mirror of
				https://github.com/YosysHQ/yosys
				synced 2025-10-31 03:32:29 +00:00 
			
		
		
		
	Big rework; flop info now mostly in cells_sim.v
This commit is contained in:
		
							parent
							
								
									cfa6dd61ef
								
							
						
					
					
						commit
						79b6edb639
					
				
					 9 changed files with 500 additions and 456 deletions
				
			
		|  | @ -81,11 +81,11 @@ struct XAigerWriter | |||
| 
 | ||||
| 	dict<SigBit, bool> init_map; | ||||
| 	pool<SigBit> input_bits, output_bits; | ||||
| 	dict<SigBit, SigBit> not_map, ff_map, alias_map; | ||||
| 	dict<SigBit, SigBit> not_map, /*ff_map,*/ alias_map; | ||||
| 	dict<SigBit, pair<SigBit, SigBit>> and_map; | ||||
| 	vector<std::tuple<SigBit,RTLIL::Cell*,RTLIL::IdString,int>> ci_bits; | ||||
| 	vector<std::tuple<SigBit,RTLIL::Cell*,RTLIL::IdString,int,int>> co_bits; | ||||
| 	vector<std::pair<SigBit,int>> ff_bits; | ||||
| 	dict<SigBit, int> ff_bits; | ||||
| 	dict<SigBit, float> arrival_times; | ||||
| 
 | ||||
| 	vector<pair<int, int>> aig_gates; | ||||
|  | @ -218,13 +218,8 @@ struct XAigerWriter | |||
| 		//       box ordering, but not individual AIG cells
 | ||||
| 		dict<SigBit, pool<IdString>> bit_drivers, bit_users; | ||||
| 		TopoSort<IdString, RTLIL::sort_by_id_str> toposort; | ||||
| 		struct flop_data_t { | ||||
| 			IdString d_port; | ||||
| 			IdString q_port; | ||||
| 			int q_arrival; | ||||
| 		}; | ||||
| 		dict<IdString, flop_data_t> flop_data; | ||||
| 		bool abc_box_seen = false; | ||||
| 		std::vector<Cell*> flop_boxes; | ||||
| 
 | ||||
| 		for (auto cell : module->selected_cells()) { | ||||
| 			if (cell->type == "$_NOT_") | ||||
|  | @ -269,6 +264,8 @@ struct XAigerWriter | |||
| 				unused_bits.erase(D); | ||||
| 				undriven_bits.erase(Q); | ||||
| 				alias_map[Q] = D; | ||||
| 				auto r = ff_bits.insert(std::make_pair(D, 0)); | ||||
| 				log_assert(r.second); | ||||
| 				continue; | ||||
| 			} | ||||
| 
 | ||||
|  | @ -278,59 +275,6 @@ struct XAigerWriter | |||
| 
 | ||||
| 				toposort.node(cell->name); | ||||
| 
 | ||||
| 				auto r = flop_data.insert(std::make_pair(cell->type, flop_data_t{IdString(), IdString(), 0})); | ||||
| 				if (r.second && inst_module->attributes.count("\\abc_flop")) { | ||||
| 					IdString &abc_flop_d = r.first->second.d_port; | ||||
| 					IdString &abc_flop_q = r.first->second.q_port; | ||||
| 					for (auto port_name : inst_module->ports) { | ||||
| 						auto wire = inst_module->wire(port_name); | ||||
| 						log_assert(wire); | ||||
| 						if (wire->attributes.count("\\abc_flop_d")) { | ||||
| 							if (abc_flop_d != IdString()) | ||||
| 								log_error("More than one port has the 'abc_flop_d' attribute set on module '%s'.\n", log_id(cell->type)); | ||||
| 							abc_flop_d = port_name; | ||||
| 						} | ||||
| 						if (wire->attributes.count("\\abc_flop_q")) { | ||||
| 							if (abc_flop_q != IdString()) | ||||
| 								log_error("More than one port has the 'abc_flop_q' attribute set on module '%s'.\n", log_id(cell->type)); | ||||
| 							abc_flop_q = port_name; | ||||
| 
 | ||||
| 							auto it = wire->attributes.find("\\abc_arrival"); | ||||
| 							if (it != wire->attributes.end()) { | ||||
| 								if (it->second.flags != 0) | ||||
| 									log_error("Attribute 'abc_arrival' on port '%s' of module '%s' is not an integer.\n", log_id(wire), log_id(cell->type)); | ||||
| 								 r.first->second.q_arrival = it->second.as_int(); | ||||
| 							} | ||||
| 						} | ||||
| 					} | ||||
| 					if (abc_flop_d == IdString()) | ||||
| 						log_error("'abc_flop_d' attribute not found on any ports on module '%s'.\n", log_id(cell->type)); | ||||
| 					if (abc_flop_q == IdString()) | ||||
| 						log_error("'abc_flop_q' attribute not found on any ports on module '%s'.\n", log_id(cell->type)); | ||||
| 				} | ||||
| 
 | ||||
| 				auto abc_flop_d = r.first->second.d_port; | ||||
| 				if (abc_flop_d != IdString()) { | ||||
| 					SigBit d = cell->getPort(abc_flop_d); | ||||
| 					SigBit I = sigmap(d); | ||||
| 					if (I != d) | ||||
| 						alias_map[d] = I; | ||||
| 					unused_bits.erase(d); | ||||
| 
 | ||||
| 					auto abc_flop_q = r.first->second.q_port; | ||||
| 					SigBit q = cell->getPort(abc_flop_q); | ||||
| 					log_assert(q == sigmap(q)); | ||||
| 					undriven_bits.erase(q); | ||||
| 					auto it = cell->attributes.find(ID(abc_mergeability)); | ||||
| 					log_assert(it != cell->attributes.end()); | ||||
| 					ff_bits.emplace_back(q, it->second.as_int()); | ||||
| 					cell->attributes.erase(it); | ||||
| 
 | ||||
| 					auto arrival = r.first->second.q_arrival; | ||||
| 					if (arrival) | ||||
| 						arrival_times[q] = arrival; | ||||
| 				} | ||||
| 
 | ||||
| 				for (const auto &conn : cell->connections()) { | ||||
| 					auto port_wire = inst_module->wire(conn.first); | ||||
| 					if (port_wire->port_input) { | ||||
|  | @ -345,6 +289,8 @@ struct XAigerWriter | |||
| 							bit_drivers[bit].insert(cell->name); | ||||
| 				} | ||||
| 
 | ||||
| 				if (inst_module->attributes.count("\\abc9_flop")) | ||||
| 					flop_boxes.push_back(cell); | ||||
| 				continue; | ||||
| 			} | ||||
| 
 | ||||
|  | @ -403,6 +349,45 @@ struct XAigerWriter | |||
| 		} | ||||
| 
 | ||||
| 		if (abc_box_seen) { | ||||
| 			dict<IdString, std::pair<IdString,int>> flop_q; | ||||
| 			for (auto cell : flop_boxes) { | ||||
| 				auto r = flop_q.insert(std::make_pair(cell->type, std::make_pair(IdString(), 0))); | ||||
| 				SigBit d; | ||||
| 				if (r.second) { | ||||
| 					for (const auto &conn : cell->connections()) { | ||||
| 						const SigSpec &rhs = conn.second; | ||||
| 						if (!rhs.is_bit()) | ||||
| 							continue; | ||||
| 						if (!ff_bits.count(rhs)) | ||||
| 							continue; | ||||
| 						r.first->second.first = conn.first; | ||||
| 						Module *inst_module = module->design->module(cell->type); | ||||
| 						Wire *wire = inst_module->wire(conn.first); | ||||
| 						log_assert(wire); | ||||
| 						auto jt = wire->attributes.find("\\abc_arrival"); | ||||
| 						if (jt != wire->attributes.end()) { | ||||
| 							if (jt->second.flags != 0) | ||||
| 								log_error("Attribute 'abc_arrival' on port '%s' of module '%s' is not an integer.\n", log_id(wire), log_id(cell->type)); | ||||
| 							r.first->second.second = jt->second.as_int(); | ||||
| 						} | ||||
| 						d = rhs; | ||||
| 						log_assert(d == sigmap(d)); | ||||
| 						break; | ||||
| 					} | ||||
| 				} | ||||
| 				else | ||||
| 					d = cell->getPort(r.first->second.first); | ||||
| 
 | ||||
| 				auto it = cell->attributes.find(ID(abc9_mergeability)); | ||||
| 				log_assert(it != cell->attributes.end()); | ||||
| 				ff_bits.at(d) = it->second.as_int(); | ||||
| 				cell->attributes.erase(it); | ||||
| 
 | ||||
| 				auto arrival = r.first->second.second; | ||||
| 				if (arrival) | ||||
| 					arrival_times[d] = arrival; | ||||
| 			} | ||||
| 
 | ||||
| 			for (auto &it : bit_users) | ||||
| 				if (bit_drivers.count(it.first)) | ||||
| 					for (auto driver_cell : bit_drivers.at(it.first)) | ||||
|  | @ -498,6 +483,29 @@ struct XAigerWriter | |||
