3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2025-04-24 01:25:33 +00:00

New -limit_fanout option for opt_balance_tree

This commit is contained in:
Alain Dargelas 2024-12-19 11:44:39 -08:00
parent 56130cb5ec
commit ab0058a568

View file

@ -19,30 +19,35 @@
*
*/
#include "kernel/yosys.h"
#include "kernel/sigtools.h"
#include "kernel/yosys.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
struct OptBalanceTreeWorker {
// Module and signal map
Design *design;
Module *module;
SigMap sigmap;
bool allow_off_chain;
int limit = -1;
// Counts of each cell type that are getting balanced
dict<IdString, int> cell_count;
// Driver data
dict<SigBit, tuple<IdString, IdString, int>> bit_drivers_db;
// Load data
dict<SigBit, pool<tuple<IdString, IdString, int>>> bit_users_db;
// Signal chain data structures
dict<SigSpec, Cell*> sig_chain_next;
dict<SigSpec, Cell*> sig_chain_prev;
dict<SigSpec, Cell *> sig_chain_next;
dict<SigSpec, Cell *> sig_chain_prev;
pool<SigBit> sigbit_with_non_chain_users;
pool<Cell*> chain_start_cells;
pool<Cell*> candidate_cells;
pool<Cell *> chain_start_cells;
pool<Cell *> candidate_cells;
void make_sig_chain_next_prev(IdString cell_type) {
void make_sig_chain_next_prev(IdString cell_type)
{
// Mark all wires with keep attribute as having non-chain users
for (auto wire : module->wires()) {
if (wire->get_bool_attribute(ID::keep)) {
@ -59,14 +64,16 @@ struct OptBalanceTreeWorker {
SigSpec a_sig = sigmap(cell->getPort(ID::A));
SigSpec b_sig = sigmap(cell->getPort(ID::B));
SigSpec y_sig = sigmap(cell->getPort(ID::Y));
// If a_sig already has a chain user, mark its bits as having non-chain users
// If a_sig already has a chain user, mark its bits as having non-chain users
if (sig_chain_next.count(a_sig))
for (auto a_bit : a_sig.bits())
sigbit_with_non_chain_users.insert(a_bit);
// Otherwise, mark cell as the next in the chain relative to a_sig
else {
sig_chain_next[a_sig] = cell;
if (fanout_in_range(y_sig)) {
sig_chain_next[a_sig] = cell;
}
}
if (!b_sig.empty()) {
@ -76,15 +83,19 @@ struct OptBalanceTreeWorker {
sigbit_with_non_chain_users.insert(b_bit);
// Otherwise, mark cell as the next in the chain relative to b_sig
else {
sig_chain_next[b_sig] = cell;
if (fanout_in_range(y_sig)) {
sig_chain_next[b_sig] = cell;
}
}
}
// Add cell as candidate
candidate_cells.insert(cell);
// Mark cell as the previous in the chain relative to y_sig
sig_chain_prev[y_sig] = cell;
if (fanout_in_range(y_sig)) {
// Add cell as candidate
candidate_cells.insert(cell);
// Mark cell as the previous in the chain relative to y_sig
sig_chain_prev[y_sig] = cell;
}
}
// If cell is not matching type, mark all cell input signals as being non-chain users
else {
@ -96,7 +107,8 @@ struct OptBalanceTreeWorker {
}
}
void find_chain_start_cells() {
void find_chain_start_cells()
{
for (auto cell : candidate_cells) {
// Log candidate cell
log_debug("Considering %s (%s)\n", log_id(cell), log_id(cell->type));
@ -105,7 +117,7 @@ struct OptBalanceTreeWorker {
SigSpec a_sig = sigmap(cell->getPort(ID::A));
SigSpec b_sig = sigmap(cell->getPort(ID::B));
SigSpec prev_sig = sig_chain_prev.count(a_sig) ? a_sig : b_sig;
// This is a start cell if there was no previous cell in the chain for a_sig or b_sig
if (sig_chain_prev.count(a_sig) + sig_chain_prev.count(b_sig) != 1) {
chain_start_cells.insert(cell);
@ -121,9 +133,10 @@ struct OptBalanceTreeWorker {
}
}
vector<Cell*> create_chain(Cell *start_cell) {
vector<Cell *> create_chain(Cell *start_cell)
{
// Chain of cells
vector<Cell*> chain;
vector<Cell *> chain;
// Current cell
Cell *c = start_cell;
@ -146,7 +159,8 @@ struct OptBalanceTreeWorker {
return chain;
}
void wreduce(Cell *cell) {
void wreduce(Cell *cell)
{
// If cell is arithmetic, remove leading zeros from inputs, then clean up outputs
