, \C, SigSpec()));
|
||||
|
||||
SigSpec P = port(dsp, \P);
|
||||
|
||||
// Only care about those bits that are used
|
||||
int i;
|
||||
for (i = GetSize(P)-1; i >= 0; i--)
|
||||
if (nusers(P[i]) > 1)
|
||||
break;
|
||||
i++;
|
||||
log_assert(nusers(P.extract_end(i)) <= 1);
|
||||
sigP = P.extract(0, i);
|
||||
|
||||
clock = port(dsp, \CLK, SigBit());
|
||||
endcode
|
||||
|
||||
// (2) Match the driver of the 'C' input to a possible $dff cell (CREG)
|
||||
// (attached to at most two $mux cells that implement clock-enable or
|
||||
// reset functionality, using the in_dffe subpattern)
|
||||
code argQ ffC sigC clock
|
||||
argQ = sigC;
|
||||
subpattern(in_dffe);
|
||||
if (dff) {
|
||||
ffC = dff;
|
||||
clock = dffclock;
|
||||
sigC = dffD;
|
||||
}
|
||||
endcode
|
||||
|
||||
code
|
||||
if (ffC)
|
||||
accept;
|
||||
endcode
|
||||
|
||||
// #######################
|
||||
|
||||
// Subpattern for matching against input registers, based on knowledge of the
|
||||
// 'Q' input.
|
||||
subpattern in_dffe
|
||||
arg argQ clock
|
||||
|
||||
code
|
||||
dff = nullptr;
|
||||
if (argQ.empty())
|
||||
reject;
|
||||
for (const auto &c : argQ.chunks()) {
|
||||
// Abandon matches when 'Q' is a constant
|
||||
if (!c.wire)
|
||||
reject;
|
||||
// Abandon matches when 'Q' has the keep attribute set
|
||||
if (c.wire->get_bool_attribute(\keep))
|
||||
reject;
|
||||
// Abandon matches when 'Q' has a non-zero init attribute set
|
||||
// (not supported by DSP48E1)
|
||||
Const init = c.wire->attributes.at(\init, Const());
|
||||
if (!init.empty())
|
||||
for (auto b : init.extract(c.offset, c.width))
|
||||
if (b != State::Sx && b != State::S0)
|
||||
reject;
|
||||
}
|
||||
endcode
|
||||
|
||||
match ff
|
||||
select ff->type.in($dff, $dffe, $sdff, $sdffe, $adff, $adffe)
|
||||
// does not support clock inversion
|
||||
select param(ff, \CLK_POLARITY).as_bool()
|
||||
|
||||
slice offset GetSize(port(ff, \D))
|
||||
index <SigBit> port(ff, \Q)[offset] === argQ[0]
|
||||
|
||||
// Check that the rest of argQ is present
|
||||
filter GetSize(port(ff, \Q)) >= offset + GetSize(argQ)
|
||||
filter port(ff, \Q).extract(offset, GetSize(argQ)) == argQ
|
||||
|
||||
filter clock == SigBit() || port(ff, \CLK) == clock
|
||||
endmatch
|
||||
|
||||
code argQ
|
||||
// Check that reset value, if present, is fully 0.
|
||||
bool noResetFlop = ff->type.in($dff, $dffe);
|
||||
bool srstZero = ff->type.in($sdff, $sdffe) && param(ff, \SRST_VALUE).is_fully_zero();
|
||||
bool arstZero = ff->type.in($adff, $adffe) && param(ff, \ARST_VALUE).is_fully_zero();
|
||||
bool resetLegal = noResetFlop || srstZero || arstZero;
|
||||
if (resetLegal)
|
||||
{
|
||||
SigSpec Q = port(ff, \Q);
|
||||
dff = ff;
|
||||
dffclock = port(ff, \CLK);
|
||||
dffD = argQ;
|
||||
SigSpec D = port(ff, \D);
|
||||
argQ = Q;
|
||||
dffD.replace(argQ, D);
|
||||
}
|
||||
|
||||
endcode
|
238
passes/pmgen/mchp_dsp_cascade.pmg
Normal file
238
passes/pmgen/mchp_dsp_cascade.pmg
Normal file
|
@ -0,0 +1,238 @@
|
|||
// ISC License
|
||||
//
|
||||
// Copyright (C) 2024 Microchip Technology Inc. and its subsidiaries
|
||||
//
|
||||
// Permission to use, copy, modify, and/or distribute this software for any
|
||||
// purpose with or without fee is hereby granted, provided that the above
|
||||
// copyright notice and this permission notice appear in all copies.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||||
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||||
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||||
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||||
|
||||
|
||||
// This file describes the third of three pattern matcher setups that
|
||||
// forms the `mchp_dsp` pass described in mchp_dsp.cc
|
||||
// At a high level, it works as follows:
|
||||
// (1) Starting from a DSP cell that
|
||||
// (a) CDIN_FDBK_SEL is set to default "00"
|
||||
// (b) doesn't already use the 'PCOUT' port
|
||||
// (2) Match another DSP cell that
|
||||
// (a) does not have the CREG enabled,
|
||||
// (b) 'C' port is driven by the 'P' output of the previous DSP cell
|
||||
// (c) has its 'PCIN' port unused
|
||||
// (3) Recursively go to (2) until no more matches possible, keeping track
|
||||
// of the longest possible chain found
|
||||
// (4) The longest chain is then divided into chunks of no more than
|
||||
// MAX_DSP_CASCADE in length (to prevent long cascades that exceed the
|
||||
// height of a DSP column) with each DSP in each chunk being rewritten
|
||||
// to use [ABP]COUT -> [ABP]CIN cascading as appropriate
|
||||
|
||||
pattern mchp_dsp_cascade
|
||||
|
||||
udata <std::function<SigSpec(const SigSpec&)>> unextend
|
||||
udata <vector<std::tuple<Cell*,int>>> chain longest_chain
|
||||
udata <std::set<Cell*>> visited
|
||||
state <Cell*> next
|
||||
state <SigSpec> clock
|
||||
|
||||
// Variables used for subpatterns
|
||||
state <SigSpec> argQ argD
|
||||
state <int> ffoffset
|
||||
udata <SigSpec> dffD dffQ
|
||||
udata <SigBit> dffclock
|
||||
udata <Cell*> dff
|
||||
|
||||
// Maximum of 24 cascaded blocks
|
||||
code
|
||||
#define MAX_DSP_CASCADE 24
|
||||
endcode
|
||||
|
||||
// NOTE: Chain vector
|
||||
// +--------+ +--------+
|
||||
// | first |----> | next | ----> ...
|
||||
// +--------+ +--------+
|
||||
// first.COUT cascades to next.CIN, so on and so forth
|
||||
|
||||
// Helper function to remove unused bits
|
||||
code
|
||||
unextend = [](const SigSpec &sig) {
|
||||
int i;
|
||||
for (i = GetSize(sig)-1; i > 0; i--)
|
||||
if (sig[i] != sig[i-1])
|
||||
break;
|
||||
// Do not remove non-const sign bit
|
||||
if (sig[i].wire)
|
||||
++i;
|
||||
return sig.extract(0, i);
|
||||
};
|
||||
endcode
|
||||
|
||||
// (1) Starting from a DSP cell that
|
||||
// (a) CDIN_FDBK_SEL is set to default "00"
|
||||
// (b) doesn't already use the 'PCOUT' port
|
||||
match first
|
||||
select first->type.in(\MACC_PA) && port(first, \CDIN_FDBK_SEL, Const(0, 2)) == Const::from_string("00")
|
||||
select nusers(port(first, \CDOUT, SigSpec())) <= 1
|
||||
endmatch
|
||||
|
||||
// (4) The longest chain is then divided into chunks of no more than
|
||||
// MAX_DSP_CASCADE in length (to prevent long cascades that exceed the
|
||||
// height of a DSP column) with each DSP in each chunk being rewritten
|
||||
// to use [ABP]COUT -> [ABP]CIN cascading as appropriate
|
||||
code
|
||||
visited.clear();
|
||||
visited.insert(first);
|
||||
|
||||
longest_chain.clear();
|
||||
chain.emplace_back(first, -1);
|
||||
subpattern(tail);
|
||||
finally
|
||||
|
||||
// longest cascade chain has been found with DSP "first" being the head of the chain
|
||||
// do some post processing
|
||||
|
||||
chain.pop_back();
|
||||
visited.clear();
|
||||
log_assert(chain.empty());
|
||||
|
||||
if (GetSize(longest_chain) > 1) {
|
||||
Cell *dsp = std::get<0>(longest_chain.front());
|
||||
|
||||
Cell *dsp_pcin;
|
||||
int SHIFT = -1;
|
||||
for (int i = 1; i < GetSize(longest_chain); i++) {
|
||||
log_assert(dsp->type.in(\MACC_PA));
|
||||
|
||||
std::tie(dsp_pcin,SHIFT) = longest_chain[i];
|
||||
|
||||
// Chain length exceeds the maximum cascade length, must split it up
|
||||
if (i % MAX_DSP_CASCADE > 0) {
|
||||
Wire *cascade = module->addWire(NEW_ID, 48);
|
||||
|
||||
// zero port C and move wire to cascade
|
||||
dsp_pcin->setPort(ID(C), Const(0, 48));
|
||||
dsp_pcin->setPort(ID(CDIN), cascade);
|
||||
dsp->setPort(ID(CDOUT), cascade);
|
||||
|
||||
// Configure wire to cascade the dsps
|
||||
add_siguser(cascade, dsp_pcin);
|
||||
add_siguser(cascade, dsp);
|
||||
|
||||