| 						} | ||||
| 					} | ||||
| 				} | ||||
| 
 | ||||
| 				if (box_module->get_bool_attribute("\\abc9_flop")) { | ||||
| 					IdString port_name = "\\$currQ"; | ||||
| 					RTLIL::Wire* w = box_module->wire(port_name); | ||||
| 					SigSpec rhs = cell->getPort(port_name); | ||||
| 					log_assert(GetSize(w) == GetSize(rhs)); | ||||
| 
 | ||||
| 					int offset = 0; | ||||
| 					for (auto b : rhs.bits()) { | ||||
| 						SigBit I = sigmap(b); | ||||
| 						if (b == RTLIL::Sx) | ||||
| 							b = State::S0; | ||||
| 						else if (I != b) { | ||||
| 							if (I == RTLIL::Sx) | ||||
| 								alias_map[b] = State::S0; | ||||
| 							else | ||||
| 								alias_map[b] = I; | ||||
| 						} | ||||
| 						co_bits.emplace_back(b, cell, port_name, offset++, 0); | ||||
| 						unused_bits.erase(b); | ||||
| 					} | ||||
| 				} | ||||
| 
 | ||||
| 				box_list.emplace_back(cell); | ||||
| 			} | ||||
| 
 | ||||
|  | @ -569,7 +577,7 @@ struct XAigerWriter | |||
| 		} | ||||
| 
 | ||||
| 		not_map.sort(); | ||||
| 		ff_map.sort(); | ||||
| 		//ff_map.sort();
 | ||||
| 		and_map.sort(); | ||||
| 
 | ||||
| 		aig_map[State::S0] = 0; | ||||
|  | @ -850,6 +858,28 @@ struct XAigerWriter | |||
| 					} | ||||
| 				} | ||||
| 
 | ||||
| 				if (box_module->get_bool_attribute("\\abc9_flop")) { | ||||
| 					log_assert(holes_cell); | ||||
| 					IdString port_name = "\\$currQ"; | ||||
| 					Wire* w = box_module->wire(port_name); | ||||
| 					SigSpec rhs = cell->getPort(port_name); | ||||
| 					log_assert(GetSize(w) == GetSize(rhs)); | ||||
| 					SigSpec port_wire; | ||||
| 					Wire *holes_wire; | ||||
| 					for (int i = 0; i < GetSize(w); i++) { | ||||
| 						box_inputs++; | ||||
| 						holes_wire = holes_module->wire(stringf("\\i%d", box_inputs)); | ||||
| 						if (!holes_wire) { | ||||
| 							holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs)); | ||||
| 							holes_wire->port_input = true; | ||||
| 							holes_wire->port_id = port_id++; | ||||
| 							holes_module->ports.push_back(holes_wire->name); | ||||
| 						} | ||||
| 						port_wire.append(holes_wire); | ||||
| 					} | ||||
| 					holes_cell->setPort(w->name, port_wire); | ||||
| 				} | ||||
| 
 | ||||
| 				write_h_buffer(box_inputs); | ||||
| 				write_h_buffer(box_outputs); | ||||
| 				write_h_buffer(box_module->attributes.at("\\abc_box_id").as_int()); | ||||
|  | @ -861,6 +891,7 @@ struct XAigerWriter | |||
| 			log_debug("flopNum = %d\n", GetSize(ff_bits)); | ||||
| 			write_r_buffer(ff_bits.size()); | ||||
| 			for (const auto &i : ff_bits) { | ||||
| 				log_assert(i.second > 0); | ||||
| 				write_r_buffer(i.second); | ||||
| 				const SigBit &bit = i.first; | ||||
| 				write_i_buffer(arrival_times.at(bit, 0)); | ||||
|  |  | |||
|  | @ -740,7 +740,7 @@ void AigerReader::post_process() | |||
| 
 | ||||
| 		bool is_flop = false; | ||||
| 		if (seen_boxes.insert(cell->type).second) { | ||||
| 			if (box_module->attributes.count("\\abc_flop")) { | ||||
| 			if (box_module->attributes.count("\\abc9_flop")) { | ||||
| 				log_assert(flop_count < flopNum); | ||||
| 				flops.insert(cell->type); | ||||
| 				is_flop = true; | ||||
|  | @ -811,12 +811,18 @@ void AigerReader::post_process() | |||
| 				} | ||||
| 				rhs.append(wire); | ||||
| 			} | ||||
| 
 | ||||
| 			if (!is_flop || port_name != "\\$pastQ") | ||||
| 				cell->setPort(port_name, rhs); | ||||
| 			cell->setPort(port_name, rhs); | ||||
| 		} | ||||
| 
 | ||||
| 		if (is_flop) { | ||||
| 			Wire* port = box_module->wire("\\$currQ"); | ||||
| 			log_assert(port); | ||||
| 			log_assert(co_count < outputs.size()); | ||||
| 			Wire *wire = outputs[co_count++]; | ||||
| 			log_assert(wire); | ||||
| 			log_assert(wire->port_output); | ||||
| 			wire->port_output = false; | ||||
| 
 | ||||
| 			RTLIL::Wire *d = outputs[outputs.size() - flopNum + flop_count]; | ||||
| 			log_assert(d); | ||||
| 			log_assert(d->port_output); | ||||
|  | @ -827,9 +833,10 @@ void AigerReader::post_process() | |||
| 			log_assert(q->port_input); | ||||
| 			q->port_input = false; | ||||
| 
 | ||||
| 			auto ff = module->addCell(NEW_ID, "$__ABC_FF_"); | ||||
| 			ff->setPort("\\D", d); | ||||
| 			ff->setPort("\\Q", q); | ||||
| 			flop_count++; | ||||
| 			module->connect(q, d); | ||||
| 			cell->set_bool_attribute("\\abc_flop"); | ||||
| 			continue; | ||||
| 		} | ||||
| 	} | ||||
|  |  | |||
|  | @ -536,8 +536,10 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri | |||
| 			cell_stats[mapped_cell->type]++; | ||||
| 
 | ||||
| 			RTLIL::Cell *existing_cell = nullptr; | ||||
| 			if (mapped_cell->type == ID($lut)) { | ||||
| 				if (GetSize(mapped_cell->getPort(ID::A)) == 1 && mapped_cell->getParam(ID(LUT)) == RTLIL::Const::from_string("01")) { | ||||
| 			if (mapped_cell->type.in(ID($lut), ID($__ABC_FF_))) { | ||||
| 				if (mapped_cell->type == ID($lut) && | ||||
| 						GetSize(mapped_cell->getPort(ID::A)) == 1 && | ||||
| 						mapped_cell->getParam(ID(LUT)) == RTLIL::Const::from_string("01")) { | ||||
| 					SigSpec my_a = module->wires_.at(remap_name(mapped_cell->getPort(ID::A).as_wire()->name)); | ||||
| 					SigSpec my_y = module->wires_.at(remap_name(mapped_cell->getPort(ID::Y).as_wire()->name)); | ||||
| 					module->connect(my_y, my_a); | ||||
|  | @ -564,7 +566,8 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri | |||
| 				cell->attributes = mapped_cell->attributes; | ||||
| 			} | ||||
| 
 | ||||
| 			auto abc_flop = mapped_cell->attributes.count("\\abc_flop"); | ||||
| 			RTLIL::Module* box_module = design->module(mapped_cell->type); | ||||
| 			auto abc_flop = box_module && box_module->attributes.count("\\abc9_flop"); | ||||
| 			for (auto &conn : mapped_cell->connections()) { | ||||
| 				RTLIL::SigSpec newsig; | ||||
| 				for (auto c : conn.second.chunks()) { | ||||
|  | @ -1073,29 +1076,18 @@ struct Abc9Pass : public Pass { | |||
| 			std::set<RTLIL::Cell*> expand_queue_up, next_expand_queue_up; | ||||
| 			std::set<RTLIL::Cell*> expand_queue_down, next_expand_queue_down; | ||||
| 
 | ||||
| 			typedef pair<bool, RTLIL::SigSpec> clkdomain_t; | ||||
| 			std::map<clkdomain_t, pool<RTLIL::IdString>> assigned_cells; | ||||
| 			std::map<RTLIL::Cell*, clkdomain_t> assigned_cells_reverse; | ||||
| 			std::map<SigSpec, pool<RTLIL::IdString>> assigned_cells; | ||||
| 			std::map<RTLIL::Cell*, SigSpec> assigned_cells_reverse; | ||||
| 
 | ||||
| 			std::map<RTLIL::Cell*, std::set<RTLIL::SigBit>> cell_to_bit, cell_to_bit_up, cell_to_bit_down; | ||||
| 			std::map<RTLIL::SigBit, std::set<RTLIL::Cell*>> bit_to_cell, bit_to_cell_up, bit_to_cell_down; | ||||
| 
 | ||||
| 			pool<IdString> seen_cells; | ||||
| 			struct flop_data_t { | ||||
| 				IdString clk_port; | ||||
| 				IdString en_port; | ||||
| 			}; | ||||
| 			dict<IdString, flop_data_t> flop_data; | ||||
| 			typedef clkdomain_t endomain_t; | ||||
| 			typedef std::pair<IdString, SigSpec> endomain_t; | ||||
| 			std::map<endomain_t, int> mergeability_class; | ||||
| 
 | ||||
| 			for (auto cell : all_cells) { | ||||
| 				clkdomain_t key; | ||||
| 				endomain_t key2; | ||||
