3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2025-08-21 18:50:38 +00:00

Big rework; flop info now mostly in cells_sim.v

This commit is contained in:
Eddie Hung 2019-09-28 23:48:17 -07:00
parent cfa6dd61ef
commit 79b6edb639
9 changed files with 500 additions and 456 deletions

View file

@ -240,6 +240,7 @@ endmodule
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLL_L.sdf#L238-L250
(* abc_box_id=1001, lib_whitebox, abc9_flop *)
module FDRE (
(* abc_arrival=303 *)
output reg Q,
@ -257,35 +258,72 @@ module FDRE (
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_R_INVERTED = 1'b0;
initial Q <= INIT;
wire \$currQ ;
reg \$nextQ ;
always @* if (R == !IS_R_INVERTED) \$nextQ = 1'b0; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
// connect to the special `\$currQ' wire.
// Special signal indicating clock domain
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED};
always @* Q = \$nextQ ;
`else
assign \$currQ = Q;
generate case (|IS_C_INVERTED)
1'b0: always @(posedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
1'b1: always @(negedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
1'b0: always @(posedge C) Q <= \$nextQ ;
1'b1: always @(negedge C) Q <= \$nextQ ;
endcase endgenerate
`endif
endmodule
module FDSE (
(* abc_box_id=1002, lib_whitebox, abc9_flop *)
module FDRE_1 (
(* abc_arrival=303 *)
output reg Q,
(* clkbuf_sink *)
(* invertible_pin = "IS_C_INVERTED" *)
input C,
input CE,
(* invertible_pin = "IS_D_INVERTED" *)
input D,
(* invertible_pin = "IS_S_INVERTED" *)
input S
input CE, D, R
);
parameter [0:0] INIT = 1'b1;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_S_INVERTED = 1'b0;
parameter [0:0] INIT = 1'b0;
initial Q <= INIT;
generate case (|IS_C_INVERTED)
1'b0: always @(posedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
1'b1: always @(negedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
endcase endgenerate
wire \$currQ ;
reg \$nextQ ;
always @* if (R) Q <= 1'b0; else if (CE) Q <= D; else \$nextQ = \$currQ ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
// connect to the special `\$currQ' wire.
// Special signal indicating clock domain
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */};
always @* Q = \$nextQ ;
`else
assign \$currQ = Q;
always @(negedge C) Q <= \$nextQ ;
`endif
endmodule
(* abc_box_id=1003, lib_whitebox, abc9_flop *)
module FDCE (
(* abc_arrival=303 *)
output reg Q,
@ -303,14 +341,78 @@ module FDCE (
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_CLR_INVERTED = 1'b0;
initial Q <= INIT;
wire \$currQ ;
reg \$nextQ ;
always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
// connect to the special `\$currQ' wire.
// Since this is an async flop, async behaviour is also dealt with
// using the $_ABC_ASYNC box by abc_map.v
// Special signal indicating clock domain
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED};
always @* Q = \$nextQ ;
`else
assign \$currQ = Q;
generate case ({|IS_C_INVERTED, |IS_CLR_INVERTED})
2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ;
2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ;
2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ;
2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ;
endcase endgenerate
`endif
endmodule
(* abc_box_id=1004, lib_whitebox, abc9_flop *)
module FDCE_1 (
(* abc_arrival=303 *)
output reg Q,
(* clkbuf_sink *)
input C,
input CE, D, CLR
);
parameter [0:0] INIT = 1'b0;
initial Q <= INIT;
wire \$currQ ;
reg \$nextQ ;
always @* if (CE) Q <= D; else \$nextQ = \$currQ ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
// connect to the special `\$currQ' wire.
// Since this is an async flop, async behaviour is also dealt with
// using the $_ABC_ASYNC box by abc_map.v
// Special signal indicating clock domain
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */};
always @* Q = \$nextQ ;
`else
assign \$currQ = Q;
always @(negedge C, posedge CLR) if (CLR == !IS_CLR_INVERTED) Q <= 1'b0; else Q <= \$nextQ ;