// configure mux to use cascade for signal E
|
||||
SigSpec cdin_fdbk_sel = port(dsp_pcin, \CDIN_FDBK_SEL, Const(0, 2));
|
||||
cdin_fdbk_sel[1] = State::S1;
|
||||
dsp_pcin->setPort(\CDIN_FDBK_SEL, cdin_fdbk_sel);
|
||||
|
||||
// check if shifting is required for wide multiplier implmentation
|
||||
if (SHIFT == 17)
|
||||
{
|
||||
dsp_pcin->setPort(\ARSHFT17, State::S1);
|
||||
}
|
||||
|
||||
|
||||
log_debug("PCOUT -> PCIN cascade for %s -> %s\n", log_id(dsp), log_id(dsp_pcin));
|
||||
|
||||
} else {
|
||||
log_debug(" Blocking %s -> %s cascade (exceeds max: %d)\n", log_id(dsp), log_id(dsp_pcin), MAX_DSP_CASCADE);
|
||||
}
|
||||
|
||||
dsp = dsp_pcin;
|
||||
}
|
||||
|
||||
accept;
|
||||
}
|
||||
endcode
|
||||
|
||||
// ------------------------------------------------------------------
|
||||
|
||||
subpattern tail
|
||||
arg first
|
||||
arg next
|
||||
|
||||
// (2) Match another DSP cell that
|
||||
// (a) does not have the CREG enabled,
|
||||
// (b) 'C' port is driven by the 'P' output of the previous DSP cell
|
||||
// (c) has its 'PCIN' port unused
|
||||
match nextP
|
||||
// find candidates where nextP.C port is driven (maybe partially) by chain's tail DSP.P port
|
||||
// and with no registers in between (since cascade path cannot be pipelined)
|
||||
|
||||
// reg C must not be used
|
||||
select port(nextP, \C_BYPASS, SigSpec()).is_fully_ones()
|
||||
|
||||
// must be same DSP type
|
||||
select nextP->type.in(\MACC_PA)
|
||||
|
||||
// port C should be driven by something
|
||||
select nusers(port(nextP, \C, SigSpec())) > 1
|
||||
|
||||
// CIN must be unused
|
||||
select nusers(port(nextP, \PCIN, SigSpec())) == 0
|
||||
|
||||
// should not have internal feedback connection
|
||||
select port(nextP, \CDIN_FDBK_SEL, SigSpec()).is_fully_zero()
|
||||
|
||||
// SHIFT should be unused
|
||||
select port(nextP, \ARSHFT17_BYPASS).is_fully_ones()
|
||||
select port(nextP, \ARSHFT17).is_fully_zero()
|
||||
select nusers(port(nextP, \ARSHFT17, SigSpec())) == 0
|
||||
|
||||
// current DSP cell can be cascaded with the back of the cascade chain
|
||||
// index <SigBit> port(nextP, \C)[0] === port(std::get<0>(chain.back()), \P)[0] || port(nextP, \C)[0] === port(std::get<0>(chain.back()), \P)[17]
|
||||
filter port(nextP, \C)[0] == port(std::get<0>(chain.back()), \P)[0] || port(nextP, \C)[0] == port(std::get<0>(chain.back()), \P)[17]
|
||||
|
||||
// semioptional
|
||||
|
||||
optional
|
||||
endmatch
|
||||
|
||||
code next
|
||||
next = nextP;
|
||||
|
||||
// keep DSP type consistent in the chain
|
||||
// currently since we only have one type anyways, this line is always false
|
||||
if (next && next->type != first->type) reject;
|
||||
|
||||
// break infinite recursion when there's a combinational loop
|
||||
if (visited.count(next) > 0) reject;
|
||||
|
||||
endcode
|
||||
|
||||
// (3) Recursively go to (2) until no more matches possible, recording the
|
||||
// longest possible chain
|
||||
code
|
||||
if (next) {
|
||||
SigSpec driver_sigP = port(std::get<0>(chain.back()), \P);
|
||||
int shift = 0;
|
||||
if (port(next, \C)[0] == port(std::get<0>(chain.back()), \P)[17]) shift = 17;
|
||||
|
||||
chain.emplace_back(next, shift);
|
||||
visited.insert(next);
|
||||
|
||||
SigSpec sigC = unextend(port(next, \C));
|
||||
|
||||
// Make sure driverDSP.P === DSP.C
|
||||
if (GetSize(sigC) + shift <= GetSize(driver_sigP) && driver_sigP.extract(shift, GetSize(sigC)) == sigC)
|
||||
{
|
||||
subpattern(tail);
|
||||
}
|
||||
|
||||
|
||||
} else {
|
||||
if (GetSize(chain) > GetSize(longest_chain))
|
||||
longest_chain = chain;
|
||||
}
|
||||
finally
|
||||
if (next)
|
||||
{
|
||||
visited.erase(next);
|
||||
chain.pop_back();
|
||||
}
|
||||
|
||||
|
||||
endcode
|
Loading…
Add table
Add a link
Reference in a new issue