| 
 | ||||
| 				for (auto &conn : cell->connections()) | ||||
| 				for (auto bit : conn.second) { | ||||
| 					bit = assign_map(bit); | ||||
| 				for (auto bit : assign_map(conn.second)) | ||||
| 					if (bit.wire != nullptr) { | ||||
| 						cell_to_bit[cell].insert(bit); | ||||
| 						bit_to_cell[bit].insert(cell); | ||||
|  | @ -1108,72 +1100,68 @@ struct Abc9Pass : public Pass { | |||
| 							bit_to_cell_up[bit].insert(cell); | ||||
| 						} | ||||
| 					} | ||||
| 
 | ||||
| 				auto inst_module = design->module(cell->type); | ||||
| 				if (!inst_module || !inst_module->attributes.count("\\abc9_flop")) | ||||
| 					continue; | ||||
| 
 | ||||
| 				auto derived_name = inst_module->derive(design, cell->parameters); | ||||
| 				auto derived_module = design->module(derived_name); | ||||
| 				log_assert(derived_module); | ||||
| 				Pass::call_on_module(design, derived_module, "proc"); | ||||
| 				SigMap derived_sigmap(derived_module); | ||||
| 
 | ||||
| 				Wire *currQ = derived_module->wire("\\$currQ"); | ||||
| 				if (currQ == NULL) | ||||
| 					log_error("'\\$currQ' is not a wire present in module '%s'.\n", log_id(cell->type)); | ||||
| 				log_assert(!currQ->port_output); | ||||
| 				if (!currQ->port_input) { | ||||
| 					currQ->port_input = true; | ||||
| 					derived_module->ports.push_back(currQ->name); | ||||
| 					currQ->port_id = GetSize(derived_module->ports); | ||||
| #ifndef NDEBUG | ||||
| 					derived_module->check(); | ||||
| #endif | ||||
| 				} | ||||
| 
 | ||||
| 				// TODO: Generate this outside
 | ||||
| 				decltype(flop_data)::iterator it; | ||||
| 				if (seen_cells.insert(cell->type).second) { | ||||
| 					RTLIL::Module* inst_module = design->module(cell->type); | ||||
| 					if (!inst_module) | ||||
| 						continue; | ||||
| 
 | ||||
| 					if (!inst_module->attributes.count("\\abc_flop")) | ||||
| 						continue; | ||||
| 
 | ||||
| 					IdString abc_flop_clk, abc_flop_en; | ||||
| 					for (auto port_name : inst_module->ports) { | ||||
| 						auto wire = inst_module->wire(port_name); | ||||
| 						log_assert(wire); | ||||
| 						if (wire->attributes.count("\\abc_flop_clk")) { | ||||
| 							if (abc_flop_clk != IdString()) | ||||
| 								log_error("More than one port has the 'abc_flop_clk' attribute set on module '%s'.\n", log_id(cell->type)); | ||||
| 							abc_flop_clk = port_name; | ||||
| 						} | ||||
| 						if (wire->attributes.count("\\abc_flop_en")) { | ||||
| 							if (abc_flop_en != IdString()) | ||||
| 								log_error("More than one port has the 'abc_flop_en' attribute set on module '%s'.\n", log_id(cell->type)); | ||||
| 							abc_flop_en = port_name; | ||||
| 						} | ||||
| 					} | ||||
| 
 | ||||
| 					if (abc_flop_clk == IdString()) | ||||
| 						log_error("'abc_flop_clk' attribute not found on any ports on module '%s'.\n", log_id(cell->type)); | ||||
| 					if (abc_flop_en == IdString()) | ||||
| 						log_error("'abc_flop_en' attribute not found on any ports on module '%s'.\n", log_id(cell->type)); | ||||
| 
 | ||||
| 					it = flop_data.insert(std::make_pair(cell->type, flop_data_t{abc_flop_clk, abc_flop_en})).first; | ||||
| 				} | ||||
| 				else { | ||||
| 					it = flop_data.find(cell->type); | ||||
| 					if (it == flop_data.end()) | ||||
| 						continue; | ||||
| 				SigSpec pattern; | ||||
| 				SigSpec with; | ||||
| 				for (auto &conn : cell->connections()) { | ||||
| 					Wire *first = derived_module->wire(conn.first); | ||||
| 					log_assert(first); | ||||
| 					SigSpec second = assign_map(conn.second); | ||||
| 					log_assert(GetSize(first) == GetSize(second)); | ||||
| 					pattern.append(first); | ||||
| 					with.append(second); | ||||
| 				} | ||||
| 
 | ||||
| 				const auto &data = it->second; | ||||
| 				Wire *abc9_clock_wire = derived_module->wire("\\$abc9_clock"); | ||||
| 				if (abc9_clock_wire == NULL) | ||||
| 					log_error("'\\$abc9_clock' is not a wire present in module '%s'.\n", log_id(cell->type)); | ||||
| 				SigSpec abc9_clock = derived_sigmap(abc9_clock_wire); | ||||
| 				abc9_clock.replace(pattern, with); | ||||
| 				for (const auto &c : abc9_clock.chunks()) | ||||
| 					log_assert(!c.wire || c.wire->module == mod); | ||||
| 
 | ||||
| 				auto jt = cell->parameters.find("\\CLK_POLARITY"); | ||||
| 				if (jt == cell->parameters.end()) | ||||
| 					log_error("'CLK_POLARITY' is not a parameter on module '%s'.\n", log_id(cell->type)); | ||||
| 				bool this_clk_pol = jt->second.as_bool(); | ||||
| 
 | ||||
| 				jt = cell->parameters.find("\\EN_POLARITY"); | ||||
| 				if (jt == cell->parameters.end()) | ||||
| 					log_error("'EN_POLARITY' is not a parameter on module '%s'.\n", log_id(cell->type)); | ||||
| 				bool this_en_pol = jt->second.as_bool(); | ||||
| 
 | ||||
| 				key = clkdomain_t(this_clk_pol, assign_map(cell->getPort(data.clk_port))); | ||||
| 				Wire *abc9_control_wire = derived_module->wire("\\$abc9_control"); | ||||
| 				if (abc9_control_wire == NULL) | ||||
| 					log_error("'\\$abc9_control' is not a wire present in module '%s'.\n", log_id(cell->type)); | ||||
| 				SigSpec abc9_control = derived_sigmap(abc9_control_wire); | ||||
| 				abc9_control.replace(pattern, with); | ||||
| 				for (const auto &c : abc9_control.chunks()) | ||||
| 					log_assert(!c.wire || c.wire->module == mod); | ||||
| 
 | ||||
| 				unassigned_cells.erase(cell); | ||||
| 				expand_queue.insert(cell); | ||||
| 				expand_queue_up.insert(cell); | ||||
| 				expand_queue_down.insert(cell); | ||||
| 
 | ||||
| 				assigned_cells[key].insert(cell->name); | ||||
| 				assigned_cells_reverse[cell] = key; | ||||
| 				assigned_cells[abc9_clock].insert(cell->name); | ||||
| 				assigned_cells_reverse[cell] = abc9_clock; | ||||
| 
 | ||||
| 				key2 = endomain_t(this_en_pol, assign_map(cell->getPort(data.en_port))); | ||||
| 				auto r = mergeability_class.emplace(key2, mergeability_class.size() + 1); | ||||
| 				auto YS_ATTRIBUTE(unused) r2 = cell->attributes.insert(std::make_pair(ID(abc_mergeability),  r.first->second)); | ||||
| 				endomain_t key(cell->type, abc9_control); | ||||
| 				auto r = mergeability_class.emplace(key, mergeability_class.size() + 1); | ||||
| 				auto YS_ATTRIBUTE(unused) r2 = cell->attributes.insert(std::make_pair(ID(abc9_mergeability),  r.first->second)); | ||||
| 				log_assert(r2.second); | ||||
| 			} | ||||
| 
 | ||||
|  | @ -1182,7 +1170,7 @@ struct Abc9Pass : public Pass { | |||
| 				if (!expand_queue_up.empty()) | ||||
| 				{ | ||||
| 					RTLIL::Cell *cell = *expand_queue_up.begin(); | ||||
| 					clkdomain_t key = assigned_cells_reverse.at(cell); | ||||
| 					SigSpec key = assigned_cells_reverse.at(cell); | ||||
| 					expand_queue_up.erase(cell); | ||||
| 
 | ||||
| 					for (auto bit : cell_to_bit_up[cell]) | ||||
|  | @ -1199,7 +1187,7 @@ struct Abc9Pass : public Pass { | |||
| 				if (!expand_queue_down.empty()) | ||||
| 				{ | ||||
| 					RTLIL::Cell *cell = *expand_queue_down.begin(); | ||||
| 					clkdomain_t key = assigned_cells_reverse.at(cell); | ||||
| 					SigSpec key = assigned_cells_reverse.at(cell); | ||||