if (cell->type.in(ID($add), ID($mul))) {
// Remove leading zeros from inputs
@ -158,13 +172,14 @@ struct OptBalanceTreeWorker {
SigSpec inport_sig = sigmap(cell->getPort(inport));
cell->unsetPort(inport);
if (cell->getParam((inport == ID::A) ? ID::A_SIGNED : ID::B_SIGNED).as_bool()) {
while (GetSize(inport_sig) > 1 && inport_sig[GetSize(inport_sig)-1] == State::S0 && inport_sig[GetSize(inport_sig)-2] == State::S0) {
inport_sig.remove(GetSize(inport_sig)-1, 1);
while (GetSize(inport_sig) > 1 && inport_sig[GetSize(inport_sig) - 1] == State::S0 &&
inport_sig[GetSize(inport_sig) - 2] == State::S0) {
inport_sig.remove(GetSize(inport_sig) - 1, 1);
bits_removed++;
}
} else {
while (GetSize(inport_sig) > 0 && inport_sig[GetSize(inport_sig)-1] == State::S0) {
inport_sig.remove(GetSize(inport_sig)-1, 1);
while (GetSize(inport_sig) > 0 && inport_sig[GetSize(inport_sig) - 1] == State::S0) {
inport_sig.remove(GetSize(inport_sig) - 1, 1);
bits_removed++;
}
}
@ -184,7 +199,8 @@ struct OptBalanceTreeWorker {
width = std::max(cell->getParam(ID::A_WIDTH).as_int(), cell->getParam(ID::B_WIDTH).as_int()) + 1;
else if (cell->type == ID($mul))
width = cell->getParam(ID::A_WIDTH).as_int() + cell->getParam(ID::B_WIDTH).as_int();
else log_abort();
else
log_abort();
for (int i = GetSize(y_sig) - 1; i >= width; i--) {
module->connect(y_sig[i], State::S0);
y_sig.remove(i, 1);
@ -198,7 +214,8 @@ struct OptBalanceTreeWorker {
cell->fixup_parameters();
}
void process_chain(vector<Cell*> &chain) {
void process_chain(vector<Cell *> &chain)
{
// If chain size is less than 3, no balancing needed
if (GetSize(chain) < 3)
return;
@ -208,8 +225,8 @@ struct OptBalanceTreeWorker {
Cell *cell = mid_cell; // SILIMATE: Set cell to mid_cell for better naming
Cell *midnext_cell = chain[GetSize(chain) / 2 + 1];
Cell *end_cell = chain.back();
log_debug("Balancing chain of %d cells: mid=%s, midnext=%s, endcell=%s\n",
GetSize(chain), log_id(mid_cell), log_id(midnext_cell), log_id(end_cell));
log_debug("Balancing chain of %d cells: mid=%s, midnext=%s, endcell=%s\n", GetSize(chain), log_id(mid_cell), log_id(midnext_cell),
log_id(end_cell));
// Get mid signals
SigSpec mid_a_sig = sigmap(mid_cell->getPort(ID::A));
@ -238,17 +255,17 @@ struct OptBalanceTreeWorker {
sigmap.set(module);
// Get subtrees
vector<Cell*> left_chain(chain.begin(), chain.begin() + GetSize(chain) / 2);
vector<Cell*> right_chain(chain.begin() + GetSize(chain) / 2 + 1, chain.end());
vector<Cell *> left_chain(chain.begin(), chain.begin() + GetSize(chain) / 2);
vector<Cell *> right_chain(chain.begin() + GetSize(chain) / 2 + 1, chain.end());
// Recurse on subtrees
process_chain(left_chain);
process_chain(right_chain);
// Width reduce left subtree
for (auto c : left_chain)
wreduce(c);
// Width reduce right subtree
for (auto c : right_chain)
wreduce(c);
@ -260,7 +277,8 @@ struct OptBalanceTreeWorker {
wreduce(mid_cell);
}
void cleanup() {
void cleanup()
{
// Fix ports
module->fixup_ports();
@ -272,10 +290,74 @@ struct OptBalanceTreeWorker {
candidate_cells.clear();
}
OptBalanceTreeWorker(Design* design, Module *module, const vector<IdString> cell_types, bool allow_off_chain) :
design(design), module(module), sigmap(module), allow_off_chain(allow_off_chain) {
bool fanout_in_range(SigSpec outsig)
{
// Check if output signal is "bit-split", skip if so
// This is a lookahead for the splitfanout pass that has this limitation
auto bit_users = bit_users_db[outsig[0]];
for (int i = 0; i < GetSize(outsig); i++) {
if (bit_users_db[outsig[i]] != bit_users) {
return false;
}
}
// Skip if fanout is above limit
if (limit != -1 && GetSize(bit_users) > limit) {
return false;
}
return true;
}
OptBalanceTreeWorker(Design *design, Module *module, const vector<IdString> cell_types, bool allow_off_chain, int limit)
