3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2025-04-04 16:44:08 +00:00

Merge pull request #4677 from YosysHQ/emil/opt_merge-hashing

opt_merge: hashing performance and correctness
This commit is contained in:
KrystalDelusion 2025-03-25 10:36:02 +13:00 committed by GitHub
commit a647731812
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 312 additions and 115 deletions

View file

@ -26,6 +26,8 @@
#include <stdlib.h>
#include <stdio.h>
#include <set>
#include <unordered_map>
#include <array>
USING_YOSYS_NAMESPACE
@ -42,6 +44,22 @@ struct OptMergeWorker
CellTypes ct;
int total_count;
static vector<pair<SigBit, SigSpec>> sorted_pmux_in(const dict<RTLIL::IdString, RTLIL::SigSpec> &conn)
{
SigSpec sig_s = conn.at(ID::S);
SigSpec sig_b = conn.at(ID::B);
int s_width = GetSize(sig_s);
int width = GetSize(sig_b) / s_width;
vector<pair<SigBit, SigSpec>> sb_pairs;
for (int i = 0; i < s_width; i++)
sb_pairs.push_back(pair<SigBit, SigSpec>(sig_s[i], sig_b.extract(i*width, width)));
std::sort(sb_pairs.begin(), sb_pairs.end());
return sb_pairs;
}
static void sort_pmux_conn(dict<RTLIL::IdString, RTLIL::SigSpec> &conn)
{
SigSpec sig_s = conn.at(ID::S);
@ -65,95 +83,78 @@ struct OptMergeWorker
}
}
std::string int_to_hash_string(unsigned int v)
Hasher hash_cell_inputs(const RTLIL::Cell *cell, Hasher h) const
{
if (v == 0)
return "0";
std::string str = "";
while (v > 0) {
str += 'a' + (v & 15);
v = v >> 4;
}
return str;
}
uint64_t hash_cell_parameters_and_connections(const RTLIL::Cell *cell)
{
vector<string> hash_conn_strings;
std::string hash_string = cell->type.str() + "\n";
const dict<RTLIL::IdString, RTLIL::SigSpec> *conn = &cell->connections();
dict<RTLIL::IdString, RTLIL::SigSpec> alt_conn;
// TODO: when implemented, use celltypes to match:
// (builtin || stdcell) && (unary || binary) && symmetrical
if (cell->type.in(ID($and), ID($or), ID($xor), ID($xnor), ID($add), ID($mul),
ID($logic_and), ID($logic_or), ID($_AND_), ID($_OR_), ID($_XOR_))) {
alt_conn = *conn;
if (assign_map(alt_conn.at(ID::A)) < assign_map(alt_conn.at(ID::B))) {
alt_conn[ID::A] = conn->at(ID::B);
alt_conn[ID::B] = conn->at(ID::A);
std::array<RTLIL::SigSpec, 2> inputs = {
assign_map(cell->getPort(ID::A)),
assign_map(cell->getPort(ID::B))
};
std::sort(inputs.begin(), inputs.end());
h = hash_ops<std::array<RTLIL::SigSpec, 2>>::hash_into(inputs, h);
} else if (cell->type.in(ID($reduce_xor), ID($reduce_xnor))) {
SigSpec a = assign_map(cell->getPort(ID::A));
a.sort();
h = a.hash_into(h);
} else if (cell->type.in(ID($reduce_and), ID($reduce_or), ID($reduce_bool))) {
SigSpec a = assign_map(cell->getPort(ID::A));
a.sort_and_unify();
h = a.hash_into(h);
} else if (cell->type == ID($pmux)) {
dict<RTLIL::IdString, RTLIL::SigSpec> conn = cell->connections();
assign_map.apply(conn.at(ID::A));
assign_map.apply(conn.at(ID::B));
assign_map.apply(conn.at(ID::S));
for (const auto& [s_bit, b_chunk] : sorted_pmux_in(conn)) {
h = s_bit.hash_into(h);
h = b_chunk.hash_into(h);
}
conn = &alt_conn;
} else
if (cell->type.in(ID($reduce_xor), ID($reduce_xnor))) {
alt_conn = *conn;
assign_map.apply(alt_conn.at(ID::A));
alt_conn.at(ID::A).sort();
conn = &alt_conn;
} else
if (cell->type.in(ID($reduce_and), ID($reduce_or), ID($reduce_bool))) {
alt_conn = *conn;
assign_map.apply(alt_conn.at(ID::A));
alt_conn.at(ID::A).sort_and_unify();
conn = &alt_conn;
} else
if (cell->type == ID($pmux)) {
alt_conn = *conn;
assign_map.apply(alt_conn.at(ID::A));
assign_map.apply(alt_conn.at(ID::B));
assign_map.apply(alt_conn.at(ID::S));