| 					expand_queue_down.erase(cell); | ||||
| 
 | ||||
| 					for (auto bit : cell_to_bit_down[cell]) | ||||
|  | @ -1222,7 +1210,7 @@ struct Abc9Pass : public Pass { | |||
| 			while (!expand_queue.empty()) | ||||
| 			{ | ||||
| 				RTLIL::Cell *cell = *expand_queue.begin(); | ||||
| 				clkdomain_t key = assigned_cells_reverse.at(cell); | ||||
| 				SigSpec key = assigned_cells_reverse.at(cell); | ||||
| 				expand_queue.erase(cell); | ||||
| 
 | ||||
| 				for (auto bit : cell_to_bit.at(cell)) { | ||||
|  | @ -1240,7 +1228,7 @@ struct Abc9Pass : public Pass { | |||
| 					expand_queue.swap(next_expand_queue); | ||||
| 			} | ||||
| 
 | ||||
| 			clkdomain_t key(true, RTLIL::SigSpec()); | ||||
| 			SigSpec key; | ||||
| 			for (auto cell : unassigned_cells) { | ||||
| 				assigned_cells[key].insert(cell->name); | ||||
| 				assigned_cells_reverse[cell] = key; | ||||
|  | @ -1248,8 +1236,7 @@ struct Abc9Pass : public Pass { | |||
| 
 | ||||
| 			log_header(design, "Summary of detected clock domains:\n"); | ||||
| 			for (auto &it : assigned_cells) | ||||
| 				log("  %d cells in clk=%s%s\n", GetSize(it.second), | ||||
| 						std::get<0>(it.first) ? "" : "!", log_signal(std::get<1>(it.first))); | ||||
| 				log("  %d cells in clk=%s\n", GetSize(it.second), log_signal(it.first)); | ||||
| 
 | ||||
| 			design->selection_stack.emplace_back(false); | ||||
| 			for (auto &it : assigned_cells) { | ||||
|  |  | |||
|  | @ -26,27 +26,23 @@ module FDRE (output reg Q, input C, CE, D, R); | |||
|   parameter [0:0] IS_D_INVERTED = 1'b0; | ||||
|   parameter [0:0] IS_R_INVERTED = 1'b0; | ||||
|   wire \$nextQ ; | ||||
|   \$__ABC_FDRE #( | ||||
|   FDRE #( | ||||
|     .INIT(INIT), | ||||
|     .IS_C_INVERTED(IS_C_INVERTED), | ||||
|     .IS_D_INVERTED(IS_D_INVERTED), | ||||
|     .IS_R_INVERTED(IS_R_INVERTED), | ||||
|     .CLK_POLARITY(!IS_C_INVERTED), | ||||
|     .EN_POLARITY(1'b1) | ||||
|     .IS_R_INVERTED(IS_R_INVERTED) | ||||
|   ) _TECHMAP_REPLACE_ ( | ||||
|     .D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .R(R) | ||||
|     .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .R(R) | ||||
|   ); | ||||
|   \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q)); | ||||
| endmodule | ||||
| module FDRE_1 (output reg Q, input C, CE, D, R); | ||||
|   parameter [0:0] INIT = 1'b0; | ||||
|   wire \$nextQ ; | ||||
|   \$__ABC_FDRE_1 #( | ||||
|       .INIT(|0), | ||||
|     .CLK_POLARITY(1'b0), | ||||
|     .EN_POLARITY(1'b1) | ||||
|   FDRE_1 #( | ||||
|     .INIT(|0), | ||||
|   ) _TECHMAP_REPLACE_ ( | ||||
|     .D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .R(R) | ||||
|     .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .R(R) | ||||
|   ); | ||||
|   \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q)); | ||||
| endmodule | ||||
|  | @ -57,28 +53,24 @@ module FDCE (output reg Q, input C, CE, D, CLR); | |||
|   parameter [0:0] IS_D_INVERTED = 1'b0; | ||||
|   parameter [0:0] IS_CLR_INVERTED = 1'b0; | ||||
|   wire \$nextQ , \$currQ ; | ||||
|   \$__ABC_FDCE #( | ||||
|   FDCE #( | ||||
|     .INIT(INIT), | ||||
|     .IS_C_INVERTED(IS_C_INVERTED), | ||||
|     .IS_D_INVERTED(IS_D_INVERTED), | ||||
|     .IS_CLR_INVERTED(IS_CLR_INVERTED), | ||||
|     .CLK_POLARITY(!IS_C_INVERTED), | ||||
|     .EN_POLARITY(1'b1) | ||||
|     .IS_CLR_INVERTED(IS_CLR_INVERTED) | ||||
|   ) _TECHMAP_REPLACE_ ( | ||||
|     .D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .CLR(CLR) | ||||
|     .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .CLR(CLR) | ||||
|   ); | ||||
|   \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ )); | ||||
|   \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(CLR), .Y(Q)); | ||||
|   \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(CLR ^ IS_CLR_INVERTED), .Y(Q)); | ||||
| endmodule | ||||
| module FDCE_1 (output reg Q, input C, CE, D, CLR); | ||||
|   parameter [0:0] INIT = 1'b0; | ||||
|   wire \$nextQ , \$currQ ; | ||||
|   \$__ABC_FDCE_1 #( | ||||
|     .INIT(INIT), | ||||
|     .CLK_POLARITY(1'b0), | ||||
|     .EN_POLARITY(1'b1) | ||||
|   FDCE_1 #( | ||||
|     .INIT(INIT) | ||||
|   ) _TECHMAP_REPLACE_ ( | ||||
|     .D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .CLR(CLR) | ||||
|     .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .CLR(CLR) | ||||
|   ); | ||||
|   \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ )); | ||||
|   \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(CLR), .Y(Q)); | ||||
|  | @ -90,33 +82,56 @@ module FDPE (output reg Q, input C, CE, D, PRE); | |||
|   parameter [0:0] IS_D_INVERTED = 1'b0; | ||||
|   parameter [0:0] IS_PRE_INVERTED = 1'b0; | ||||
|   wire \$nextQ , \$currQ ; | ||||
|   \$__ABC_FDPE #( | ||||
|   FDPE #( | ||||
|     .INIT(INIT), | ||||
|     .IS_C_INVERTED(IS_C_INVERTED), | ||||
|     .IS_D_INVERTED(IS_D_INVERTED), | ||||
|     .IS_PRE_INVERTED(IS_PRE_INVERTED), | ||||
|     .CLK_POLARITY(!IS_C_INVERTED), | ||||
|     .EN_POLARITY(1'b1) | ||||
|   ) _TECHMAP_REPLACE_ ( | ||||
|     .D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .PRE(PRE) | ||||
|     .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .PRE(PRE) | ||||
|   ); | ||||
|   \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ )); | ||||
|   \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(PRE), .Y(Q)); | ||||
|   \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(PRE ^ IS_PRE_INVERTED), .Y(Q)); | ||||
| endmodule | ||||
| module FDPE_1 (output reg Q, input C, CE, D, PRE); | ||||
|   parameter [0:0] INIT = 1'b0; | ||||
|   wire \$nextQ , \$currQ ; | ||||
|   \$__ABC_FDPE_1 #( | ||||
|     .INIT(INIT), | ||||
|     .CLK_POLARITY(1'b0), | ||||
|     .EN_POLARITY(1'b1) | ||||
|   FDPE_1 #( | ||||
|     .INIT(INIT) | ||||
|   ) _TECHMAP_REPLACE_ ( | ||||
|     .D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .PRE(PRE) | ||||
|     .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .PRE(PRE) | ||||
|   ); | ||||
|   \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ )); | ||||
|   \$__ABC_ASYNC abc_async (.A(\$currQ ), .S(PRE), .Y(Q)); | ||||
| endmodule | ||||
| 
 | ||||
| module FDSE (output reg Q, input C, CE, D, S); | ||||
|   parameter [0:0] INIT = 1'b0; | ||||
|   parameter [0:0] IS_C_INVERTED = 1'b0; | ||||
|   parameter [0:0] IS_D_INVERTED = 1'b0; | ||||
|   parameter [0:0] IS_S_INVERTED = 1'b0; | ||||
|   wire \$nextQ ; | ||||
|   FDSE #( | ||||
|     .INIT(INIT), | ||||
|     .IS_C_INVERTED(IS_C_INVERTED), | ||||
|     .IS_D_INVERTED(IS_D_INVERTED), | ||||
|     .IS_S_INVERTED(IS_S_INVERTED) | ||||
|   ) _TECHMAP_REPLACE_ ( | ||||
|     .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .S(S) | ||||
|   ); | ||||
|   \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q)); | ||||
| endmodule | ||||
| module FDSE_1 (output reg Q, input C, CE, D, S); | ||||
|   parameter [0:0] INIT = 1'b0; | ||||
|   wire \$nextQ ; | ||||
|   FDSE_1 #( | ||||
|     .INIT(|0), | ||||
|   ) _TECHMAP_REPLACE_ ( | ||||
|     .D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .S(S) | ||||
|   ); | ||||
|   \$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q)); | ||||
