3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2025-04-22 00:26:40 +00:00

Merge pull request #38 from alaindargelas/make_excl

Decode logic for muxpack
This commit is contained in:
Akash Levy 2025-01-10 17:08:01 -08:00 committed by GitHub
commit a83e5f46d0
No known key found for this signature in database
GPG key ID: B5690EEEBB952194

View file

@ -31,9 +31,9 @@ struct ExclusiveDatabase
dict<SigBit, std::pair<SigSpec,std::vector<Const>>> sig_cmp_prev;
ExclusiveDatabase(Module *module, const SigMap &sigmap, bool assume_excl) : module(module), sigmap(sigmap)
ExclusiveDatabase(Module *module, const SigMap &sigmap, bool assume_excl, bool make_excl) : module(module), sigmap(sigmap)
{
if (assume_excl) return;
if (assume_excl || make_excl) return;
SigSpec const_sig, nonconst_sig;
SigBit y_port;
pool<Cell*> reduce_or;
@ -123,6 +123,10 @@ struct MuxpackWorker
int mux_count, pmux_count;
pool<Cell*> remove_cells;
// Driver data
dict<SigBit, tuple<IdString, IdString, int>> bit_drivers_db;
// Load data
dict<SigBit, pool<tuple<IdString, IdString, int>>> bit_users_db;
dict<SigSpec, Cell*> sig_chain_next;
dict<SigSpec, Cell*> sig_chain_prev;
@ -131,6 +135,26 @@ struct MuxpackWorker
pool<Cell*> candidate_cells;
ExclusiveDatabase excl_db;
// Splitfanout limit
int limit = -1;
bool fanout_in_range(SigSpec outsig)
{
// Check if output signal is "bit-split", skip if so
// This is a lookahead for the splitfanout pass that has this limitation
auto bit_users = bit_users_db[outsig[0]];
for (int i = 0; i < GetSize(outsig); i++) {
if (bit_users_db[outsig[i]] != bit_users) {
return false;
}
}
// Skip if fanout is above limit
if (limit != -1 && GetSize(bit_users) > limit) {
return false;
}
return true;
}
void make_sig_chain_next_prev()
{
@ -156,7 +180,10 @@ struct MuxpackWorker
for (auto a_bit : a_sig)
sigbit_with_non_chain_users.insert(a_bit);
else {
sig_chain_next[a_sig] = cell;
if (fanout_in_range(y_sig)) {
sig_chain_next[a_sig] = cell;
candidate_cells.insert(cell);
}
}
if (!b_sig.empty()) {
@ -164,12 +191,18 @@ struct MuxpackWorker
for (auto b_bit : b_sig)
sigbit_with_non_chain_users.insert(b_bit);
else {
sig_chain_next[b_sig] = cell;
if (fanout_in_range(y_sig)) {
sig_chain_next[b_sig] = cell;
candidate_cells.insert(cell);
}
}
}
candidate_cells.insert(cell);
sig_chain_prev[y_sig] = cell;
if (fanout_in_range(y_sig)) {
// Mark cell as the previous in the chain relative to y_sig
sig_chain_prev[y_sig] = cell;
}
continue;
}
@ -243,7 +276,7 @@ struct MuxpackWorker
return chain;
}
void process_chain(vector<Cell*> &chain)
void process_chain(vector<Cell*> &chain, bool make_excl)
{
if (GetSize(chain) < 2)
return;
@ -289,8 +322,66 @@ struct MuxpackWorker
remove_cells.insert(cursor_cell);
}
if (make_excl) {
/* We create the following one-hot select line decoder
S0 S1 S2 S3 ...
| | | |
+--------+ +----------+ +-------------+ |
| _|_ | _|_ | _|_ |
| \_/ | \_/ | \_/ |
| o | o | o |
| | | | | ___ | |
| +----------+ | | / | | |
| | | |___| | / |___| |
| |___| | & | / / | & | / ...
| | & | \___/ / / \___/ / /
| \___/ | | / | | /
| | +------+ +-------+
| | | | | |
| | |___| |___|
| | | & | | & |
| | \___/ \___/
| | | |
S0 S0'S1 S0'S1'S2 S0'S1'S2'S3 ...
*/
SigSpec decodedSelect;
Cell *cell = last_cell;
std::vector<RTLIL::SigBit> select_bits = s_sig.bits();
RTLIL::SigBit prevSigNot = RTLIL::State::S1;
RTLIL::SigBit prevSigAnd = RTLIL::State::S1;
for (int i = (int) (select_bits.size() -1); i >= 0; i--) {
Yosys::RTLIL::SigBit sigbit = select_bits[i];
if (i == (int) (select_bits.size() -1)) {
decodedSelect.append(sigbit);
Wire *not_y = module->addWire(NEW_ID, 1);
module->addNot(NEW_ID2_SUFFIX("not"), sigbit, not_y, false, last_cell->get_src_attribute());
prevSigNot = not_y;
} else if (i == (int) (select_bits.size() -2)) {
Wire *and_y = module->addWire(NEW_ID, 1);
module->addAndGate(NEW_ID2_SUFFIX("sel"), sigbit, prevSigNot, and_y, last_cell->get_src_attribute());
decodedSelect.append(and_y);
Wire *not_y = module->addWire(NEW_ID, 1);
module->addNot(NEW_ID2_SUFFIX("not"), sigbit, not_y, false, last_cell->get_src_attribute());
prevSigAnd = prevSigNot;
prevSigNot = not_y;
} else {
Wire *and_y1 = module->addWire(NEW_ID, 1);
module->addAndGate(NEW_ID2_SUFFIX("sel"), prevSigAnd, prevSigNot, and_y1, last_cell->get_src_attribute());
Wire *and_y2 = module->addWire(NEW_ID, 1);
module->addAndGate(NEW_ID2_SUFFIX("sel"), sigbit, and_y1, and_y2, last_cell->get_src_attribute());
decodedSelect.append(and_y2);
Wire *not_y = module->addWire(NEW_ID, 1);
module->addNot(NEW_ID2_SUFFIX("not"), sigbit, not_y, false, last_cell->get_src_attribute());
prevSigAnd = and_y1;
prevSigNot = not_y;
}
}
decodedSelect.reverse();
first_cell->setPort(ID::S, decodedSelect);
} else {
first_cell->setPort(ID::S, s_sig);
}
first_cell->setPort(ID::B, b_sig);
first_cell->setPort(ID::S, s_sig);
first_cell->setParam(ID::S_WIDTH, GetSize(s_sig));
first_cell->setPort(ID::Y, last_cell->getPort(ID::Y));
@ -298,10 +389,11 @@ struct MuxpackWorker
}
}
void cleanup()
void cleanup(bool remove_cell)
{
for (auto cell : remove_cells)
module->remove(cell);
if (remove_cell)
for (auto cell : remove_cells)
module->remove(cell);
remove_cells.clear();
sig_chain_next.clear();
@ -310,18 +402,90 @@ struct MuxpackWorker
candidate_cells.clear();
}
MuxpackWorker(Module *module, bool assume_excl) :
module(module), sigmap(module), mux_count(0), pmux_count(0), excl_db(module, sigmap, assume_excl)
MuxpackWorker(Design *design, Module *module, bool assume_excl, bool make_excl, int limit)
: module(module), sigmap(module), mux_count(0), pmux_count(0), excl_db(module, sigmap, assume_excl, make_excl), limit(limit)
{
// Build bit_drivers_db
log("Building bit_drivers_db...\n");
for (auto cell : module->cells()) {
for (auto conn : cell->connections()) {
if (!cell->output(conn.first))
continue;
for (int i = 0; i < GetSize(conn.second); i++) {
SigBit bit(sigmap(conn.second[i]));
bit_drivers_db[bit] = tuple<IdString, IdString, int>(cell->name, conn.first, i);
}
}
}
// Build bit_users_db
log("Building bit_users_db...\n");
for (auto cell : module->cells()) {
for (auto conn : cell->connections()) {
if (!cell->input(conn.first))
continue;
for (int i = 0; i < GetSize(conn.second); i++) {
SigBit bit(sigmap(conn.second[i]));
if (!bit_drivers_db.count(bit))
continue;
bit_users_db[bit].insert(
tuple<IdString, IdString, int>(cell->name, conn.first, i - std::get<2>(bit_drivers_db[bit])));
}
}
}
// Build bit_users_db for output ports
log("Building bit_users_db for output ports...\n");
for (auto wire : module->wires()) {
if (!wire->port_output)
continue;
SigSpec sig(sigmap(wire));
for (int i = 0; i < GetSize(sig); i++) {
SigBit bit(sig[i]);
if (!bit_drivers_db.count(bit))
continue;
bit_users_db[bit].insert(
tuple<IdString, IdString, int>(wire->name, IdString(), i - std::get<2>(bit_drivers_db[bit])));
}
}
make_sig_chain_next_prev();
find_chain_start_cells(assume_excl);
// Deselect all cells
Pass::call(design, "select -none");
bool has_cell_to_split = false;
for (auto c : chain_start_cells) {
vector<Cell*> chain = create_chain(c);
process_chain(chain);
vector<Cell *> chain = create_chain(c);
for (auto cell : chain) {
has_cell_to_split = true;
// Select the cells that are candidate
design->select(module, cell);
}
}
// Clean up
cleanup(false);
cleanup();
// Make sure we dup the cells with fanout, else the resulting
// transform is not logically equivalent
if (has_cell_to_split)
Pass::call(design, "splitfanout");
// Reset selection for other passes
Pass::call(design, "select -clear");
// Recreate sigmap
sigmap.set(module);
make_sig_chain_next_prev();
find_chain_start_cells(assume_excl);
// Make the actual transform
for (auto c : chain_start_cells) {
vector<Cell *> chain = create_chain(c);
process_chain(chain, make_excl);
}
// Clean up
cleanup(true);
}
};
@ -341,43 +505,48 @@ struct MuxpackPass : public Pass {
log("whose select lines are driven by '$eq' cells with other such cells if it can be\n");
log("certain that their select inputs are mutually exclusive.\n");
log("\n");
log(" -splitfanout\n");
log(" run splitfanout pass first\n");
log(" -fanout_limit n\n");
log(" max fanout to split.\n");
log("\n");
log(" -assume_excl\n");
log(" assume mutually exclusive constraint when packing (may result in inequivalence)\n");
log(" -make_excl\n");
log(" Adds a one-hot decoder on the control signals\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override
{
bool splitfanout = false;
bool assume_excl = false;
bool make_excl = false;
int limit = -1;
log_header(design, "Executing MUXPACK pass ($mux cell cascades to $pmux).\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++)
{
if (args[argidx] == "-splitfanout") {
splitfanout = true;
if (args[argidx] == "-fanout_limit" && argidx + 1 < args.size()) {
limit = std::stoi(args[++argidx]);
continue;
}
if (args[argidx] == "-assume_excl") {
assume_excl = true;
continue;
}
if (args[argidx] == "-make_excl") {
make_excl = true;
assume_excl = true;
continue;
}
break;
}
extra_args(args, argidx, design);
if (splitfanout)
Pass::call(design, "splitfanout -limit 256 t:$mux t:$pmux");
int mux_count = 0;
int pmux_count = 0;
for (auto module : design->selected_modules()) {
MuxpackWorker worker(module, assume_excl);
MuxpackWorker worker(design, module, assume_excl, make_excl, limit);
mux_count += worker.mux_count;
pmux_count += worker.pmux_count;
}