: design(design), module(module), sigmap(module), allow_off_chain(allow_off_chain), limit(limit)
{
if (allow_off_chain) {
// Build bit_drivers_db
log("Building bit_drivers_db...\n");
for (auto cell : module->cells()) {
for (auto conn : cell->connections()) {
if (!cell->output(conn.first))
continue;
for (int i = 0; i < GetSize(conn.second); i++) {
SigBit bit(sigmap(conn.second[i]));
bit_drivers_db[bit] = tuple<IdString, IdString, int>(cell->name, conn.first, i);
}
}
}
// Build bit_users_db
log("Building bit_users_db...\n");
for (auto cell : module->cells()) {
for (auto conn : cell->connections()) {
if (!cell->input(conn.first))
continue;
for (int i = 0; i < GetSize(conn.second); i++) {
SigBit bit(sigmap(conn.second[i]));
if (!bit_drivers_db.count(bit))
continue;
bit_users_db[bit].insert(
tuple<IdString, IdString, int>(cell->name, conn.first, i - std::get<2>(bit_drivers_db[bit])));
}
}
}
// Build bit_users_db for output ports
log("Building bit_users_db for output ports...\n");
for (auto wire : module->wires()) {
if (!wire->port_output)
continue;
SigSpec sig(sigmap(wire));
for (int i = 0; i < GetSize(sig); i++) {
SigBit bit(sig[i]);
if (!bit_drivers_db.count(bit))
continue;
bit_users_db[bit].insert(
tuple<IdString, IdString, int>(wire->name, IdString(), i - std::get<2>(bit_drivers_db[bit])));
}
}
// Deselect all cells
Pass::call(design, "select -none");
// Do for each cell type
@ -308,7 +390,7 @@ struct OptBalanceTreeWorker {
sigmap.set(module);
}
// Do for each cell type
// Do for each cell type
for (auto cell_type : cell_types) {
// Find chains of ops
make_sig_chain_next_prev(cell_type);
@ -316,7 +398,7 @@ struct OptBalanceTreeWorker {
// For each chain, if len >= 3, convert to tree via "rotation" and recurse on subtrees
for (auto c : chain_start_cells) {
vector<Cell*> chain = create_chain(c);
vector<Cell *> chain = create_chain(c);
process_chain(chain);
cell_count[cell_type] += GetSize(chain);
}
@ -328,8 +410,9 @@ struct OptBalanceTreeWorker {
};
struct OptBalanceTreePass : public Pass {
OptBalanceTreePass() : Pass("opt_balance_tree", "$and/$or/$xor/$xnor/$add/$mul cascades to trees") { }
void help() override {
OptBalanceTreePass() : Pass("opt_balance_tree", "$and/$or/$xor/$xnor/$add/$mul cascades to trees") {}
void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" opt_balance_tree [options] [selection]\n");
@ -341,20 +424,26 @@ struct OptBalanceTreePass : public Pass {
log(" Allows matching of cells that have loads outside the chain. These cells\n");
log(" will be replicated and balanced into a tree, but the original\n");
log(" cell will remain, driving its original loads.\n");
log(" -fanout_limit n\n");
log(" max fanout to split.\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override {
void execute(std::vector<std::string> args, RTLIL::Design *design) override
{
log_header(design, "Executing OPT_BALANCE_TREE pass (cell cascades to trees).\n");
bool allow_off_chain = false;
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++)
{
if (args[argidx] == "-allow-off-chain")
{
int limit = -1;
for (argidx = 1; argidx < args.size(); argidx++) {
if (args[argidx] == "-allow-off-chain") {
allow_off_chain = true;
continue;
}
if (args[argidx] == "-fanout_limit" && argidx + 1 < args.size()) {
limit = std::stoi(args[++argidx]);
continue;
}
break;
}
extra_args(args, argidx, design);
@ -363,7 +452,7 @@ struct OptBalanceTreePass : public Pass {
dict<IdString, int> cell_count;
const vector<IdString> cell_types = {ID($and), ID($or), ID($xor), ID($xnor), ID($add), ID($mul)};
for (auto module : design->selected_modules()) {
OptBalanceTreeWorker worker(design, module, cell_types, allow_off_chain);
OptBalanceTreeWorker worker(design, module, cell_types, allow_off_chain, limit);
for (auto cell : worker.cell_count) {
cell_count[cell.first] += cell.second;
}