| endmodule | ||||
| 
 | ||||
| module RAM32X1D ( | ||||
|   output DPO, SPO, | ||||
|   input  D, | ||||
|  |  | |||
|  | @ -26,97 +26,9 @@ module \$__XILINX_MUXF78 (output O, input I0, I1, I2, I3, S0, S1); | |||
|                 : (S0 ? I1 : I0); | ||||
| endmodule | ||||
| 
 | ||||
| module \$__ABC_FF_ (input C, D, output Q); | ||||
| module \$__ABC_FF_ (input D, output Q); | ||||
| endmodule | ||||
| 
 | ||||
| (* abc_box_id = 1000 *) | ||||
| module \$__ABC_ASYNC (input A, S, output Y); | ||||
| endmodule | ||||
| 
 | ||||
| (* abc_box_id=1001, lib_whitebox, abc_flop *) | ||||
| module \$__ABC_FDRE ((* abc_flop_q, abc_arrival=303 *) output Q, | ||||
|                      (* abc_flop_clk *) input C, | ||||
|                      (* abc_flop_en *)  input CE, | ||||
|                      (* abc_flop_d *)   input D, | ||||
|                      input R, \$pastQ ); | ||||
|   parameter [0:0] INIT = 1'b0; | ||||
|   parameter [0:0] IS_C_INVERTED = 1'b0; | ||||
|   parameter [0:0] IS_D_INVERTED = 1'b0; | ||||
|   parameter [0:0] IS_R_INVERTED = 1'b0; | ||||
|   parameter CLK_POLARITY = !IS_C_INVERTED; | ||||
|   parameter EN_POLARITY = 1'b1; | ||||
|   assign Q = (R ^ IS_R_INVERTED) ? 1'b0 : (CE ? (D ^ IS_D_INVERTED) : \$pastQ ); | ||||
| endmodule | ||||
| 
 | ||||
| (* abc_box_id=1002, lib_whitebox, abc_flop *) | ||||
| module \$__ABC_FDRE_1 ((* abc_flop_q, abc_arrival=303 *) output Q, | ||||
|                        (* abc_flop_clk *) input C, | ||||
|                        (* abc_flop_en *)  input CE, | ||||
|                        (* abc_flop_d *)   input D, | ||||
|                        input R, \$pastQ ); | ||||
|   parameter [0:0] INIT = 1'b0; | ||||
|   parameter CLK_POLARITY = 1'b0; | ||||
|   parameter EN_POLARITY = 1'b1; | ||||
|   assign Q = R ? 1'b0 : (CE ? D : \$pastQ ); | ||||
| endmodule | ||||
| 
 | ||||
| (* abc_box_id=1003, lib_whitebox, abc_flop *) | ||||
| module \$__ABC_FDCE ((* abc_flop_q, abc_arrival=303 *) output Q, | ||||
|                      (* abc_flop_clk *) input C, | ||||
|                      (* abc_flop_en *)  input CE, | ||||
|                      (* abc_flop_d *)   input D, | ||||
|                      input CLR, \$pastQ ); | ||||
|   parameter [0:0] INIT = 1'b0; | ||||
|   parameter [0:0] IS_C_INVERTED = 1'b0; | ||||
|   parameter [0:0] IS_D_INVERTED = 1'b0; | ||||
|   parameter [0:0] IS_CLR_INVERTED = 1'b0; | ||||
|   parameter CLK_POLARITY = !IS_C_INVERTED; | ||||
|   parameter EN_POLARITY = 1'b1; | ||||
|   assign Q = (CE && !(CLR ^ IS_CLR_INVERTED)) ? (D ^ IS_D_INVERTED) : \$pastQ ; | ||||
| endmodule | ||||
| 
 | ||||
| (* abc_box_id=1004, lib_whitebox, abc_flop *) | ||||
| module \$__ABC_FDCE_1 ((* abc_flop_q, abc_arrival=303 *) output Q, | ||||
|                        (* abc_flop_clk *) input C, | ||||
|                        (* abc_flop_en *)  input CE, | ||||
|                        (* abc_flop_d *)   input D, | ||||
|                        input CLR, \$pastQ ); | ||||
|   parameter [0:0] INIT = 1'b0; | ||||
|   parameter CLK_POLARITY = 1'b0; | ||||
|   parameter EN_POLARITY = 1'b1; | ||||
|   assign Q = (CE && !CLR) ? D : \$pastQ ; | ||||
| endmodule | ||||
| 
 | ||||
| (* abc_box_id=1005, lib_whitebox, abc_flop *) | ||||
| module \$__ABC_FDPE ((* abc_flop_q, abc_arrival=303 *) output Q, | ||||
|                      (* abc_flop_clk *) input C, | ||||
|                      (* abc_flop_en *)  input CE, | ||||
|                      (* abc_flop_d *)   input D, | ||||
|                      input PRE, \$pastQ ); | ||||
|   parameter [0:0] INIT = 1'b0; | ||||
|   parameter [0:0] IS_C_INVERTED = 1'b0; | ||||
|   parameter [0:0] IS_D_INVERTED = 1'b0; | ||||
|   parameter [0:0] IS_PRE_INVERTED = 1'b0; | ||||
|   parameter CLK_POLARITY = !IS_C_INVERTED; | ||||
|   parameter EN_POLARITY = 1'b1; | ||||
|   assign Q = (CE && !(PRE ^ IS_PRE_INVERTED)) ? (D ^ IS_D_INVERTED) : \$pastQ ; | ||||
| endmodule | ||||
| 
 | ||||
| (* abc_box_id=1006, lib_whitebox, abc_flop *) | ||||
| module \$__ABC_FDPE_1 ((* abc_flop_q, abc_arrival=303 *) output Q, | ||||
|                        (* abc_flop_clk *) input C, | ||||
|                        (* abc_flop_en *)  input CE, | ||||
|                        (* abc_flop_d *)   input D, | ||||
|                        input PRE, \$pastQ ); | ||||
|   parameter [0:0] INIT = 1'b0;  | ||||
|   parameter CLK_POLARITY = 1'b0; | ||||
|   parameter EN_POLARITY = 1'b1; | ||||
|   assign Q = (CE && !PRE) ? D : \$pastQ ; | ||||
| endmodule | ||||
| 
 | ||||
| (* abc_box_id=2000 *) | ||||
| module \$__ABC_LUT6 (input A, input [5:0] S, output Y); | ||||
| endmodule | ||||
| (* abc_box_id=2001 *) | ||||
| module \$__ABC_LUT7 (input A, input [6:0] S, output Y); | ||||
| endmodule | ||||
|  |  | |||
|  | @ -24,124 +24,6 @@ module \$__ABC_ASYNC (input A, S, output Y); | |||
|   assign Y = A; | ||||
| endmodule | ||||
| 
 | ||||
| module \$__ABC_FDRE (output Q, | ||||
|                      input C, | ||||
|                      input CE, | ||||
|                      input D, | ||||
|                      input R, \$pastQ ); | ||||
|   parameter [0:0] INIT = 1'b0; | ||||
|   parameter [0:0] IS_C_INVERTED = 1'b0; | ||||
|   parameter [0:0] IS_D_INVERTED = 1'b0; | ||||
|   parameter [0:0] IS_R_INVERTED = 1'b0; | ||||
|   parameter CLK_POLARITY = !IS_C_INVERTED; | ||||
|   parameter EN_POLARITY = 1'b1; | ||||
| 
 | ||||
|   FDRE #( | ||||
|     .INIT(INIT), | ||||
|     .IS_C_INVERTED(IS_C_INVERTED), | ||||
|     .IS_D_INVERTED(IS_D_INVERTED), | ||||
|     .IS_R_INVERTED(IS_R_INVERTED), | ||||
|   ) _TECHMAP_REPLACE_ ( | ||||
|     .D(D), .Q(Q), .C(C), .CE(CE), .R(R) | ||||
|   ); | ||||
| endmodule | ||||
| 
 | ||||
| module \$__ABC_FDRE_1 (output Q, | ||||
|                        input C, | ||||
|                        input CE, | ||||
|                        input D, | ||||
|                        input R, \$pastQ ); | ||||
|   parameter [0:0] INIT = 1'b0; | ||||
|   parameter CLK_POLARITY = 1'b0; | ||||
|   parameter EN_POLARITY = 1'b1; | ||||
|   assign Q = R ? 1'b0 : (CE ? D : \$pastQ ); | ||||
| 
 | ||||
|   FDRE_1 #( | ||||
|     .INIT(INIT), | ||||
|   ) _TECHMAP_REPLACE_ ( | ||||
|     .D(D), .Q(Q), .C(C), .CE(CE), .R(R) | ||||
|   ); | ||||
| endmodule | ||||
| 
 | ||||
| module \$__ABC_FDCE (output Q, | ||||
|                      input C, | ||||
|                      input CE, | ||||
|                      input D, | ||||
|                      input CLR, \$pastQ ); | ||||
|   parameter [0:0] INIT = 1'b0; | ||||
|   parameter [0:0] IS_C_INVERTED = 1'b0; | ||||
|   parameter [0:0] IS_D_INVERTED = 1'b0; | ||||
|   parameter [0:0] IS_CLR_INVERTED = 1'b0; | ||||
|   parameter CLK_POLARITY = !IS_C_INVERTED; | ||||
|   parameter EN_POLARITY = 1'b1; | ||||
| 
 | ||||
|   FDCE #( | ||||
|     .INIT(INIT), | ||||
|     .IS_C_INVERTED(IS_C_INVERTED), | ||||
|     .IS_D_INVERTED(IS_D_INVERTED), | ||||
|     .IS_CLR_INVERTED(IS_CLR_INVERTED), | ||||
|   ) _TECHMAP_REPLACE_ ( | ||||
|     .D(D), .Q(Q), .C(C), .CE(CE), .CLR(CLR) | ||||
|   ); | ||||
| endmodule | ||||
| 
 | ||||