sort_pmux_conn(alt_conn);
conn = &alt_conn;
}
for (auto &it : *conn) {
RTLIL::SigSpec sig;
if (cell->output(it.first)) {
if (it.first == ID::Q && RTLIL::builtin_ff_cell_types().count(cell->type)) {
// For the 'Q' output of state elements,
// use its (* init *) attribute value
sig = initvals(it.second);
h = assign_map(cell->getPort(ID::A)).hash_into(h);
} else {
std::vector<std::pair<IdString, SigSpec>> conns;
for (const auto& conn : cell->connections()) {
conns.push_back(conn);
}
std::sort(conns.begin(), conns.end());
for (const auto& [port, sig] : conns) {
if (!cell->output(port)) {
h = port.hash_into(h);
h = assign_map(sig).hash_into(h);
}
else
continue;
}
else
sig = assign_map(it.second);
string s = "C " + it.first.str() + "=";
for (auto &chunk : sig.chunks()) {
if (chunk.wire)
s += "{" + chunk.wire->name.str() + " " +
int_to_hash_string(chunk.offset) + " " +
int_to_hash_string(chunk.width) + "}";
else
s += RTLIL::Const(chunk.data).as_string();
}
hash_conn_strings.push_back(s + "\n");
if (RTLIL::builtin_ff_cell_types().count(cell->type))
h = initvals(cell->getPort(ID::Q)).hash_into(h);
}
for (auto &it : cell->parameters)
hash_conn_strings.push_back("P " + it.first.str() + "=" + it.second.as_string() + "\n");
std::sort(hash_conn_strings.begin(), hash_conn_strings.end());
for (auto it : hash_conn_strings)
hash_string += it;
return std::hash<std::string>{}(hash_string);
return h;
}
bool compare_cell_parameters_and_connections(const RTLIL::Cell *cell1, const RTLIL::Cell *cell2)
static Hasher hash_cell_parameters(const RTLIL::Cell *cell, Hasher h)
{
log_assert(cell1 != cell2);
using Paramvec = std::vector<std::pair<IdString, Const>>;
Paramvec params;
for (const auto& param : cell->parameters) {
params.push_back(param);
}
std::sort(params.begin(), params.end());
return hash_ops<Paramvec>::hash_into(params, h);
}
Hasher hash_cell_function(const RTLIL::Cell *cell, Hasher h) const
{
h.eat(cell->type);
h = hash_cell_inputs(cell, h);
h = hash_cell_parameters(cell, h);
return h;
}
bool compare_cell_parameters_and_connections(const RTLIL::Cell *cell1, const RTLIL::Cell *cell2) const
{
if (cell1 == cell2) return true;
if (cell1->type != cell2->type) return false;
if (cell1->parameters != cell2->parameters)
@ -252,21 +253,51 @@ struct OptMergeWorker
initvals.set(&assign_map, module);
bool did_something = true;
// A cell may have to go through a lot of collisions if the hash
// function is performing poorly, but it's a symptom of something bad
// beyond the user's control.
while (did_something)
{
std::vector<RTLIL::Cell*> cells;
cells.reserve(module->cells_.size());
for (auto &it : module->cells_) {
if (!design->selected(module, it.second))
cells.reserve(module->cells().size());
for (auto cell : module->cells()) {
if (!design->selected(module, cell))
continue;
if (mode_keepdc && has_dont_care_initval(it.second))
if (cell->type.in(ID($meminit), ID($meminit_v2), ID($mem), ID($mem_v2))) {
// Ignore those for performance: meminit can have an excessively large port,
// mem can have an excessively large parameter holding the init data
continue;
if (ct.cell_known(it.second->type) || (mode_share_all && it.second->known()))
cells.push_back(it.second);
}
if (mode_keepdc && has_dont_care_initval(cell))
continue;
if (ct.cell_known(cell->type) || (mode_share_all && cell->known()))
cells.push_back(cell);
}
did_something = false;
dict<uint64_t, RTLIL::Cell*> sharemap;
// We keep a set of known cells. They're hashed with our hash_cell_function
// and compared with our compare_cell_parameters_and_connections.