`endif
endmodule
(* abc_box_id=1005, lib_whitebox, abc9_flop *)
module FDPE (
(* abc_arrival=303 *)
output reg Q,
@ -328,50 +430,40 @@ module FDPE (
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_PRE_INVERTED = 1'b0;
initial Q <= INIT;
wire \$currQ ;
reg \$nextQ ;
always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
// connect to the special `\$currQ' wire.
// Since this is an async flop, async behaviour is also dealt with
// using the $_ABC_ASYNC box by abc_map.v
// Special signal indicating clock domain
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED};
always @* Q = \$nextQ ;
`else
assign \$currQ = Q;
generate case ({|IS_C_INVERTED, |IS_PRE_INVERTED})
2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ;
2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ;
2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ;
2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ;
endcase endgenerate
`endif
endmodule
module FDRE_1 (
(* abc_arrival=303 *)
output reg Q,
(* clkbuf_sink *)
input C,
input CE, D, R
);
parameter [0:0] INIT = 1'b0;
initial Q <= INIT;
always @(negedge C) if (R) Q <= 1'b0; else if(CE) Q <= D;
endmodule
module FDSE_1 (
(* abc_arrival=303 *)
output reg Q,
(* clkbuf_sink *)
input C,
input CE, D, S
);
parameter [0:0] INIT = 1'b1;
initial Q <= INIT;
always @(negedge C) if (S) Q <= 1'b1; else if(CE) Q <= D;
endmodule
module FDCE_1 (
(* abc_arrival=303 *)
output reg Q,
(* clkbuf_sink *)
input C,
input CE, D, CLR
);
parameter [0:0] INIT = 1'b0;
initial Q <= INIT;
always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else if (CE) Q <= D;
endmodule
(* abc_box_id=1006, lib_whitebox, abc9_flop *)
module FDPE_1 (
(* abc_arrival=303 *)
output reg Q,
@ -381,7 +473,115 @@ module FDPE_1 (
);
parameter [0:0] INIT = 1'b1;
initial Q <= INIT;
always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else if (CE) Q <= D;
wire \$currQ ;
reg \$nextQ ;
always @* if (CE) Q <= D; else \$nextQ = \$currQ ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
// connect to the special `\$currQ' wire.
// Since this is an async flop, async behaviour is also dealt with
// using the $_ABC_ASYNC box by abc_map.v
// Special signal indicating clock domain
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */};
always @* Q = \$nextQ ;
`else
assign \$currQ = Q;
always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else Q <= \$nextQ ;
`endif
endmodule
(* abc_box_id=1007, lib_whitebox, abc9_flop *)
module FDSE (
(* abc_arrival=303 *)
output reg Q,
(* clkbuf_sink *)
(* invertible_pin = "IS_C_INVERTED" *)
input C,
input CE,
(* invertible_pin = "IS_D_INVERTED" *)
input D,
(* invertible_pin = "IS_S_INVERTED" *)
input S
);
parameter [0:0] INIT = 1'b1;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_S_INVERTED = 1'b0;
initial Q <= INIT;
wire \$currQ ;
reg \$nextQ ;
always @* if (S == !IS_S_INVERTED) \$nextQ = 1'b1; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
// connect to the special `\$currQ' wire.
// Special signal indicating clock domain
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED};
always @* Q = \$nextQ ;
`else
assign \$currQ = Q;
generate case (|IS_C_INVERTED)
1'b0: always @(posedge C) Q <= \$nextQ ;
1'b1: always @(negedge C) Q <= \$nextQ ;
endcase endgenerate
`endif
endmodule
(* abc_box_id=1008, lib_whitebox, abc9_flop *)
module FDSE_1 (
(* abc_arrival=303 *)
output reg Q,
(* clkbuf_sink *)
input C,
input CE, D, S
);
parameter [0:0] INIT = 1'b1;
initial Q <= INIT;
wire \$currQ ;
reg \$nextQ ;
always @* if (S) \$nextQ = 1'b1; else if (CE) \$nextQ = D; else \$nextQ = \$currQ ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
// connect to the special `\$currQ' wire.
// Special signal indicating clock domain
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */};
always @* Q = \$nextQ ;
`else
assign \$currQ = Q;
always @(negedge C) Q <= \$nextQ ;
`endif
endmodule
module RAM32X1D (