| module \$__ABC_FDCE_1 (output Q, | ||||
|                        input C, | ||||
|                        input CE, | ||||
|                        input D, | ||||
|                        input CLR, \$pastQ ); | ||||
|   parameter [0:0] INIT = 1'b0; | ||||
|   parameter CLK_POLARITY = 1'b0; | ||||
|   parameter EN_POLARITY = 1'b1; | ||||
| 
 | ||||
|   FDCE_1 #( | ||||
|     .INIT(INIT), | ||||
|   ) _TECHMAP_REPLACE_ ( | ||||
|     .D(D), .Q(Q), .C(C), .CE(CE), .CLR(CLR) | ||||
|   ); | ||||
| endmodule | ||||
| 
 | ||||
| module \$__ABC_FDPE (output Q, | ||||
|                      input C, | ||||
|                      input CE, | ||||
|                      input D, | ||||
|                      input PRE, \$pastQ ); | ||||
|   parameter [0:0] INIT = 1'b0; | ||||
|   parameter [0:0] IS_C_INVERTED = 1'b0; | ||||
|   parameter [0:0] IS_D_INVERTED = 1'b0; | ||||
|   parameter [0:0] IS_PRE_INVERTED = 1'b0; | ||||
|   parameter CLK_POLARITY = !IS_C_INVERTED; | ||||
|   parameter EN_POLARITY = 1'b1; | ||||
| 
 | ||||
|   FDPE #( | ||||
|     .INIT(INIT), | ||||
|     .IS_C_INVERTED(IS_C_INVERTED), | ||||
|     .IS_D_INVERTED(IS_D_INVERTED), | ||||
|     .IS_PRE_INVERTED(IS_PRE_INVERTED), | ||||
|   ) _TECHMAP_REPLACE_ ( | ||||
|     .D(D), .Q(Q), .C(C), .CE(CE), .PRE(PRE) | ||||
|   ); | ||||
| endmodule | ||||
| 
 | ||||
| module \$__ABC_FDPE_1 (output Q, | ||||
|                        input C, | ||||
|                        input CE, | ||||
|                        input D, | ||||
|                        input PRE, \$pastQ ); | ||||
|   parameter [0:0] INIT = 1'b0; | ||||
|   parameter CLK_POLARITY = 1'b0; | ||||
|   parameter EN_POLARITY = 1'b1; | ||||
| 
 | ||||
|   FDPE_1 #( | ||||
|     .INIT(INIT), | ||||
|   ) _TECHMAP_REPLACE_ ( | ||||
|     .D(D), .Q(Q), .C(C), .CE(CE), .PRE(PRE) | ||||
|   ); | ||||
| endmodule | ||||
| 
 | ||||
| module \$__ABC_LUT6 (input A, input [5:0] S, output Y); | ||||
|   assign Y = A; | ||||
| endmodule | ||||
| module \$__ABC_LUT7 (input A, input [6:0] S, output Y); | ||||
|   assign Y = A; | ||||
| module \$__ABC_FF_ (input D, output Q); | ||||
|   assign Q = D; | ||||
| endmodule | ||||
|  |  | |||
|  | @ -52,36 +52,46 @@ $__ABC_ASYNC 1000 0 2 1 | |||
| # https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L237-L251 | ||||
| # https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L265-L277 | ||||
| 
 | ||||
| # Inputs: C CE D R \$pastQ | ||||
| # Inputs: C CE D R \$currQ | ||||
| # Outputs: Q | ||||
| FDRE 1001 1 5 1 | ||||
| 0 151 0 446 0 | ||||
| 
 | ||||
| # Inputs: C CE D R \$pastQ | ||||
| # Inputs: C CE D R \$currQ | ||||
| # Outputs: Q | ||||
| FDRE_1 1002 1 5 1 | ||||
| 0 151 0 446 0 | ||||
| 
 | ||||
| # Inputs: C CE CLR D \$pastQ | ||||
| # Inputs: C CE CLR D \$currQ | ||||
| # Outputs: Q | ||||
| FDCE 1003 1 5 1 | ||||
| 0 151 806 0 0 | ||||
| 
 | ||||
| # Inputs: C CE CLR D \$pastQ | ||||
| # Inputs: C CE CLR D \$currQ | ||||
| # Outputs: Q | ||||
| FDCE_1 1004 1 5 1 | ||||
| 0 151 806 0 0 | ||||
| 
 | ||||
| # Inputs: C CE D PRE \$pastQ | ||||
| # Inputs: C CE D PRE \$currQ | ||||
| # Outputs: Q | ||||
| FDPE 1005 1 5 1 | ||||
| 0 151 0 806 0 | ||||
| 
 | ||||
| # Inputs: C CE D PRE \$pastQ | ||||
| # Inputs: C CE D PRE \$currQ | ||||
| # Outputs: Q | ||||
| FDPE_1 1006 1 5 1 | ||||
| 0 151 0 806 0 | ||||
| 
 | ||||
| # Inputs: C CE D S \$currQ | ||||
| # Outputs: Q | ||||
| FDSE 1007 1 5 1 | ||||
| 0 151 0 446 0 | ||||
| 
 | ||||
| # Inputs: C CE D S \$currQ | ||||
| # Outputs: Q | ||||
| FDSE_1 1008 1 5 1 | ||||
| 0 151 0 446 0 | ||||
| 
 | ||||
| # SLICEM/A6LUT | ||||
| # Box to emulate comb/seq behaviour of RAMD{32,64} and SRL{16,32} | ||||
| #   Necessary since RAMD* and SRL* have both combinatorial (i.e. | ||||
|  |  | |||
|  | @ -240,6 +240,7 @@ endmodule | |||
| 
 | ||||
| // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLL_L.sdf#L238-L250 | ||||
| 
 | ||||
| (* abc_box_id=1001, lib_whitebox, abc9_flop *) | ||||
| module FDRE ( | ||||
|   (* abc_arrival=303 *) | ||||
|   output reg Q, | ||||
|  | @ -257,35 +258,72 @@ module FDRE ( | |||
|   parameter [0:0] IS_D_INVERTED = 1'b0; | ||||
|   parameter [0:0] IS_R_INVERTED = 1'b0; | ||||
|   initial Q <= INIT; | ||||
|   wire \$currQ ; | ||||
|   reg \$nextQ ; | ||||
|   always @* if (R == !IS_R_INVERTED) \$nextQ = 1'b0; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ; | ||||
| `ifdef _ABC | ||||
|   // `abc9' requires that complex flops be split into a combinatorial | ||||
|   //   box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) | ||||
|   //   In order to achieve clock-enable behaviour, the current value | ||||
|   //   of the sequential output is required which Yosys will | ||||
|   //   connect to the special `\$currQ' wire. | ||||
| 
 | ||||
|   // Special signal indicating clock domain | ||||
|   //   (used to partition the module so that `abc9' only performs | ||||
|   //    sequential synthesis (reachability analysis) correctly on | ||||
|   //    one domain at a time) | ||||
|   wire [1:0] \$abc9_clock = {C, IS_C_INVERTED}; | ||||
|   // Special signal indicating control domain | ||||
|   //   (which, combined with this spell type, encodes to `abc9' | ||||
|   //    which flops may be merged together) | ||||
|   wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED}; | ||||
|   always @* Q = \$nextQ ; | ||||
| `else | ||||
|   assign \$currQ = Q; | ||||
|   generate case (|IS_C_INVERTED) | ||||
|     1'b0: always @(posedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; | ||||
|     1'b1: always @(negedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; | ||||
|     1'b0: always @(posedge C) Q <= \$nextQ ; | ||||
|     1'b1: always @(negedge C) Q <= \$nextQ ; | ||||
|   endcase endgenerate | ||||
| `endif | ||||
| endmodule | ||||
| 
 | ||||
| module FDSE ( | ||||
| (* abc_box_id=1002, lib_whitebox, abc9_flop *) | ||||
| module FDRE_1 ( | ||||
|   (* abc_arrival=303 *) | ||||
|   output reg Q, | ||||
|   (* clkbuf_sink *) | ||||
|   (* invertible_pin = "IS_C_INVERTED" *) | ||||
|   input C, | ||||
|   input CE, | ||||
|   (* invertible_pin = "IS_D_INVERTED" *) | ||||
|   input D, | ||||
|   (* invertible_pin = "IS_S_INVERTED" *) | ||||
|   input S | ||||
|   input CE, D, R | ||||
| ); | ||||
|   parameter [0:0] INIT = 1'b1; | ||||
|   parameter [0:0] IS_C_INVERTED = 1'b0; | ||||
|   parameter [0:0] IS_D_INVERTED = 1'b0; | ||||
|   parameter [0:0] IS_S_INVERTED = 1'b0; | ||||
|   parameter [0:0] INIT = 1'b0; | ||||
|   initial Q <= INIT; | ||||
|   generate case (|IS_C_INVERTED) | ||||
|     1'b0: always @(posedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; | ||||
|     1'b1: always @(negedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; | ||||
|   endcase endgenerate | ||||
|   wire \$currQ ; | ||||
|   reg \$nextQ ; | ||||
|   always @* if (R) Q <= 1'b0; else if (CE) Q <= D; else \$nextQ = \$currQ ; | ||||
| `ifdef _ABC | ||||
|   // `abc9' requires that complex flops be split into a combinatorial | ||||
|   //   box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) | ||||
|   //   In order to achieve clock-enable behaviour, the current value | ||||