// Both need to capture OptMergeWorker to access initvals
struct CellPtrHash {
const OptMergeWorker& worker;
CellPtrHash(const OptMergeWorker& w) : worker(w) {}
std::size_t operator()(const Cell* c) const {
return (std::size_t)worker.hash_cell_function(c, Hasher()).yield();
}
};
struct CellPtrEqual {
const OptMergeWorker& worker;
CellPtrEqual(const OptMergeWorker& w) : worker(w) {}
bool operator()(const Cell* lhs, const Cell* rhs) const {
return worker.compare_cell_parameters_and_connections(lhs, rhs);
}
};
std::unordered_set<
RTLIL::Cell*,
CellPtrHash,
CellPtrEqual> known_cells (0, CellPtrHash(*this), CellPtrEqual(*this));
for (auto cell : cells)
{
if ((!mode_share_all && !ct.cell_known(cell->type)) || !cell->known())
@ -275,36 +306,36 @@ struct OptMergeWorker
if (cell->type == ID($scopeinfo))
continue;
uint64_t hash = hash_cell_parameters_and_connections(cell);
auto r = sharemap.insert(std::make_pair(hash, cell));
if (!r.second) {
if (compare_cell_parameters_and_connections(cell, r.first->second)) {
if (cell->has_keep_attr()) {
if (r.first->second->has_keep_attr())
continue;
std::swap(r.first->second, cell);
}
did_something = true;
log_debug(" Cell `%s' is identical to cell `%s'.\n", cell->name.c_str(), r.first->second->name.c_str());
for (auto &it : cell->connections()) {
if (cell->output(it.first)) {
RTLIL::SigSpec other_sig = r.first->second->getPort(it.first);
log_debug(" Redirecting output %s: %s = %s\n", it.first.c_str(),
log_signal(it.second), log_signal(other_sig));
Const init = initvals(other_sig);
initvals.remove_init(it.second);
initvals.remove_init(other_sig);
module->connect(RTLIL::SigSig(it.second, other_sig));
assign_map.add(it.second, other_sig);
initvals.set_init(other_sig, init);
}
}
log_debug(" Removing %s cell `%s' from module `%s'.\n", cell->type.c_str(), cell->name.c_str(), module->name.c_str());
module->remove(cell);
total_count++;
auto [cell_in_map, inserted] = known_cells.insert(cell);
if (!inserted) {
// We've failed to insert since we already have an equivalent cell
Cell* other_cell = *cell_in_map;
if (cell->has_keep_attr()) {
if (other_cell->has_keep_attr())
continue;
known_cells.erase(other_cell);
known_cells.insert(cell);
std::swap(other_cell, cell);
}
did_something = true;
log_debug(" Cell `%s' is identical to cell `%s'.\n", cell->name.c_str(), other_cell->name.c_str());
for (auto &it : cell->connections()) {
if (cell->output(it.first)) {
RTLIL::SigSpec other_sig = other_cell->getPort(it.first);
log_debug(" Redirecting output %s: %s = %s\n", it.first.c_str(),
log_signal(it.second), log_signal(other_sig));
Const init = initvals(other_sig);
initvals.remove_init(it.second);
initvals.remove_init(other_sig);
module->connect(RTLIL::SigSig(it.second, other_sig));
assign_map.add(it.second, other_sig);
initvals.set_init(other_sig, init);
}
}
log_debug(" Removing %s cell `%s' from module `%s'.\n", cell->type.c_str(), cell->name.c_str(), module->name.c_str());
module->remove(cell);
total_count++;
}
}
}

View file

@ -0,0 +1,166 @@
read_verilog <<EOT
module top(A, B, X, Y);
input [7:0] A, B;
output [7:0] X, Y;
assign X = A + B;
assign Y = A + B;
endmodule
EOT
# Most basic case
# Binary
select -assert-count 2 t:$add
equiv_opt -assert opt_merge
design -load postopt
select -assert-count 1 t:$add
design -reset
read_verilog <<EOT
module top(A, B, C, X, Y);
input [7:0] A, B, C;
output [7:0] X, Y;
assign X = A + B;
assign Y = A + C; // <- look here
endmodule
EOT
# Reject on a different input
select -assert-count 2 t:$add
opt_merge
select -assert-count 2 t:$add
design -reset
read_verilog <<EOT
module top(A, X, Y);
input [7:0] A;
output X, Y;
assign X = ^A;
assign Y = ^A;
endmodule
EOT
# Unary
select -assert-count 2 t:$reduce_xor
dump
opt_merge
select -assert-count 1 t:$reduce_xor
design -reset
read_verilog -icells <<EOT
module top(A, B, X, Y);
input [7:0] A, B;
output X, Y;
\$reduce_xor #(
.A_SIGNED(32'd0),
.A_WIDTH(32'd16),
.Y_WIDTH(32'd1),
) one (
.A({A, B}), // <- look here
.Y(X)
);
\$reduce_xor #(
.A_SIGNED(32'd0),
.A_WIDTH(32'd16),
.Y_WIDTH(32'd1),
) other (
.A({B, A}), // <- look here
.Y(Y)
);
endmodule
EOT
# Unary is sorted
opt_expr
select -assert-count 2 t:$reduce_xor
equiv_opt -assert opt_merge
design -load postopt
select -assert-count 1 t:$reduce_xor
design -reset
read_verilog -icells <<EOT
module top(A, B, X, Y);
input [7:0] A, B;
output X, Y;
\$reduce_or #(
.A_SIGNED(32'd0),
.A_WIDTH(32'd24),
.Y_WIDTH(32'd1),
) one (
.A({A, B, B}), // <- look here
.Y(X)
);
\$reduce_or #(
.A_SIGNED(32'd0),
.A_WIDTH(32'd24),
.Y_WIDTH(32'd1),
) other (
.A({A, A, B}), // <- look here
.Y(Y)
);
endmodule
EOT
# Unary is unified when valid
opt_expr
select -assert-count 2 t:$reduce_or
equiv_opt -assert opt_merge
design -load postopt
select -assert-count 1 t:$reduce_or
design -reset
read_verilog -icells <<EOT
module top(A, B, X, Y);
input [7:0] A, B;
output X, Y;
\$reduce_xor #(
.A_SIGNED(32'd0),
.A_WIDTH(32'd24),
.Y_WIDTH(32'd1),
) one (
.A({A, B, B}), // <- look here
.Y(X)
);
\$reduce_xor #(
.A_SIGNED(32'd0),
.A_WIDTH(32'd24),
.Y_WIDTH(32'd1),
) other (
.A({A, A, B}), // <- look here
.Y(Y)
);
endmodule
EOT
# Unary isn't unified when that would be invalid
opt_expr
select -assert-count 2 t:$reduce_xor
equiv_opt -assert opt_merge
design -load postopt
select -assert-count 2 t:$reduce_xor
# TODO pmux
design -reset
read_verilog <<EOT
module top(A, B, X, Y);
input [7:0] A, B;
output X, Y;
assign X = A > B;
assign Y = A > B;
endmodule
EOT
# Exercise the general case in hash_cell_inputs - accept
opt_expr
select -assert-count 2 t:$gt
equiv_opt -assert opt_merge
design -load postopt
select -assert-count 1 t:$gt
design -reset
read_verilog <<EOT
module top(A, B, C, X, Y);
input [7:0] A, B, C;
output X, Y;
assign X = A > B;
assign Y = A > C; // <- look here
endmodule
EOT
# Exercise the general case in hash_cell_inputs - reject
opt_expr
select -assert-count 2 t:$gt
opt_merge
select -assert-count 2 t:$gt