|   //   of the sequential output is required which Yosys will | ||||
|   //   connect to the special `\$currQ' wire. | ||||
| 
 | ||||
|   // Special signal indicating clock domain | ||||
|   //   (used to partition the module so that `abc9' only performs | ||||
|   //    sequential synthesis (reachability analysis) correctly on | ||||
|   //    one domain at a time) | ||||
|   wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; | ||||
|   // Special signal indicating control domain | ||||
|   //   (which, combined with this spell type, encodes to `abc9' | ||||
|   //    which flops may be merged together) | ||||
|   wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */}; | ||||
|   always @* Q = \$nextQ ; | ||||
| `else | ||||
|   assign \$currQ = Q; | ||||
|   always @(negedge C) Q <= \$nextQ ; | ||||
| `endif | ||||
| endmodule | ||||
| 
 | ||||
| (* abc_box_id=1003, lib_whitebox, abc9_flop *) | ||||
| module FDCE ( | ||||
|   (* abc_arrival=303 *) | ||||
|   output reg Q, | ||||
|  | @ -303,14 +341,78 @@ module FDCE ( | |||
|   parameter [0:0] IS_D_INVERTED = 1'b0; | ||||
|   parameter [0:0] IS_CLR_INVERTED = 1'b0; | ||||
|   initial Q <= INIT; | ||||
|   wire \$currQ ; | ||||
|   reg \$nextQ ; | ||||
|   always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ; | ||||
| `ifdef _ABC | ||||
|   // `abc9' requires that complex flops be split into a combinatorial | ||||
|   //   box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) | ||||
|   //   In order to achieve clock-enable behaviour, the current value | ||||
|   //   of the sequential output is required which Yosys will | ||||
|   //   connect to the special `\$currQ' wire. | ||||
|   // Since this is an async flop, async behaviour is also dealt with | ||||
|   //   using the $_ABC_ASYNC box by abc_map.v | ||||
| 
 | ||||
|   // Special signal indicating clock domain | ||||
|   //   (used to partition the module so that `abc9' only performs | ||||
|   //    sequential synthesis (reachability analysis) correctly on | ||||
|   //    one domain at a time) | ||||
|   wire [1:0] \$abc9_clock = {C, IS_C_INVERTED}; | ||||
|   // Special signal indicating control domain | ||||
|   //   (which, combined with this spell type, encodes to `abc9' | ||||
|   //    which flops may be merged together) | ||||
|   wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED}; | ||||
|   always @* Q = \$nextQ ; | ||||
| `else | ||||
|   assign \$currQ = Q; | ||||
|   generate case ({|IS_C_INVERTED, |IS_CLR_INVERTED}) | ||||
|     2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; | ||||
|     2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; | ||||
|     2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; | ||||
|     2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; | ||||
|     2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ; | ||||
|     2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ; | ||||
|     2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ; | ||||
|     2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ; | ||||
|   endcase endgenerate | ||||
| `endif | ||||
| endmodule | ||||
| 
 | ||||
| (* abc_box_id=1004, lib_whitebox, abc9_flop *) | ||||
| module FDCE_1 ( | ||||
|   (* abc_arrival=303 *) | ||||
|   output reg Q, | ||||
|   (* clkbuf_sink *) | ||||
|   input C, | ||||
|   input CE, D, CLR | ||||
| ); | ||||
|   parameter [0:0] INIT = 1'b0; | ||||
|   initial Q <= INIT; | ||||
|   wire \$currQ ; | ||||
|   reg \$nextQ ; | ||||
|   always @* if (CE) Q <= D; else \$nextQ = \$currQ ; | ||||
| `ifdef _ABC | ||||
|   // `abc9' requires that complex flops be split into a combinatorial | ||||
|   //   box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) | ||||
|   //   In order to achieve clock-enable behaviour, the current value | ||||
|   //   of the sequential output is required which Yosys will | ||||
|   //   connect to the special `\$currQ' wire. | ||||
|   // Since this is an async flop, async behaviour is also dealt with | ||||
|   //   using the $_ABC_ASYNC box by abc_map.v | ||||
| 
 | ||||
|   // Special signal indicating clock domain | ||||
|   //   (used to partition the module so that `abc9' only performs | ||||
|   //    sequential synthesis (reachability analysis) correctly on | ||||
|   //    one domain at a time) | ||||
|   wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; | ||||
|   // Special signal indicating control domain | ||||
|   //   (which, combined with this spell type, encodes to `abc9' | ||||
|   //    which flops may be merged together) | ||||
|   wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */}; | ||||
|   always @* Q = \$nextQ ; | ||||
| `else | ||||
|   assign \$currQ = Q; | ||||
|   always @(negedge C, posedge CLR) if (CLR == !IS_CLR_INVERTED) Q <= 1'b0; else Q <= \$nextQ ; | ||||
| `endif | ||||
| endmodule | ||||
| 
 | ||||
| (* abc_box_id=1005, lib_whitebox, abc9_flop *) | ||||
| module FDPE ( | ||||
|   (* abc_arrival=303 *) | ||||
|   output reg Q, | ||||
|  | @ -328,50 +430,40 @@ module FDPE ( | |||
|   parameter [0:0] IS_D_INVERTED = 1'b0; | ||||
|   parameter [0:0] IS_PRE_INVERTED = 1'b0; | ||||
|   initial Q <= INIT; | ||||
|   wire \$currQ ; | ||||
|   reg \$nextQ ; | ||||
|   always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ; | ||||
| `ifdef _ABC | ||||
|   // `abc9' requires that complex flops be split into a combinatorial | ||||
|   //   box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) | ||||
|   //   In order to achieve clock-enable behaviour, the current value | ||||
|   //   of the sequential output is required which Yosys will | ||||
|   //   connect to the special `\$currQ' wire. | ||||
|   // Since this is an async flop, async behaviour is also dealt with | ||||
|   //   using the $_ABC_ASYNC box by abc_map.v | ||||
| 
 | ||||
|   // Special signal indicating clock domain | ||||
|   //   (used to partition the module so that `abc9' only performs | ||||
|   //    sequential synthesis (reachability analysis) correctly on | ||||
|   //    one domain at a time) | ||||
|   wire [1:0] \$abc9_clock = {C, IS_C_INVERTED}; | ||||
|   // Special signal indicating control domain | ||||
|   //   (which, combined with this spell type, encodes to `abc9' | ||||
|   //    which flops may be merged together) | ||||
|   wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED}; | ||||
|   always @* Q = \$nextQ ; | ||||
| `else | ||||
|   assign \$currQ = Q; | ||||
|   generate case ({|IS_C_INVERTED, |IS_PRE_INVERTED}) | ||||
|     2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; | ||||
|     2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; | ||||
|     2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; | ||||
|     2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; | ||||
|     2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ; | ||||
|     2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ; | ||||
|     2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ; | ||||
|     2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ; | ||||
|   endcase endgenerate | ||||
| `endif | ||||
| endmodule | ||||
| 
 | ||||
| module FDRE_1 ( | ||||
|   (* abc_arrival=303 *) | ||||
|   output reg Q, | ||||
|   (* clkbuf_sink *) | ||||
|   input C, | ||||
|   input CE, D, R | ||||
| ); | ||||
|   parameter [0:0] INIT = 1'b0; | ||||
|   initial Q <= INIT; | ||||
|   always @(negedge C) if (R) Q <= 1'b0; else if(CE) Q <= D; | ||||
| endmodule | ||||
| 
 | ||||
| module FDSE_1 ( | ||||
|   (* abc_arrival=303 *) | ||||
|   output reg Q, | ||||
|   (* clkbuf_sink *) | ||||
|   input C, | ||||
|   input CE, D, S | ||||
| ); | ||||
|   parameter [0:0] INIT = 1'b1; | ||||
|   initial Q <= INIT; | ||||
|   always @(negedge C) if (S) Q <= 1'b1; else if(CE) Q <= D; | ||||
| endmodule | ||||
| 
 | ||||
| module FDCE_1 ( | ||||
|   (* abc_arrival=303 *) | ||||
|   output reg Q, | ||||
|   (* clkbuf_sink *) | ||||
|   input C, | ||||
|   input CE, D, CLR | ||||
| ); | ||||
|   parameter [0:0] INIT = 1'b0; | ||||
|   initial Q <= INIT; | ||||
|   always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else if (CE) Q <= D; | ||||
| endmodule | ||||
| 
 | ||||
| (* abc_box_id=1006, lib_whitebox, abc9_flop *) | ||||
| module FDPE_1 ( | ||||
|   (* abc_arrival=303 *) | ||||
|   output reg Q, | ||||
|  | @ -381,7 +473,115 @@ module FDPE_1 ( | |||
| ); | ||||
|   parameter [0:0] INIT = 1'b1; | ||||
|   initial Q <= INIT; | ||||
|   always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else if (CE) Q <= D; | ||||
|   wire \$currQ ; | ||||
|   reg \$nextQ ; | ||||
|   always @* if (CE) Q <= D; else \$nextQ = \$currQ ; | ||||
| `ifdef _ABC | ||||
|   // `abc9' requires that complex flops be split into a combinatorial | ||||
|   //   box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) | ||||
|   //   In order to achieve clock-enable behaviour, the current value | ||||
|   //   of the sequential output is required which Yosys will | ||||
|   //   connect to the special `\$currQ' wire. | ||||
|   // Since this is an async flop, async behaviour is also dealt with | ||||
|   //   using the $_ABC_ASYNC box by abc_map.v | ||||
| 
 | ||||
|   // Special signal indicating clock domain | ||||
|   //   (used to partition the module so that `abc9' only performs | ||||
|   //    sequential synthesis (reachability analysis) correctly on | ||||
|   //    one domain at a time) | ||||
|   wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; | ||||
|   // Special signal indicating control domain | ||||
|   //   (which, combined with this spell type, encodes to `abc9' | ||||
|   //    which flops may be merged together) | ||||
|   wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */}; | ||||
|   always @* Q = \$nextQ ; | ||||
| `else | ||||
|   assign \$currQ = Q; | ||||
|   always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else Q <= \$nextQ ; | ||||
| `endif | ||||
| endmodule | ||||
| 
 | ||||
| (* abc_box_id=1007, lib_whitebox, abc9_flop *) | ||||
| module FDSE ( | ||||
|   (* abc_arrival=303 *) | ||||
|   output reg Q, | ||||
|   (* clkbuf_sink *) | ||||
|   (* invertible_pin = "IS_C_INVERTED" *) | ||||
|   input C, | ||||
|   input CE, | ||||
|   (* invertible_pin = "IS_D_INVERTED" *) | ||||
|   input D, | ||||
|   (* invertible_pin = "IS_S_INVERTED" *) | ||||
|   input S | ||||
| ); | ||||
|   parameter [0:0] INIT = 1'b1; | ||||
|   parameter [0:0] IS_C_INVERTED = 1'b0; | ||||
|   parameter [0:0] IS_D_INVERTED = 1'b0; | ||||
|   parameter [0:0] IS_S_INVERTED = 1'b0; | ||||
|   initial Q <= INIT; | ||||
|   wire \$currQ ; | ||||
|   reg \$nextQ ; | ||||
|   always @* if (S == !IS_S_INVERTED) \$nextQ = 1'b1; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ; | ||||
| `ifdef _ABC | ||||
|   // `abc9' requires that complex flops be split into a combinatorial | ||||
|   //   box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) | ||||
|   //   In order to achieve clock-enable behaviour, the current value | ||||
|   //   of the sequential output is required which Yosys will | ||||
|   //   connect to the special `\$currQ' wire. | ||||
| 
 | ||||
|   // Special signal indicating clock domain | ||||
|   //   (used to partition the module so that `abc9' only performs | ||||
|   //    sequential synthesis (reachability analysis) correctly on | ||||
|   //    one domain at a time) | ||||
|   wire [1:0] \$abc9_clock = {C, IS_C_INVERTED}; | ||||
|   // Special signal indicating control domain | ||||
|   //   (which, combined with this spell type, encodes to `abc9' | ||||
|   //    which flops may be merged together) | ||||
|   wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED}; | ||||
|   always @* Q = \$nextQ ; | ||||
| `else | ||||
|   assign \$currQ = Q; | ||||
|   generate case (|IS_C_INVERTED) | ||||
|     1'b0: always @(posedge C) Q <= \$nextQ ; | ||||
|     1'b1: always @(negedge C) Q <= \$nextQ ; | ||||
|   endcase endgenerate | ||||
| `endif | ||||
| endmodule | ||||
| 
 | ||||
| (* abc_box_id=1008, lib_whitebox, abc9_flop *) | ||||
| module FDSE_1 ( | ||||
|   (* abc_arrival=303 *) | ||||
|   output reg Q, | ||||
|   (* clkbuf_sink *) | ||||
|   input C, | ||||
|   input CE, D, S | ||||
| ); | ||||
|   parameter [0:0] INIT = 1'b1; | ||||
|   initial Q <= INIT; | ||||
|   wire \$currQ ; | ||||
|   reg \$nextQ ; | ||||
|   always @* if (S) \$nextQ = 1'b1; else if (CE) \$nextQ = D; else \$nextQ = \$currQ ; | ||||
| `ifdef _ABC | ||||
|   // `abc9' requires that complex flops be split into a combinatorial | ||||
|   //   box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v) | ||||
|   //   In order to achieve clock-enable behaviour, the current value | ||||
|   //   of the sequential output is required which Yosys will | ||||
|   //   connect to the special `\$currQ' wire. | ||||
| 
 | ||||
|   // Special signal indicating clock domain | ||||
|   //   (used to partition the module so that `abc9' only performs | ||||
|   //    sequential synthesis (reachability analysis) correctly on | ||||
|   //    one domain at a time) | ||||
|   wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */}; | ||||
|   // Special signal indicating control domain | ||||
|   //   (which, combined with this spell type, encodes to `abc9' | ||||
|   //    which flops may be merged together) | ||||
|   wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */}; | ||||
|   always @* Q = \$nextQ ; | ||||
| `else | ||||
|   assign \$currQ = Q; | ||||
|   always @(negedge C) Q <= \$nextQ ; | ||||
| `endif | ||||
| endmodule | ||||
| 
 | ||||
| module RAM32X1D ( | ||||
|  |  | |||
|  | @ -276,9 +276,9 @@ struct SynthXilinxPass : public ScriptPass | |||
| 
 | ||||
| 		if (check_label("begin")) { | ||||
| 			if (vpr) | ||||
| 				run("read_verilog -lib -D_EXPLICIT_CARRY +/xilinx/cells_sim.v"); | ||||
| 				run("read_verilog -lib -D_ABC -D_EXPLICIT_CARRY +/xilinx/cells_sim.v"); | ||||
| 			else | ||||
| 				run("read_verilog -lib +/xilinx/cells_sim.v"); | ||||
| 				run("read_verilog -lib -D_ABC +/xilinx/cells_sim.v"); | ||||
| 
 | ||||
| 			if (help_mode) | ||||
| 				run("read_verilog -lib +/xilinx/{family}_cells_xtra.v"); | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue