3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2025-04-29 03:45:52 +00:00

initial import

This commit is contained in:
Clifford Wolf 2013-01-05 11:13:26 +01:00
commit 7764d0ba1d
481 changed files with 54634 additions and 0 deletions

View file

@ -0,0 +1,258 @@
//----------------------------------------------------------------------------
// Copyright (C) 2009 , Olivier Girard
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the authors nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
// THE POSSIBILITY OF SUCH DAMAGE
//
//----------------------------------------------------------------------------
//
// *File Name: omsp_alu.v
//
// *Module Description:
// openMSP430 ALU
//
// *Author(s):
// - Olivier Girard, olgirard@gmail.com
//
//----------------------------------------------------------------------------
// $Rev: 134 $
// $LastChangedBy: olivier.girard $
// $LastChangedDate: 2012-03-22 21:31:06 +0100 (Thu, 22 Mar 2012) $
//----------------------------------------------------------------------------
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_defines.v"
`endif
module omsp_alu (
// OUTPUTs
alu_out, // ALU output value
alu_out_add, // ALU adder output value
alu_stat, // ALU Status {V,N,Z,C}
alu_stat_wr, // ALU Status write {V,N,Z,C}
// INPUTs
dbg_halt_st, // Halt/Run status from CPU
exec_cycle, // Instruction execution cycle
inst_alu, // ALU control signals
inst_bw, // Decoded Inst: byte width
inst_jmp, // Decoded Inst: Conditional jump
inst_so, // Single-operand arithmetic
op_dst, // Destination operand
op_src, // Source operand
status // R2 Status {V,N,Z,C}
);
// OUTPUTs
//=========
output [15:0] alu_out; // ALU output value
output [15:0] alu_out_add; // ALU adder output value
output [3:0] alu_stat; // ALU Status {V,N,Z,C}
output [3:0] alu_stat_wr; // ALU Status write {V,N,Z,C}
// INPUTs
//=========
input dbg_halt_st; // Halt/Run status from CPU
input exec_cycle; // Instruction execution cycle
input [11:0] inst_alu; // ALU control signals
input inst_bw; // Decoded Inst: byte width
input [7:0] inst_jmp; // Decoded Inst: Conditional jump
input [7:0] inst_so; // Single-operand arithmetic
input [15:0] op_dst; // Destination operand
input [15:0] op_src; // Source operand
input [3:0] status; // R2 Status {V,N,Z,C}
//=============================================================================
// 1) FUNCTIONS
//=============================================================================
function [4:0] bcd_add;
input [3:0] X;
input [3:0] Y;
input C_;
reg [4:0] Z_;
begin
Z_ = {1'b0,X}+{1'b0,Y}+{4'b0,C_};
if (Z_<5'd10) bcd_add = Z_;
else bcd_add = Z_+5'd6;
end
endfunction
//=============================================================================
// 2) INSTRUCTION FETCH/DECODE CONTROL STATE MACHINE
//=============================================================================
// SINGLE-OPERAND ARITHMETIC:
//-----------------------------------------------------------------------------
// Mnemonic S-Reg, Operation Status bits
// D-Reg, V N Z C
//
// RRC dst C->MSB->...LSB->C * * * *
// RRA dst MSB->MSB->...LSB->C 0 * * *
// SWPB dst Swap bytes - - - -
// SXT dst Bit7->Bit8...Bit15 0 * * *
// PUSH src SP-2->SP, src->@SP - - - -
// CALL dst SP-2->SP, PC+2->@SP, dst->PC - - - -
// RETI TOS->SR, SP+2->SP, TOS->PC, SP+2->SP * * * *
//
//-----------------------------------------------------------------------------
// TWO-OPERAND ARITHMETIC:
//-----------------------------------------------------------------------------
// Mnemonic S-Reg, Operation Status bits
// D-Reg, V N Z C
//
// MOV src,dst src -> dst - - - -
// ADD src,dst src + dst -> dst * * * *
// ADDC src,dst src + dst + C -> dst * * * *
// SUB src,dst dst + ~src + 1 -> dst * * * *
// SUBC src,dst dst + ~src + C -> dst * * * *
// CMP src,dst dst + ~src + 1 * * * *
// DADD src,dst src + dst + C -> dst (decimaly) * * * *
// BIT src,dst src & dst 0 * * *
// BIC src,dst ~src & dst -> dst - - - -
// BIS src,dst src | dst -> dst - - - -
// XOR src,dst src ^ dst -> dst * * * *
// AND src,dst src & dst -> dst 0 * * *
//
//-----------------------------------------------------------------------------
// * the status bit is affected
// - the status bit is not affected
// 0 the status bit is cleared
// 1 the status bit is set
//-----------------------------------------------------------------------------
// Invert source for substract and compare instructions.
wire op_src_inv_cmd = exec_cycle & (inst_alu[`ALU_SRC_INV]);
wire [15:0] op_src_inv = {16{op_src_inv_cmd}} ^ op_src;
// Mask the bit 8 for the Byte instructions for correct flags generation
wire op_bit8_msk = ~exec_cycle | ~inst_bw;
wire [16:0] op_src_in = {1'b0, {op_src_inv[15:8] & {8{op_bit8_msk}}}, op_src_inv[7:0]};
wire [16:0] op_dst_in = {1'b0, {op_dst[15:8] & {8{op_bit8_msk}}}, op_dst[7:0]};
// Clear the source operand (= jump offset) for conditional jumps
wire jmp_not_taken = (inst_jmp[`JL] & ~(status[3]^status[2])) |
(inst_jmp[`JGE] & (status[3]^status[2])) |
(inst_jmp[`JN] & ~status[2]) |
(inst_jmp[`JC] & ~status[0]) |
(inst_jmp[`JNC] & status[0]) |
(inst_jmp[`JEQ] & ~status[1]) |
(inst_jmp[`JNE] & status[1]);
wire [16:0] op_src_in_jmp = op_src_in & {17{~jmp_not_taken}};
// Adder / AND / OR / XOR
wire [16:0] alu_add = op_src_in_jmp + op_dst_in;
wire [16:0] alu_and = op_src_in & op_dst_in;
wire [16:0] alu_or = op_src_in | op_dst_in;
wire [16:0] alu_xor = op_src_in ^ op_dst_in;
// Incrementer
wire alu_inc = exec_cycle & ((inst_alu[`ALU_INC_C] & status[0]) |
inst_alu[`ALU_INC]);
wire [16:0] alu_add_inc = alu_add + {16'h0000, alu_inc};
// Decimal adder (DADD)
wire [4:0] alu_dadd0 = bcd_add(op_src_in[3:0], op_dst_in[3:0], status[0]);
wire [4:0] alu_dadd1 = bcd_add(op_src_in[7:4], op_dst_in[7:4], alu_dadd0[4]);
wire [4:0] alu_dadd2 = bcd_add(op_src_in[11:8], op_dst_in[11:8], alu_dadd1[4]);
wire [4:0] alu_dadd3 = bcd_add(op_src_in[15:12], op_dst_in[15:12],alu_dadd2[4]);
wire [16:0] alu_dadd = {alu_dadd3, alu_dadd2[3:0], alu_dadd1[3:0], alu_dadd0[3:0]};
// Shifter for rotate instructions (RRC & RRA)
wire alu_shift_msb = inst_so[`RRC] ? status[0] :
inst_bw ? op_src[7] : op_src[15];
wire alu_shift_7 = inst_bw ? alu_shift_msb : op_src[8];
wire [16:0] alu_shift = {1'b0, alu_shift_msb, op_src[15:9], alu_shift_7, op_src[7:1]};
// Swap bytes / Extend Sign
wire [16:0] alu_swpb = {1'b0, op_src[7:0],op_src[15:8]};
wire [16:0] alu_sxt = {1'b0, {8{op_src[7]}},op_src[7:0]};
// Combine short paths toghether to simplify final ALU mux
wire alu_short_thro = ~(inst_alu[`ALU_AND] |
inst_alu[`ALU_OR] |
inst_alu[`ALU_XOR] |
inst_alu[`ALU_SHIFT] |
inst_so[`SWPB] |
inst_so[`SXT]);
wire [16:0] alu_short = ({17{inst_alu[`ALU_AND]}} & alu_and) |
({17{inst_alu[`ALU_OR]}} & alu_or) |
({17{inst_alu[`ALU_XOR]}} & alu_xor) |
({17{inst_alu[`ALU_SHIFT]}} & alu_shift) |
({17{inst_so[`SWPB]}} & alu_swpb) |
({17{inst_so[`SXT]}} & alu_sxt) |
({17{alu_short_thro}} & op_src_in);
// ALU output mux
wire [16:0] alu_out_nxt = (inst_so[`IRQ] | dbg_halt_st |
inst_alu[`ALU_ADD]) ? alu_add_inc :
inst_alu[`ALU_DADD] ? alu_dadd : alu_short;
assign alu_out = alu_out_nxt[15:0];
assign alu_out_add = alu_add[15:0];
//-----------------------------------------------------------------------------
// STATUS FLAG GENERATION
//-----------------------------------------------------------------------------
wire V_xor = inst_bw ? (op_src_in[7] & op_dst_in[7]) :
(op_src_in[15] & op_dst_in[15]);
wire V = inst_bw ? ((~op_src_in[7] & ~op_dst_in[7] & alu_out[7]) |
( op_src_in[7] & op_dst_in[7] & ~alu_out[7])) :
((~op_src_in[15] & ~op_dst_in[15] & alu_out[15]) |
( op_src_in[15] & op_dst_in[15] & ~alu_out[15]));
wire N = inst_bw ? alu_out[7] : alu_out[15];
wire Z = inst_bw ? (alu_out[7:0]==0) : (alu_out==0);
wire C = inst_bw ? alu_out[8] : alu_out_nxt[16];
assign alu_stat = inst_alu[`ALU_SHIFT] ? {1'b0, N,Z,op_src_in[0]} :
inst_alu[`ALU_STAT_7] ? {1'b0, N,Z,~Z} :
inst_alu[`ALU_XOR] ? {V_xor,N,Z,~Z} : {V,N,Z,C};
assign alu_stat_wr = (inst_alu[`ALU_STAT_F] & exec_cycle) ? 4'b1111 : 4'b0000;
endmodule // omsp_alu
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_undefines.v"
`endif

View file

@ -0,0 +1,89 @@
//----------------------------------------------------------------------------
// Copyright (C) 2009 , Olivier Girard
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the authors nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
// THE POSSIBILITY OF SUCH DAMAGE
//
//----------------------------------------------------------------------------
//
// *File Name: omsp_and_gate.v
//
// *Module Description:
// Generic AND gate cell for the openMSP430
//
// *Author(s):
// - Olivier Girard, olgirard@gmail.com
//
//----------------------------------------------------------------------------
// $Rev: 103 $
// $LastChangedBy: olivier.girard $
// $LastChangedDate: 2011-03-05 15:44:48 +0100 (Sat, 05 Mar 2011) $
//----------------------------------------------------------------------------
module omsp_and_gate (
// OUTPUTs
y, // AND gate output
// INPUTs
a, // AND gate input A
b // AND gate input B
);
// OUTPUTs
//=========
output y; // AND gate output
// INPUTs
//=========
input a; // AND gate input A
input b; // AND gate input B
//=============================================================================
// 1) SOME COMMENTS ON THIS MODULE
//=============================================================================
//
// In its ASIC version, some combinatorial pathes of the openMSP430 are
// sensitive to glitches, in particular the ones generating the wakeup
// signals.
// To prevent synthesis from optmizing combinatorial clouds into glitchy
// logic, this AND gate module has been instanciated in the critical places.
//
// Make sure that synthesis doesn't ungroup this module. As an alternative,
// a standard cell from the library could also be directly instanciated here
// (don't forget the "dont_touch" attribute)
//
//
//=============================================================================
// 2) AND GATE
//=============================================================================
assign y = a & b;
endmodule // omsp_and_gate

View file

@ -0,0 +1,86 @@
//----------------------------------------------------------------------------
// Copyright (C) 2009 , Olivier Girard
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the authors nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
// THE POSSIBILITY OF SUCH DAMAGE
//
//----------------------------------------------------------------------------
//
// *File Name: omsp_clock_gate.v
//
// *Module Description:
// Generic clock gate cell for the openMSP430
//
// *Author(s):
// - Olivier Girard, olgirard@gmail.com
//
//----------------------------------------------------------------------------
// $Rev: 103 $
// $LastChangedBy: olivier.girard $
// $LastChangedDate: 2011-03-05 15:44:48 +0100 (Sat, 05 Mar 2011) $
//----------------------------------------------------------------------------
module omsp_clock_gate (
// OUTPUTs
gclk, // Gated clock
// INPUTs
clk, // Clock
enable, // Clock enable
scan_enable // Scan enable (active during scan shifting)
);
// OUTPUTs
//=========
output gclk; // Gated clock
// INPUTs
//=========
input clk; // Clock
input enable; // Clock enable
input scan_enable; // Scan enable (active during scan shifting)
//=============================================================================
// CLOCK GATE: LATCH + AND
//=============================================================================
// Enable clock gate during scan shift
// (the gate itself is checked with the scan capture cycle)
wire enable_in = (enable | scan_enable);
// LATCH the enable signal
reg enable_latch;
always @(clk or enable_in)
if (~clk)
enable_latch <= enable_in;
// AND gate
assign gclk = (clk & enable_latch);
endmodule // omsp_clock_gate

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,192 @@
//----------------------------------------------------------------------------
// Copyright (C) 2009 , Olivier Girard
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the authors nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
// THE POSSIBILITY OF SUCH DAMAGE
//
//----------------------------------------------------------------------------
//
// *File Name: omsp_clock_mux.v
//
// *Module Description:
// Standard clock mux for the openMSP430
//
// *Author(s):
// - Olivier Girard, olgirard@gmail.com
//
//----------------------------------------------------------------------------
// $Rev: 103 $
// $LastChangedBy: olivier.girard $
// $LastChangedDate: 2011-03-05 15:44:48 +0100 (Sat, 05 Mar 2011) $
//----------------------------------------------------------------------------
module omsp_clock_mux (
// OUTPUTs
clk_out, // Clock output
// INPUTs
clk_in0, // Clock input 0
clk_in1, // Clock input 1
reset, // Reset
scan_mode, // Scan mode (clk_in0 is selected in scan mode)
select // Clock selection
);
// OUTPUTs
//=========
output clk_out; // Clock output
// INPUTs
//=========
input clk_in0; // Clock input 0
input clk_in1; // Clock input 1
input reset; // Reset
input scan_mode; // Scan mode (clk_in0 is selected in scan mode)
input select; // Clock selection
//===========================================================================================================================//
// 1) CLOCK MUX //
//===========================================================================================================================//
// //
// The following (glitch free) clock mux is implemented as following: //
// //
// //
// //
// //
// +-----. +--------+ +--------+ //
// select >>----+-------------O| \ | | | | +-----. //
// | | |---| D Q |---| D Q |--+-------| \ //
// | +-------O| / | | | | | | |O-+ //
// | | +-----' | | | | | +--O| / | //
// | | | /\ | | /\ | | | +-----' | //
// | | +--+--+--+ +--+--+--+ | | | //
// | | O | | | | //
// | | | | | | | +-----. //
// clk_in0 >>----------------------------------+------------+-----------+ +--| \ //
// | | | | |----<< clk_out //
// | | +---------------------------------------+ +--| / //
// | | | | +-----' //
// | +---------------------------------------------+ | //
// | | | | //
// | | +-----. +--------+ +--------+ | | //
// | +-O| \ | | | | | +-----. | //
// | | |---| D Q |---| D Q |--+-------| \ | //
// +--------------| / | | | | | |O-+ //
// +-----' | | | | +--O| / //
// | /\ | | /\ | | +-----' //
// +--+--+--+ +--+--+--+ | //
// O | | //
// | | | //
// clk_in1 >>----------------------------------+------------+-----------+ //
// //
// //
//===========================================================================================================================//
//-----------------------------------------------------------------------------
// Wire declarations
//-----------------------------------------------------------------------------
wire in0_select;
reg in0_select_s;
reg in0_select_ss;
wire in0_enable;
wire in1_select;
reg in1_select_s;
reg in1_select_ss;
wire in1_enable;
wire clk_in0_inv;
wire clk_in1_inv;
wire gated_clk_in0;
wire gated_clk_in1;
//-----------------------------------------------------------------------------
// CLK_IN0 Selection
//-----------------------------------------------------------------------------
assign in0_select = ~select & ~in1_select_ss;
always @ (posedge clk_in0_inv or posedge reset)
if (reset) in0_select_s <= 1'b1;
else in0_select_s <= in0_select;
always @ (posedge clk_in0 or posedge reset)
if (reset) in0_select_ss <= 1'b1;
else in0_select_ss <= in0_select_s;
assign in0_enable = in0_select_ss | scan_mode;
//-----------------------------------------------------------------------------
// CLK_IN1 Selection
//-----------------------------------------------------------------------------
assign in1_select = select & ~in0_select_ss;
always @ (posedge clk_in1_inv or posedge reset)
if (reset) in1_select_s <= 1'b0;
else in1_select_s <= in1_select;
always @ (posedge clk_in1 or posedge reset)
if (reset) in1_select_ss <= 1'b0;
else in1_select_ss <= in1_select_s;
assign in1_enable = in1_select_ss & ~scan_mode;
//-----------------------------------------------------------------------------
// Clock MUX
//-----------------------------------------------------------------------------
//
// IMPORTANT NOTE:
// Because the clock network is a critical part of the design,
// the following combinatorial logic should be replaced with
// direct instanciation of standard cells from target library.
// Don't forget the "dont_touch" attribute to make sure
// synthesis won't mess it up.
//
// Replace with standard cell INVERTER
assign clk_in0_inv = ~clk_in0;
assign clk_in1_inv = ~clk_in1;
// Replace with standard cell NAND2
assign gated_clk_in0 = ~(clk_in0_inv & in0_enable);
assign gated_clk_in1 = ~(clk_in1_inv & in1_enable);
// Replace with standard cell AND2
assign clk_out = (gated_clk_in0 & gated_clk_in1);
endmodule // omsp_clock_gate

View file

@ -0,0 +1,827 @@
//----------------------------------------------------------------------------
// Copyright (C) 2009 , Olivier Girard
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the authors nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
// THE POSSIBILITY OF SUCH DAMAGE
//
//----------------------------------------------------------------------------
//
// *File Name: omsp_dbg.v
//
// *Module Description:
// Debug interface
//
// *Author(s):
// - Olivier Girard, olgirard@gmail.com
//
//----------------------------------------------------------------------------
// $Rev: 149 $
// $LastChangedBy: olivier.girard $
// $LastChangedDate: 2012-07-19 22:21:12 +0200 (Thu, 19 Jul 2012) $
//----------------------------------------------------------------------------
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_defines.v"
`endif
module omsp_dbg (
// OUTPUTs
dbg_freeze, // Freeze peripherals
dbg_halt_cmd, // Halt CPU command
dbg_mem_addr, // Debug address for rd/wr access
dbg_mem_dout, // Debug unit data output
dbg_mem_en, // Debug unit memory enable
dbg_mem_wr, // Debug unit memory write
dbg_reg_wr, // Debug unit CPU register write
dbg_cpu_reset, // Reset CPU from debug interface
dbg_uart_txd, // Debug interface: UART TXD
// INPUTs
cpu_en_s, // Enable CPU code execution (synchronous)
cpu_id, // CPU ID
dbg_clk, // Debug unit clock
dbg_en_s, // Debug interface enable (synchronous)
dbg_halt_st, // Halt/Run status from CPU
dbg_mem_din, // Debug unit Memory data input
dbg_reg_din, // Debug unit CPU register data input
dbg_rst, // Debug unit reset
dbg_uart_rxd, // Debug interface: UART RXD (asynchronous)
decode_noirq, // Frontend decode instruction
eu_mab, // Execution-Unit Memory address bus
eu_mb_en, // Execution-Unit Memory bus enable
eu_mb_wr, // Execution-Unit Memory bus write transfer
eu_mdb_in, // Memory data bus input
eu_mdb_out, // Memory data bus output
exec_done, // Execution completed
fe_mb_en, // Frontend Memory bus enable
fe_mdb_in, // Frontend Memory data bus input
pc, // Program counter
puc_pnd_set // PUC pending set for the serial debug interface
);
// OUTPUTs
//=========
output dbg_freeze; // Freeze peripherals
output dbg_halt_cmd; // Halt CPU command
output [15:0] dbg_mem_addr; // Debug address for rd/wr access
output [15:0] dbg_mem_dout; // Debug unit data output
output dbg_mem_en; // Debug unit memory enable
output [1:0] dbg_mem_wr; // Debug unit memory write
output dbg_reg_wr; // Debug unit CPU register write
output dbg_cpu_reset; // Reset CPU from debug interface
output dbg_uart_txd; // Debug interface: UART TXD
// INPUTs
//=========
input cpu_en_s; // Enable CPU code execution (synchronous)
input [31:0] cpu_id; // CPU ID
input dbg_clk; // Debug unit clock
input dbg_en_s; // Debug interface enable (synchronous)
input dbg_halt_st; // Halt/Run status from CPU
input [15:0] dbg_mem_din; // Debug unit Memory data input
input [15:0] dbg_reg_din; // Debug unit CPU register data input
input dbg_rst; // Debug unit reset
input dbg_uart_rxd; // Debug interface: UART RXD (asynchronous)
input decode_noirq; // Frontend decode instruction
input [15:0] eu_mab; // Execution-Unit Memory address bus
input eu_mb_en; // Execution-Unit Memory bus enable
input [1:0] eu_mb_wr; // Execution-Unit Memory bus write transfer
input [15:0] eu_mdb_in; // Memory data bus input
input [15:0] eu_mdb_out; // Memory data bus output
input exec_done; // Execution completed
input fe_mb_en; // Frontend Memory bus enable
input [15:0] fe_mdb_in; // Frontend Memory data bus input
input [15:0] pc; // Program counter
input puc_pnd_set; // PUC pending set for the serial debug interface
//=============================================================================
// 1) WIRE & PARAMETER DECLARATION
//=============================================================================
// Diverse wires and registers
wire [5:0] dbg_addr;
wire [15:0] dbg_din;
wire dbg_wr;
reg mem_burst;
wire dbg_reg_rd;
wire dbg_mem_rd;
reg dbg_mem_rd_dly;
wire dbg_swbrk;
wire dbg_rd;
reg dbg_rd_rdy;
wire mem_burst_rd;
wire mem_burst_wr;
wire brk0_halt;
wire brk0_pnd;
wire [15:0] brk0_dout;
wire brk1_halt;
wire brk1_pnd;
wire [15:0] brk1_dout;
wire brk2_halt;
wire brk2_pnd;
wire [15:0] brk2_dout;
wire brk3_halt;
wire brk3_pnd;
wire [15:0] brk3_dout;
// Number of registers
parameter NR_REG = 24;
// Register addresses
parameter CPU_ID_LO = 6'h00;
parameter CPU_ID_HI = 6'h01;
parameter CPU_CTL = 6'h02;
parameter CPU_STAT = 6'h03;
parameter MEM_CTL = 6'h04;
parameter MEM_ADDR = 6'h05;
parameter MEM_DATA = 6'h06;
parameter MEM_CNT = 6'h07;
`ifdef DBG_HWBRK_0
parameter BRK0_CTL = 6'h08;
parameter BRK0_STAT = 6'h09;
parameter BRK0_ADDR0 = 6'h0A;
parameter BRK0_ADDR1 = 6'h0B;
`endif
`ifdef DBG_HWBRK_1
parameter BRK1_CTL = 6'h0C;
parameter BRK1_STAT = 6'h0D;
parameter BRK1_ADDR0 = 6'h0E;
parameter BRK1_ADDR1 = 6'h0F;
`endif
`ifdef DBG_HWBRK_2
parameter BRK2_CTL = 6'h10;
parameter BRK2_STAT = 6'h11;
parameter BRK2_ADDR0 = 6'h12;
parameter BRK2_ADDR1 = 6'h13;
`endif
`ifdef DBG_HWBRK_3
parameter BRK3_CTL = 6'h14;
parameter BRK3_STAT = 6'h15;
parameter BRK3_ADDR0 = 6'h16;
parameter BRK3_ADDR1 = 6'h17;
`endif
// Register one-hot decoder
parameter BASE_D = {{NR_REG-1{1'b0}}, 1'b1};
parameter CPU_ID_LO_D = (BASE_D << CPU_ID_LO);
parameter CPU_ID_HI_D = (BASE_D << CPU_ID_HI);
parameter CPU_CTL_D = (BASE_D << CPU_CTL);
parameter CPU_STAT_D = (BASE_D << CPU_STAT);
parameter MEM_CTL_D = (BASE_D << MEM_CTL);
parameter MEM_ADDR_D = (BASE_D << MEM_ADDR);
parameter MEM_DATA_D = (BASE_D << MEM_DATA);
parameter MEM_CNT_D = (BASE_D << MEM_CNT);
`ifdef DBG_HWBRK_0
parameter BRK0_CTL_D = (BASE_D << BRK0_CTL);
parameter BRK0_STAT_D = (BASE_D << BRK0_STAT);
parameter BRK0_ADDR0_D = (BASE_D << BRK0_ADDR0);
parameter BRK0_ADDR1_D = (BASE_D << BRK0_ADDR1);
`endif
`ifdef DBG_HWBRK_1
parameter BRK1_CTL_D = (BASE_D << BRK1_CTL);
parameter BRK1_STAT_D = (BASE_D << BRK1_STAT);
parameter BRK1_ADDR0_D = (BASE_D << BRK1_ADDR0);
parameter BRK1_ADDR1_D = (BASE_D << BRK1_ADDR1);
`endif
`ifdef DBG_HWBRK_2
parameter BRK2_CTL_D = (BASE_D << BRK2_CTL);
parameter BRK2_STAT_D = (BASE_D << BRK2_STAT);
parameter BRK2_ADDR0_D = (BASE_D << BRK2_ADDR0);
parameter BRK2_ADDR1_D = (BASE_D << BRK2_ADDR1);
`endif
`ifdef DBG_HWBRK_3
parameter BRK3_CTL_D = (BASE_D << BRK3_CTL);
parameter BRK3_STAT_D = (BASE_D << BRK3_STAT);
parameter BRK3_ADDR0_D = (BASE_D << BRK3_ADDR0);
parameter BRK3_ADDR1_D = (BASE_D << BRK3_ADDR1);
`endif
//============================================================================
// 2) REGISTER DECODER
//============================================================================
// Select Data register during a burst
wire [5:0] dbg_addr_in = mem_burst ? MEM_DATA : dbg_addr;
// Register address decode
reg [NR_REG-1:0] reg_dec;
always @(dbg_addr_in)
case (dbg_addr_in)
CPU_ID_LO : reg_dec = CPU_ID_LO_D;
CPU_ID_HI : reg_dec = CPU_ID_HI_D;
CPU_CTL : reg_dec = CPU_CTL_D;
CPU_STAT : reg_dec = CPU_STAT_D;
MEM_CTL : reg_dec = MEM_CTL_D;
MEM_ADDR : reg_dec = MEM_ADDR_D;
MEM_DATA : reg_dec = MEM_DATA_D;
MEM_CNT : reg_dec = MEM_CNT_D;
`ifdef DBG_HWBRK_0
BRK0_CTL : reg_dec = BRK0_CTL_D;
BRK0_STAT : reg_dec = BRK0_STAT_D;
BRK0_ADDR0: reg_dec = BRK0_ADDR0_D;
BRK0_ADDR1: reg_dec = BRK0_ADDR1_D;
`endif
`ifdef DBG_HWBRK_1
BRK1_CTL : reg_dec = BRK1_CTL_D;
BRK1_STAT : reg_dec = BRK1_STAT_D;
BRK1_ADDR0: reg_dec = BRK1_ADDR0_D;
BRK1_ADDR1: reg_dec = BRK1_ADDR1_D;
`endif
`ifdef DBG_HWBRK_2
BRK2_CTL : reg_dec = BRK2_CTL_D;
BRK2_STAT : reg_dec = BRK2_STAT_D;
BRK2_ADDR0: reg_dec = BRK2_ADDR0_D;
BRK2_ADDR1: reg_dec = BRK2_ADDR1_D;
`endif
`ifdef DBG_HWBRK_3
BRK3_CTL : reg_dec = BRK3_CTL_D;
BRK3_STAT : reg_dec = BRK3_STAT_D;
BRK3_ADDR0: reg_dec = BRK3_ADDR0_D;
BRK3_ADDR1: reg_dec = BRK3_ADDR1_D;
`endif
// pragma coverage off
default: reg_dec = {NR_REG{1'b0}};
// pragma coverage on
endcase
// Read/Write probes
wire reg_write = dbg_wr;
wire reg_read = 1'b1;
// Read/Write vectors
wire [NR_REG-1:0] reg_wr = reg_dec & {NR_REG{reg_write}};
wire [NR_REG-1:0] reg_rd = reg_dec & {NR_REG{reg_read}};
//=============================================================================
// 3) REGISTER: CORE INTERFACE
//=============================================================================
// CPU_ID Register
//-----------------
// -------------------------------------------------------------------
// CPU_ID_LO: | 15 14 13 12 11 10 9 | 8 7 6 5 4 | 3 | 2 1 0 |
// |----------------------------+-----------------+------+-------------|
// | PER_SPACE | USER_VERSION | ASIC | CPU_VERSION |
// --------------------------------------------------------------------
// CPU_ID_HI: | 15 14 13 12 11 10 | 9 8 7 6 5 4 3 2 1 | 0 |
// |----------------------------+-------------------------------+------|
// | PMEM_SIZE | DMEM_SIZE | MPY |
// -------------------------------------------------------------------
// This register is assigned in the SFR module
// CPU_CTL Register
//-----------------------------------------------------------------------------
// 7 6 5 4 3 2 1 0
// Reserved CPU_RST RST_BRK_EN FRZ_BRK_EN SW_BRK_EN ISTEP RUN HALT
//-----------------------------------------------------------------------------
reg [6:3] cpu_ctl;
wire cpu_ctl_wr = reg_wr[CPU_CTL];
always @ (posedge dbg_clk or posedge dbg_rst)
`ifdef DBG_RST_BRK_EN
if (dbg_rst) cpu_ctl <= 4'h6;
`else
if (dbg_rst) cpu_ctl <= 4'h2;
`endif
else if (cpu_ctl_wr) cpu_ctl <= dbg_din[6:3];
wire [7:0] cpu_ctl_full = {1'b0, cpu_ctl, 3'b000};
wire halt_cpu = cpu_ctl_wr & dbg_din[`HALT] & ~dbg_halt_st;
wire run_cpu = cpu_ctl_wr & dbg_din[`RUN] & dbg_halt_st;
wire istep = cpu_ctl_wr & dbg_din[`ISTEP] & dbg_halt_st;
// CPU_STAT Register
//------------------------------------------------------------------------------------
// 7 6 5 4 3 2 1 0
// HWBRK3_PND HWBRK2_PND HWBRK1_PND HWBRK0_PND SWBRK_PND PUC_PND Res. HALT_RUN
//------------------------------------------------------------------------------------
reg [3:2] cpu_stat;
wire cpu_stat_wr = reg_wr[CPU_STAT];
wire [3:2] cpu_stat_set = {dbg_swbrk, puc_pnd_set};
wire [3:2] cpu_stat_clr = ~dbg_din[3:2];
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) cpu_stat <= 2'b00;
else if (cpu_stat_wr) cpu_stat <= ((cpu_stat & cpu_stat_clr) | cpu_stat_set);
else cpu_stat <= (cpu_stat | cpu_stat_set);
wire [7:0] cpu_stat_full = {brk3_pnd, brk2_pnd, brk1_pnd, brk0_pnd,
cpu_stat, 1'b0, dbg_halt_st};
//=============================================================================
// 4) REGISTER: MEMORY INTERFACE
//=============================================================================
// MEM_CTL Register
//-----------------------------------------------------------------------------
// 7 6 5 4 3 2 1 0
// Reserved B/W MEM/REG RD/WR START
//
// START : - 0 : Do nothing.
// - 1 : Initiate memory transfer.
//
// RD/WR : - 0 : Read access.
// - 1 : Write access.
//
// MEM/REG: - 0 : Memory access.
// - 1 : CPU Register access.
//
// B/W : - 0 : 16 bit access.
// - 1 : 8 bit access (not valid for CPU Registers).
//
//-----------------------------------------------------------------------------
reg [3:1] mem_ctl;
wire mem_ctl_wr = reg_wr[MEM_CTL];
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) mem_ctl <= 3'h0;
else if (mem_ctl_wr) mem_ctl <= dbg_din[3:1];
wire [7:0] mem_ctl_full = {4'b0000, mem_ctl, 1'b0};
reg mem_start;
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) mem_start <= 1'b0;
else mem_start <= mem_ctl_wr & dbg_din[0];
wire mem_bw = mem_ctl[3];
// MEM_DATA Register
//------------------
reg [15:0] mem_data;
reg [15:0] mem_addr;
wire mem_access;
wire mem_data_wr = reg_wr[MEM_DATA];
wire [15:0] dbg_mem_din_bw = ~mem_bw ? dbg_mem_din :
mem_addr[0] ? {8'h00, dbg_mem_din[15:8]} :
{8'h00, dbg_mem_din[7:0]};
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) mem_data <= 16'h0000;
else if (mem_data_wr) mem_data <= dbg_din;
else if (dbg_reg_rd) mem_data <= dbg_reg_din;
else if (dbg_mem_rd_dly) mem_data <= dbg_mem_din_bw;
// MEM_ADDR Register
//------------------
reg [15:0] mem_cnt;
wire mem_addr_wr = reg_wr[MEM_ADDR];
wire dbg_mem_acc = (|dbg_mem_wr | (dbg_rd_rdy & ~mem_ctl[2]));
wire dbg_reg_acc = ( dbg_reg_wr | (dbg_rd_rdy & mem_ctl[2]));
wire [15:0] mem_addr_inc = (mem_cnt==16'h0000) ? 16'h0000 :
(dbg_mem_acc & ~mem_bw) ? 16'h0002 :
(dbg_mem_acc | dbg_reg_acc) ? 16'h0001 : 16'h0000;
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) mem_addr <= 16'h0000;
else if (mem_addr_wr) mem_addr <= dbg_din;
else mem_addr <= mem_addr + mem_addr_inc;
// MEM_CNT Register
//------------------
wire mem_cnt_wr = reg_wr[MEM_CNT];
wire [15:0] mem_cnt_dec = (mem_cnt==16'h0000) ? 16'h0000 :
(mem_burst & (dbg_mem_acc | dbg_reg_acc)) ? 16'hffff : 16'h0000;
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) mem_cnt <= 16'h0000;
else if (mem_cnt_wr) mem_cnt <= dbg_din;
else mem_cnt <= mem_cnt + mem_cnt_dec;
//=============================================================================
// 5) BREAKPOINTS / WATCHPOINTS
//=============================================================================
`ifdef DBG_HWBRK_0
// Hardware Breakpoint/Watchpoint Register read select
wire [3:0] brk0_reg_rd = {reg_rd[BRK0_ADDR1],
reg_rd[BRK0_ADDR0],
reg_rd[BRK0_STAT],
reg_rd[BRK0_CTL]};
// Hardware Breakpoint/Watchpoint Register write select
wire [3:0] brk0_reg_wr = {reg_wr[BRK0_ADDR1],
reg_wr[BRK0_ADDR0],
reg_wr[BRK0_STAT],
reg_wr[BRK0_CTL]};
omsp_dbg_hwbrk dbg_hwbr_0 (
// OUTPUTs
.brk_halt (brk0_halt), // Hardware breakpoint command
.brk_pnd (brk0_pnd), // Hardware break/watch-point pending
.brk_dout (brk0_dout), // Hardware break/watch-point register data input
// INPUTs
.brk_reg_rd (brk0_reg_rd), // Hardware break/watch-point register read select
.brk_reg_wr (brk0_reg_wr), // Hardware break/watch-point register write select
.dbg_clk (dbg_clk), // Debug unit clock
.dbg_din (dbg_din), // Debug register data input
.dbg_rst (dbg_rst), // Debug unit reset
.eu_mab (eu_mab), // Execution-Unit Memory address bus
.eu_mb_en (eu_mb_en), // Execution-Unit Memory bus enable
.eu_mb_wr (eu_mb_wr), // Execution-Unit Memory bus write transfer
.eu_mdb_in (eu_mdb_in), // Memory data bus input
.eu_mdb_out (eu_mdb_out), // Memory data bus output
.exec_done (exec_done), // Execution completed
.fe_mb_en (fe_mb_en), // Frontend Memory bus enable
.pc (pc) // Program counter
);
`else
assign brk0_halt = 1'b0;
assign brk0_pnd = 1'b0;
assign brk0_dout = 16'h0000;
`endif
`ifdef DBG_HWBRK_1
// Hardware Breakpoint/Watchpoint Register read select
wire [3:0] brk1_reg_rd = {reg_rd[BRK1_ADDR1],
reg_rd[BRK1_ADDR0],
reg_rd[BRK1_STAT],
reg_rd[BRK1_CTL]};
// Hardware Breakpoint/Watchpoint Register write select
wire [3:0] brk1_reg_wr = {reg_wr[BRK1_ADDR1],
reg_wr[BRK1_ADDR0],
reg_wr[BRK1_STAT],
reg_wr[BRK1_CTL]};
omsp_dbg_hwbrk dbg_hwbr_1 (
// OUTPUTs
.brk_halt (brk1_halt), // Hardware breakpoint command
.brk_pnd (brk1_pnd), // Hardware break/watch-point pending
.brk_dout (brk1_dout), // Hardware break/watch-point register data input
// INPUTs
.brk_reg_rd (brk1_reg_rd), // Hardware break/watch-point register read select
.brk_reg_wr (brk1_reg_wr), // Hardware break/watch-point register write select
.dbg_clk (dbg_clk), // Debug unit clock
.dbg_din (dbg_din), // Debug register data input
.dbg_rst (dbg_rst), // Debug unit reset
.eu_mab (eu_mab), // Execution-Unit Memory address bus
.eu_mb_en (eu_mb_en), // Execution-Unit Memory bus enable
.eu_mb_wr (eu_mb_wr), // Execution-Unit Memory bus write transfer
.eu_mdb_in (eu_mdb_in), // Memory data bus input
.eu_mdb_out (eu_mdb_out), // Memory data bus output
.exec_done (exec_done), // Execution completed
.fe_mb_en (fe_mb_en), // Frontend Memory bus enable
.pc (pc) // Program counter
);
`else
assign brk1_halt = 1'b0;
assign brk1_pnd = 1'b0;
assign brk1_dout = 16'h0000;
`endif
`ifdef DBG_HWBRK_2
// Hardware Breakpoint/Watchpoint Register read select
wire [3:0] brk2_reg_rd = {reg_rd[BRK2_ADDR1],
reg_rd[BRK2_ADDR0],
reg_rd[BRK2_STAT],
reg_rd[BRK2_CTL]};
// Hardware Breakpoint/Watchpoint Register write select
wire [3:0] brk2_reg_wr = {reg_wr[BRK2_ADDR1],
reg_wr[BRK2_ADDR0],
reg_wr[BRK2_STAT],
reg_wr[BRK2_CTL]};
omsp_dbg_hwbrk dbg_hwbr_2 (
// OUTPUTs
.brk_halt (brk2_halt), // Hardware breakpoint command
.brk_pnd (brk2_pnd), // Hardware break/watch-point pending
.brk_dout (brk2_dout), // Hardware break/watch-point register data input
// INPUTs
.brk_reg_rd (brk2_reg_rd), // Hardware break/watch-point register read select
.brk_reg_wr (brk2_reg_wr), // Hardware break/watch-point register write select
.dbg_clk (dbg_clk), // Debug unit clock
.dbg_din (dbg_din), // Debug register data input
.dbg_rst (dbg_rst), // Debug unit reset
.eu_mab (eu_mab), // Execution-Unit Memory address bus
.eu_mb_en (eu_mb_en), // Execution-Unit Memory bus enable
.eu_mb_wr (eu_mb_wr), // Execution-Unit Memory bus write transfer
.eu_mdb_in (eu_mdb_in), // Memory data bus input
.eu_mdb_out (eu_mdb_out), // Memory data bus output
.exec_done (exec_done), // Execution completed
.fe_mb_en (fe_mb_en), // Frontend Memory bus enable
.pc (pc) // Program counter
);
`else
assign brk2_halt = 1'b0;
assign brk2_pnd = 1'b0;
assign brk2_dout = 16'h0000;
`endif
`ifdef DBG_HWBRK_3
// Hardware Breakpoint/Watchpoint Register read select
wire [3:0] brk3_reg_rd = {reg_rd[BRK3_ADDR1],
reg_rd[BRK3_ADDR0],
reg_rd[BRK3_STAT],
reg_rd[BRK3_CTL]};
// Hardware Breakpoint/Watchpoint Register write select
wire [3:0] brk3_reg_wr = {reg_wr[BRK3_ADDR1],
reg_wr[BRK3_ADDR0],
reg_wr[BRK3_STAT],
reg_wr[BRK3_CTL]};
omsp_dbg_hwbrk dbg_hwbr_3 (
// OUTPUTs
.brk_halt (brk3_halt), // Hardware breakpoint command
.brk_pnd (brk3_pnd), // Hardware break/watch-point pending
.brk_dout (brk3_dout), // Hardware break/watch-point register data input
// INPUTs
.brk_reg_rd (brk3_reg_rd), // Hardware break/watch-point register read select
.brk_reg_wr (brk3_reg_wr), // Hardware break/watch-point register write select
.dbg_clk (dbg_clk), // Debug unit clock
.dbg_din (dbg_din), // Debug register data input
.dbg_rst (dbg_rst), // Debug unit reset
.eu_mab (eu_mab), // Execution-Unit Memory address bus
.eu_mb_en (eu_mb_en), // Execution-Unit Memory bus enable
.eu_mb_wr (eu_mb_wr), // Execution-Unit Memory bus write transfer
.eu_mdb_in (eu_mdb_in), // Memory data bus input
.eu_mdb_out (eu_mdb_out), // Memory data bus output
.exec_done (exec_done), // Execution completed
.fe_mb_en (fe_mb_en), // Frontend Memory bus enable
.pc (pc) // Program counter
);
`else
assign brk3_halt = 1'b0;
assign brk3_pnd = 1'b0;
assign brk3_dout = 16'h0000;
`endif
//============================================================================
// 6) DATA OUTPUT GENERATION
//============================================================================
wire [15:0] cpu_id_lo_rd = cpu_id[15:0] & {16{reg_rd[CPU_ID_LO]}};
wire [15:0] cpu_id_hi_rd = cpu_id[31:16] & {16{reg_rd[CPU_ID_HI]}};
wire [15:0] cpu_ctl_rd = {8'h00, cpu_ctl_full} & {16{reg_rd[CPU_CTL]}};
wire [15:0] cpu_stat_rd = {8'h00, cpu_stat_full} & {16{reg_rd[CPU_STAT]}};
wire [15:0] mem_ctl_rd = {8'h00, mem_ctl_full} & {16{reg_rd[MEM_CTL]}};
wire [15:0] mem_data_rd = mem_data & {16{reg_rd[MEM_DATA]}};
wire [15:0] mem_addr_rd = mem_addr & {16{reg_rd[MEM_ADDR]}};
wire [15:0] mem_cnt_rd = mem_cnt & {16{reg_rd[MEM_CNT]}};
wire [15:0] dbg_dout = cpu_id_lo_rd |
cpu_id_hi_rd |
cpu_ctl_rd |
cpu_stat_rd |
mem_ctl_rd |
mem_data_rd |
mem_addr_rd |
mem_cnt_rd |
brk0_dout |
brk1_dout |
brk2_dout |
brk3_dout;
// Tell UART/JTAG interface that the data is ready to be read
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) dbg_rd_rdy <= 1'b0;
else if (mem_burst | mem_burst_rd) dbg_rd_rdy <= (dbg_reg_rd | dbg_mem_rd_dly);
else dbg_rd_rdy <= dbg_rd;
//============================================================================
// 7) CPU CONTROL
//============================================================================
// Reset CPU
//--------------------------
wire dbg_cpu_reset = cpu_ctl[`CPU_RST];
// Break after reset
//--------------------------
wire halt_rst = cpu_ctl[`RST_BRK_EN] & dbg_en_s & puc_pnd_set;
// Freeze peripherals
//--------------------------
wire dbg_freeze = dbg_halt_st & (cpu_ctl[`FRZ_BRK_EN] | ~cpu_en_s);
// Software break
//--------------------------
assign dbg_swbrk = (fe_mdb_in==`DBG_SWBRK_OP) & decode_noirq & cpu_ctl[`SW_BRK_EN];
// Single step
//--------------------------
reg [1:0] inc_step;
always @(posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) inc_step <= 2'b00;
else if (istep) inc_step <= 2'b11;
else inc_step <= {inc_step[0], 1'b0};
// Run / Halt
//--------------------------
reg halt_flag;
wire mem_halt_cpu;
wire mem_run_cpu;
wire halt_flag_clr = run_cpu | mem_run_cpu;
wire halt_flag_set = halt_cpu | halt_rst | dbg_swbrk | mem_halt_cpu |
brk0_halt | brk1_halt | brk2_halt | brk3_halt;
always @(posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) halt_flag <= 1'b0;
else if (halt_flag_clr) halt_flag <= 1'b0;
else if (halt_flag_set) halt_flag <= 1'b1;
wire dbg_halt_cmd = (halt_flag | halt_flag_set) & ~inc_step[1];
//============================================================================
// 8) MEMORY CONTROL
//============================================================================
// Control Memory bursts
//------------------------------
wire mem_burst_start = (mem_start & |mem_cnt);
wire mem_burst_end = ((dbg_wr | dbg_rd_rdy) & ~|mem_cnt);
// Detect when burst is on going
always @(posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) mem_burst <= 1'b0;
else if (mem_burst_start) mem_burst <= 1'b1;
else if (mem_burst_end) mem_burst <= 1'b0;
// Control signals for UART/JTAG interface
assign mem_burst_rd = (mem_burst_start & ~mem_ctl[1]);
assign mem_burst_wr = (mem_burst_start & mem_ctl[1]);
// Trigger CPU Register or memory access during a burst
reg mem_startb;
always @(posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) mem_startb <= 1'b0;
else mem_startb <= (mem_burst & (dbg_wr | dbg_rd)) | mem_burst_rd;
// Combine single and burst memory start of sequence
wire mem_seq_start = ((mem_start & ~|mem_cnt) | mem_startb);
// Memory access state machine
//------------------------------
reg [1:0] mem_state;
reg [1:0] mem_state_nxt;
// State machine definition
parameter M_IDLE = 2'h0;
parameter M_SET_BRK = 2'h1;
parameter M_ACCESS_BRK = 2'h2;
parameter M_ACCESS = 2'h3;
// State transition
always @(mem_state or mem_seq_start or dbg_halt_st)
case (mem_state)
M_IDLE : mem_state_nxt = ~mem_seq_start ? M_IDLE :
dbg_halt_st ? M_ACCESS : M_SET_BRK;
M_SET_BRK : mem_state_nxt = dbg_halt_st ? M_ACCESS_BRK : M_SET_BRK;
M_ACCESS_BRK : mem_state_nxt = M_IDLE;
M_ACCESS : mem_state_nxt = M_IDLE;
// pragma coverage off
default : mem_state_nxt = M_IDLE;
// pragma coverage on
endcase
// State machine
always @(posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) mem_state <= M_IDLE;
else mem_state <= mem_state_nxt;
// Utility signals
assign mem_halt_cpu = (mem_state==M_IDLE) & (mem_state_nxt==M_SET_BRK);
assign mem_run_cpu = (mem_state==M_ACCESS_BRK) & (mem_state_nxt==M_IDLE);
assign mem_access = (mem_state==M_ACCESS) | (mem_state==M_ACCESS_BRK);
// Interface to CPU Registers and Memory bacbkone
//------------------------------------------------
assign dbg_mem_addr = mem_addr;
assign dbg_mem_dout = ~mem_bw ? mem_data :
mem_addr[0] ? {mem_data[7:0], 8'h00} :
{8'h00, mem_data[7:0]};
assign dbg_reg_wr = mem_access & mem_ctl[1] & mem_ctl[2];
assign dbg_reg_rd = mem_access & ~mem_ctl[1] & mem_ctl[2];
assign dbg_mem_en = mem_access & ~mem_ctl[2];
assign dbg_mem_rd = dbg_mem_en & ~mem_ctl[1];
wire [1:0] dbg_mem_wr_msk = ~mem_bw ? 2'b11 :
mem_addr[0] ? 2'b10 : 2'b01;
assign dbg_mem_wr = {2{dbg_mem_en & mem_ctl[1]}} & dbg_mem_wr_msk;
// It takes one additional cycle to read from Memory as from registers
always @(posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) dbg_mem_rd_dly <= 1'b0;
else dbg_mem_rd_dly <= dbg_mem_rd;
//=============================================================================
// 9) UART COMMUNICATION
//=============================================================================
`ifdef DBG_UART
omsp_dbg_uart dbg_uart_0 (
// OUTPUTs
.dbg_addr (dbg_addr), // Debug register address
.dbg_din (dbg_din), // Debug register data input
.dbg_rd (dbg_rd), // Debug register data read
.dbg_uart_txd (dbg_uart_txd), // Debug interface: UART TXD
.dbg_wr (dbg_wr), // Debug register data write
// INPUTs
.dbg_clk (dbg_clk), // Debug unit clock
.dbg_dout (dbg_dout), // Debug register data output
.dbg_rd_rdy (dbg_rd_rdy), // Debug register data is ready for read
.dbg_rst (dbg_rst), // Debug unit reset
.dbg_uart_rxd (dbg_uart_rxd), // Debug interface: UART RXD
.mem_burst (mem_burst), // Burst on going
.mem_burst_end(mem_burst_end), // End TX/RX burst
.mem_burst_rd (mem_burst_rd), // Start TX burst
.mem_burst_wr (mem_burst_wr), // Start RX burst
.mem_bw (mem_bw) // Burst byte width
);
`else
assign dbg_addr = 6'h00;
assign dbg_din = 16'h0000;
assign dbg_rd = 1'b0;
assign dbg_uart_txd = 1'b0;
assign dbg_wr = 1'b0;
`endif
//=============================================================================
// 10) JTAG COMMUNICATION
//=============================================================================
`ifdef DBG_JTAG
JTAG INTERFACE IS NOT SUPPORTED YET
`else
`endif
endmodule // dbg
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_undefines.v"
`endif

View file

@ -0,0 +1,282 @@
//----------------------------------------------------------------------------
// Copyright (C) 2009 , Olivier Girard
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the authors nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
// THE POSSIBILITY OF SUCH DAMAGE
//
//----------------------------------------------------------------------------
//
// *File Name: omsp_dbg_hwbrk.v
//
// *Module Description:
// Hardware Breakpoint / Watchpoint module
//
// *Author(s):
// - Olivier Girard, olgirard@gmail.com
//
//----------------------------------------------------------------------------
// $Rev: 117 $
// $LastChangedBy: olivier.girard $
// $LastChangedDate: 2011-06-23 21:30:51 +0200 (Thu, 23 Jun 2011) $
//----------------------------------------------------------------------------
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_defines.v"
`endif
module omsp_dbg_hwbrk (
// OUTPUTs
brk_halt, // Hardware breakpoint command
brk_pnd, // Hardware break/watch-point pending
brk_dout, // Hardware break/watch-point register data input
// INPUTs
brk_reg_rd, // Hardware break/watch-point register read select
brk_reg_wr, // Hardware break/watch-point register write select
dbg_clk, // Debug unit clock
dbg_din, // Debug register data input
dbg_rst, // Debug unit reset
eu_mab, // Execution-Unit Memory address bus
eu_mb_en, // Execution-Unit Memory bus enable
eu_mb_wr, // Execution-Unit Memory bus write transfer
eu_mdb_in, // Memory data bus input
eu_mdb_out, // Memory data bus output
exec_done, // Execution completed
fe_mb_en, // Frontend Memory bus enable
pc // Program counter
);
// OUTPUTs
//=========
output brk_halt; // Hardware breakpoint command
output brk_pnd; // Hardware break/watch-point pending
output [15:0] brk_dout; // Hardware break/watch-point register data input
// INPUTs
//=========
input [3:0] brk_reg_rd; // Hardware break/watch-point register read select
input [3:0] brk_reg_wr; // Hardware break/watch-point register write select
input dbg_clk; // Debug unit clock
input [15:0] dbg_din; // Debug register data input
input dbg_rst; // Debug unit reset
input [15:0] eu_mab; // Execution-Unit Memory address bus
input eu_mb_en; // Execution-Unit Memory bus enable
input [1:0] eu_mb_wr; // Execution-Unit Memory bus write transfer
input [15:0] eu_mdb_in; // Memory data bus input
input [15:0] eu_mdb_out; // Memory data bus output
input exec_done; // Execution completed
input fe_mb_en; // Frontend Memory bus enable
input [15:0] pc; // Program counter
//=============================================================================
// 1) WIRE & PARAMETER DECLARATION
//=============================================================================
wire range_wr_set;
wire range_rd_set;
wire addr1_wr_set;
wire addr1_rd_set;
wire addr0_wr_set;
wire addr0_rd_set;
parameter BRK_CTL = 0,
BRK_STAT = 1,
BRK_ADDR0 = 2,
BRK_ADDR1 = 3;
//=============================================================================
// 2) CONFIGURATION REGISTERS
//=============================================================================
// BRK_CTL Register
//-----------------------------------------------------------------------------
// 7 6 5 4 3 2 1 0
// Reserved RANGE_MODE INST_EN BREAK_EN ACCESS_MODE
//
// ACCESS_MODE: - 00 : Disabled
// - 01 : Detect read access
// - 10 : Detect write access
// - 11 : Detect read/write access
// NOTE: '10' & '11' modes are not supported on the instruction flow
//
// BREAK_EN: - 0 : Watchmode enable
// - 1 : Break enable
//
// INST_EN: - 0 : Checks are done on the execution unit (data flow)
// - 1 : Checks are done on the frontend (instruction flow)
//
// RANGE_MODE: - 0 : Address match on BRK_ADDR0 or BRK_ADDR1
// - 1 : Address match on BRK_ADDR0->BRK_ADDR1 range
//
//-----------------------------------------------------------------------------
reg [4:0] brk_ctl;
wire brk_ctl_wr = brk_reg_wr[BRK_CTL];
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) brk_ctl <= 5'h00;
else if (brk_ctl_wr) brk_ctl <= {`HWBRK_RANGE & dbg_din[4], dbg_din[3:0]};
wire [7:0] brk_ctl_full = {3'b000, brk_ctl};
// BRK_STAT Register
//-----------------------------------------------------------------------------
// 7 6 5 4 3 2 1 0
// Reserved RANGE_WR RANGE_RD ADDR1_WR ADDR1_RD ADDR0_WR ADDR0_RD
//-----------------------------------------------------------------------------
reg [5:0] brk_stat;
wire brk_stat_wr = brk_reg_wr[BRK_STAT];
wire [5:0] brk_stat_set = {range_wr_set & `HWBRK_RANGE,
range_rd_set & `HWBRK_RANGE,
addr1_wr_set, addr1_rd_set,
addr0_wr_set, addr0_rd_set};
wire [5:0] brk_stat_clr = ~dbg_din[5:0];
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) brk_stat <= 6'h00;
else if (brk_stat_wr) brk_stat <= ((brk_stat & brk_stat_clr) | brk_stat_set);
else brk_stat <= (brk_stat | brk_stat_set);
wire [7:0] brk_stat_full = {2'b00, brk_stat};
wire brk_pnd = |brk_stat;
// BRK_ADDR0 Register
//-----------------------------------------------------------------------------
reg [15:0] brk_addr0;
wire brk_addr0_wr = brk_reg_wr[BRK_ADDR0];
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) brk_addr0 <= 16'h0000;
else if (brk_addr0_wr) brk_addr0 <= dbg_din;
// BRK_ADDR1/DATA0 Register
//-----------------------------------------------------------------------------
reg [15:0] brk_addr1;
wire brk_addr1_wr = brk_reg_wr[BRK_ADDR1];
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) brk_addr1 <= 16'h0000;
else if (brk_addr1_wr) brk_addr1 <= dbg_din;
//============================================================================
// 3) DATA OUTPUT GENERATION
//============================================================================
wire [15:0] brk_ctl_rd = {8'h00, brk_ctl_full} & {16{brk_reg_rd[BRK_CTL]}};
wire [15:0] brk_stat_rd = {8'h00, brk_stat_full} & {16{brk_reg_rd[BRK_STAT]}};
wire [15:0] brk_addr0_rd = brk_addr0 & {16{brk_reg_rd[BRK_ADDR0]}};
wire [15:0] brk_addr1_rd = brk_addr1 & {16{brk_reg_rd[BRK_ADDR1]}};
wire [15:0] brk_dout = brk_ctl_rd |
brk_stat_rd |
brk_addr0_rd |
brk_addr1_rd;
//============================================================================
// 4) BREAKPOINT / WATCHPOINT GENERATION
//============================================================================
// Comparators
//---------------------------
// Note: here the comparison logic is instanciated several times in order
// to improve the timings, at the cost of a bit more area.
wire equ_d_addr0 = eu_mb_en & (eu_mab==brk_addr0) & ~brk_ctl[`BRK_RANGE];
wire equ_d_addr1 = eu_mb_en & (eu_mab==brk_addr1) & ~brk_ctl[`BRK_RANGE];
wire equ_d_range = eu_mb_en & ((eu_mab>=brk_addr0) & (eu_mab<=brk_addr1)) &
brk_ctl[`BRK_RANGE] & `HWBRK_RANGE;
reg fe_mb_en_buf;
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) fe_mb_en_buf <= 1'b0;
else fe_mb_en_buf <= fe_mb_en;
wire equ_i_addr0 = fe_mb_en_buf & (pc==brk_addr0) & ~brk_ctl[`BRK_RANGE];
wire equ_i_addr1 = fe_mb_en_buf & (pc==brk_addr1) & ~brk_ctl[`BRK_RANGE];
wire equ_i_range = fe_mb_en_buf & ((pc>=brk_addr0) & (pc<=brk_addr1)) &
brk_ctl[`BRK_RANGE] & `HWBRK_RANGE;
// Detect accesses
//---------------------------
// Detect Instruction read access
wire i_addr0_rd = equ_i_addr0 & brk_ctl[`BRK_I_EN];
wire i_addr1_rd = equ_i_addr1 & brk_ctl[`BRK_I_EN];
wire i_range_rd = equ_i_range & brk_ctl[`BRK_I_EN];
// Detect Execution-Unit write access
wire d_addr0_wr = equ_d_addr0 & ~brk_ctl[`BRK_I_EN] & |eu_mb_wr;
wire d_addr1_wr = equ_d_addr1 & ~brk_ctl[`BRK_I_EN] & |eu_mb_wr;
wire d_range_wr = equ_d_range & ~brk_ctl[`BRK_I_EN] & |eu_mb_wr;
// Detect DATA read access
// Whenever an "ADD r9. &0x200" instruction is executed, &0x200 will be read
// before being written back. In that case, the read flag should not be set.
// In general, We should here make sure no write access occures during the
// same instruction cycle before setting the read flag.
reg [2:0] d_rd_trig;
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) d_rd_trig <= 3'h0;
else if (exec_done) d_rd_trig <= 3'h0;
else d_rd_trig <= {equ_d_range & ~brk_ctl[`BRK_I_EN] & ~|eu_mb_wr,
equ_d_addr1 & ~brk_ctl[`BRK_I_EN] & ~|eu_mb_wr,
equ_d_addr0 & ~brk_ctl[`BRK_I_EN] & ~|eu_mb_wr};
wire d_addr0_rd = d_rd_trig[0] & exec_done & ~d_addr0_wr;
wire d_addr1_rd = d_rd_trig[1] & exec_done & ~d_addr1_wr;
wire d_range_rd = d_rd_trig[2] & exec_done & ~d_range_wr;
// Set flags
assign addr0_rd_set = brk_ctl[`BRK_MODE_RD] & (d_addr0_rd | i_addr0_rd);
assign addr0_wr_set = brk_ctl[`BRK_MODE_WR] & d_addr0_wr;
assign addr1_rd_set = brk_ctl[`BRK_MODE_RD] & (d_addr1_rd | i_addr1_rd);
assign addr1_wr_set = brk_ctl[`BRK_MODE_WR] & d_addr1_wr;
assign range_rd_set = brk_ctl[`BRK_MODE_RD] & (d_range_rd | i_range_rd);
assign range_wr_set = brk_ctl[`BRK_MODE_WR] & d_range_wr;
// Break CPU
assign brk_halt = brk_ctl[`BRK_EN] & |brk_stat_set;
endmodule // omsp_dbg_hwbrk
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_undefines.v"
`endif

View file

@ -0,0 +1,298 @@
//----------------------------------------------------------------------------
// Copyright (C) 2009 , Olivier Girard
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the authors nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
// THE POSSIBILITY OF SUCH DAMAGE
//
//----------------------------------------------------------------------------
//
// *File Name: omsp_dbg_uart.v
//
// *Module Description:
// Debug UART communication interface (8N1, Half-duplex)
//
// *Author(s):
// - Olivier Girard, olgirard@gmail.com
//
//----------------------------------------------------------------------------
// $Rev: 134 $
// $LastChangedBy: olivier.girard $
// $LastChangedDate: 2012-03-22 21:31:06 +0100 (Thu, 22 Mar 2012) $
//----------------------------------------------------------------------------
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_defines.v"
`endif
module omsp_dbg_uart (
// OUTPUTs
dbg_addr, // Debug register address
dbg_din, // Debug register data input
dbg_rd, // Debug register data read
dbg_uart_txd, // Debug interface: UART TXD
dbg_wr, // Debug register data write
// INPUTs
dbg_clk, // Debug unit clock
dbg_dout, // Debug register data output
dbg_rd_rdy, // Debug register data is ready for read
dbg_rst, // Debug unit reset
dbg_uart_rxd, // Debug interface: UART RXD
mem_burst, // Burst on going
mem_burst_end, // End TX/RX burst
mem_burst_rd, // Start TX burst
mem_burst_wr, // Start RX burst
mem_bw // Burst byte width
);
// OUTPUTs
//=========
output [5:0] dbg_addr; // Debug register address
output [15:0] dbg_din; // Debug register data input
output dbg_rd; // Debug register data read
output dbg_uart_txd; // Debug interface: UART TXD
output dbg_wr; // Debug register data write
// INPUTs
//=========
input dbg_clk; // Debug unit clock
input [15:0] dbg_dout; // Debug register data output
input dbg_rd_rdy; // Debug register data is ready for read
input dbg_rst; // Debug unit reset
input dbg_uart_rxd; // Debug interface: UART RXD
input mem_burst; // Burst on going
input mem_burst_end; // End TX/RX burst
input mem_burst_rd; // Start TX burst
input mem_burst_wr; // Start RX burst
input mem_bw; // Burst byte width
//=============================================================================
// 1) UART RECEIVE LINE SYNCHRONIZTION & FILTERING
//=============================================================================
// Synchronize RXD input
//--------------------------------
`ifdef SYNC_DBG_UART_RXD
wire uart_rxd_n;
omsp_sync_cell sync_cell_uart_rxd (
.data_out (uart_rxd_n),
.data_in (~dbg_uart_rxd),
.clk (dbg_clk),
.rst (dbg_rst)
);
wire uart_rxd = ~uart_rxd_n;
`else
wire uart_rxd = dbg_uart_rxd;
`endif
// RXD input buffer
//--------------------------------
reg [1:0] rxd_buf;
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) rxd_buf <= 2'h3;
else rxd_buf <= {rxd_buf[0], uart_rxd};
// Majority decision
//------------------------
reg rxd_maj;
wire rxd_maj_nxt = (uart_rxd & rxd_buf[0]) |
(uart_rxd & rxd_buf[1]) |
(rxd_buf[0] & rxd_buf[1]);
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) rxd_maj <= 1'b1;
else rxd_maj <= rxd_maj_nxt;
wire rxd_s = rxd_maj;
wire rxd_fe = rxd_maj & ~rxd_maj_nxt;
wire rxd_re = ~rxd_maj & rxd_maj_nxt;
wire rxd_edge = rxd_maj ^ rxd_maj_nxt;
//=============================================================================
// 2) UART STATE MACHINE
//=============================================================================
// Receive state
//------------------------
reg [2:0] uart_state;
reg [2:0] uart_state_nxt;
wire sync_done;
wire xfer_done;
reg [19:0] xfer_buf;
wire [19:0] xfer_buf_nxt;
// State machine definition
parameter RX_SYNC = 3'h0;
parameter RX_CMD = 3'h1;
parameter RX_DATA1 = 3'h2;
parameter RX_DATA2 = 3'h3;
parameter TX_DATA1 = 3'h4;
parameter TX_DATA2 = 3'h5;
// State transition
always @(uart_state or xfer_buf_nxt or mem_burst or mem_burst_wr or mem_burst_rd or mem_burst_end or mem_bw)
case (uart_state)
RX_SYNC : uart_state_nxt = RX_CMD;
RX_CMD : uart_state_nxt = mem_burst_wr ?
(mem_bw ? RX_DATA2 : RX_DATA1) :
mem_burst_rd ?
(mem_bw ? TX_DATA2 : TX_DATA1) :
(xfer_buf_nxt[`DBG_UART_WR] ?
(xfer_buf_nxt[`DBG_UART_BW] ? RX_DATA2 : RX_DATA1) :
(xfer_buf_nxt[`DBG_UART_BW] ? TX_DATA2 : TX_DATA1));
RX_DATA1 : uart_state_nxt = RX_DATA2;
RX_DATA2 : uart_state_nxt = (mem_burst & ~mem_burst_end) ?
(mem_bw ? RX_DATA2 : RX_DATA1) :
RX_CMD;
TX_DATA1 : uart_state_nxt = TX_DATA2;
TX_DATA2 : uart_state_nxt = (mem_burst & ~mem_burst_end) ?
(mem_bw ? TX_DATA2 : TX_DATA1) :
RX_CMD;
// pragma coverage off
default : uart_state_nxt = RX_CMD;
// pragma coverage on
endcase
// State machine
always @(posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) uart_state <= RX_SYNC;
else if (xfer_done | sync_done |
mem_burst_wr | mem_burst_rd) uart_state <= uart_state_nxt;
// Utility signals
wire cmd_valid = (uart_state==RX_CMD) & xfer_done;
wire rx_active = (uart_state==RX_DATA1) | (uart_state==RX_DATA2) | (uart_state==RX_CMD);
wire tx_active = (uart_state==TX_DATA1) | (uart_state==TX_DATA2);
//=============================================================================
// 3) UART SYNCHRONIZATION
//=============================================================================
// After DBG_RST, the host needs to fist send a synchronization character (0x80)
// If this feature doesn't work properly, it is possible to disable it by
// commenting the DBG_UART_AUTO_SYNC define in the openMSP430.inc file.
reg sync_busy;
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) sync_busy <= 1'b0;
else if ((uart_state==RX_SYNC) & rxd_fe) sync_busy <= 1'b1;
else if ((uart_state==RX_SYNC) & rxd_re) sync_busy <= 1'b0;
assign sync_done = (uart_state==RX_SYNC) & rxd_re & sync_busy;
`ifdef DBG_UART_AUTO_SYNC
reg [`DBG_UART_XFER_CNT_W+2:0] sync_cnt;
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) sync_cnt <= {{`DBG_UART_XFER_CNT_W{1'b1}}, 3'b000};
else if (sync_busy | (~sync_busy & sync_cnt[2])) sync_cnt <= sync_cnt+{{`DBG_UART_XFER_CNT_W+2{1'b0}}, 1'b1};
wire [`DBG_UART_XFER_CNT_W-1:0] bit_cnt_max = sync_cnt[`DBG_UART_XFER_CNT_W+2:3];
`else
wire [`DBG_UART_XFER_CNT_W-1:0] bit_cnt_max = `DBG_UART_CNT;
`endif
//=============================================================================
// 4) UART RECEIVE / TRANSMIT
//=============================================================================
// Transfer counter
//------------------------
reg [3:0] xfer_bit;
reg [`DBG_UART_XFER_CNT_W-1:0] xfer_cnt;
wire txd_start = dbg_rd_rdy | (xfer_done & (uart_state==TX_DATA1));
wire rxd_start = (xfer_bit==4'h0) & rxd_fe & ((uart_state!=RX_SYNC));
wire xfer_bit_inc = (xfer_bit!=4'h0) & (xfer_cnt=={`DBG_UART_XFER_CNT_W{1'b0}});
assign xfer_done = rx_active ? (xfer_bit==4'ha) : (xfer_bit==4'hb);
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) xfer_bit <= 4'h0;
else if (txd_start | rxd_start) xfer_bit <= 4'h1;
else if (xfer_done) xfer_bit <= 4'h0;
else if (xfer_bit_inc) xfer_bit <= xfer_bit+4'h1;
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) xfer_cnt <= {`DBG_UART_XFER_CNT_W{1'b0}};
else if (rx_active & rxd_edge) xfer_cnt <= {1'b0, bit_cnt_max[`DBG_UART_XFER_CNT_W-1:1]};
else if (txd_start | xfer_bit_inc) xfer_cnt <= bit_cnt_max;
else if (|xfer_cnt) xfer_cnt <= xfer_cnt+{`DBG_UART_XFER_CNT_W{1'b1}};
// Receive/Transmit buffer
//-------------------------
assign xfer_buf_nxt = {rxd_s, xfer_buf[19:1]};
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) xfer_buf <= 20'h00000;
else if (dbg_rd_rdy) xfer_buf <= {1'b1, dbg_dout[15:8], 2'b01, dbg_dout[7:0], 1'b0};
else if (xfer_bit_inc) xfer_buf <= xfer_buf_nxt;
// Generate TXD output
//------------------------
reg dbg_uart_txd;
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) dbg_uart_txd <= 1'b1;
else if (xfer_bit_inc & tx_active) dbg_uart_txd <= xfer_buf[0];
//=============================================================================
// 5) INTERFACE TO DEBUG REGISTERS
//=============================================================================
reg [5:0] dbg_addr;
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) dbg_addr <= 6'h00;
else if (cmd_valid) dbg_addr <= xfer_buf_nxt[`DBG_UART_ADDR];
reg dbg_bw;
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) dbg_bw <= 1'b0;
else if (cmd_valid) dbg_bw <= xfer_buf_nxt[`DBG_UART_BW];
wire dbg_din_bw = mem_burst ? mem_bw : dbg_bw;
wire [15:0] dbg_din = dbg_din_bw ? {8'h00, xfer_buf_nxt[18:11]} :
{xfer_buf_nxt[18:11], xfer_buf_nxt[9:2]};
wire dbg_wr = (xfer_done & (uart_state==RX_DATA2));
wire dbg_rd = mem_burst ? (xfer_done & (uart_state==TX_DATA2)) :
(cmd_valid & ~xfer_buf_nxt[`DBG_UART_WR]) | mem_burst_rd;
endmodule // omsp_dbg_uart
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_undefines.v"
`endif

View file

@ -0,0 +1,420 @@
//----------------------------------------------------------------------------
// Copyright (C) 2009 , Olivier Girard
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the authors nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
// THE POSSIBILITY OF SUCH DAMAGE
//
//----------------------------------------------------------------------------
//
// *File Name: omsp_execution_unit.v
//
// *Module Description:
// openMSP430 Execution unit
//
// *Author(s):
// - Olivier Girard, olgirard@gmail.com
//
//----------------------------------------------------------------------------
// $Rev: 134 $
// $LastChangedBy: olivier.girard $
// $LastChangedDate: 2012-03-22 21:31:06 +0100 (Thu, 22 Mar 2012) $
//----------------------------------------------------------------------------
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_defines.v"
`endif
module omsp_execution_unit (
// OUTPUTs
cpuoff, // Turns off the CPU
dbg_reg_din, // Debug unit CPU register data input
gie, // General interrupt enable
mab, // Memory address bus
mb_en, // Memory bus enable
mb_wr, // Memory bus write transfer
mdb_out, // Memory data bus output
oscoff, // Turns off LFXT1 clock input
pc_sw, // Program counter software value
pc_sw_wr, // Program counter software write
scg0, // System clock generator 1. Turns off the DCO
scg1, // System clock generator 1. Turns off the SMCLK
// INPUTs
dbg_halt_st, // Halt/Run status from CPU
dbg_mem_dout, // Debug unit data output
dbg_reg_wr, // Debug unit CPU register write
e_state, // Execution state
exec_done, // Execution completed
inst_ad, // Decoded Inst: destination addressing mode
inst_as, // Decoded Inst: source addressing mode
inst_alu, // ALU control signals
inst_bw, // Decoded Inst: byte width
inst_dest, // Decoded Inst: destination (one hot)
inst_dext, // Decoded Inst: destination extended instruction word
inst_irq_rst, // Decoded Inst: reset interrupt
inst_jmp, // Decoded Inst: Conditional jump
inst_mov, // Decoded Inst: mov instruction
inst_sext, // Decoded Inst: source extended instruction word
inst_so, // Decoded Inst: Single-operand arithmetic
inst_src, // Decoded Inst: source (one hot)
inst_type, // Decoded Instruction type
mclk, // Main system clock
mdb_in, // Memory data bus input
pc, // Program counter
pc_nxt, // Next PC value (for CALL & IRQ)
puc_rst, // Main system reset
scan_enable // Scan enable (active during scan shifting)
);
// OUTPUTs
//=========
output cpuoff; // Turns off the CPU
output [15:0] dbg_reg_din; // Debug unit CPU register data input
output gie; // General interrupt enable
output [15:0] mab; // Memory address bus
output mb_en; // Memory bus enable
output [1:0] mb_wr; // Memory bus write transfer
output [15:0] mdb_out; // Memory data bus output
output oscoff; // Turns off LFXT1 clock input
output [15:0] pc_sw; // Program counter software value
output pc_sw_wr; // Program counter software write
output scg0; // System clock generator 1. Turns off the DCO
output scg1; // System clock generator 1. Turns off the SMCLK
// INPUTs
//=========
input dbg_halt_st; // Halt/Run status from CPU
input [15:0] dbg_mem_dout; // Debug unit data output
input dbg_reg_wr; // Debug unit CPU register write
input [3:0] e_state; // Execution state
input exec_done; // Execution completed
input [7:0] inst_ad; // Decoded Inst: destination addressing mode
input [7:0] inst_as; // Decoded Inst: source addressing mode
input [11:0] inst_alu; // ALU control signals
input inst_bw; // Decoded Inst: byte width
input [15:0] inst_dest; // Decoded Inst: destination (one hot)
input [15:0] inst_dext; // Decoded Inst: destination extended instruction word
input inst_irq_rst; // Decoded Inst: reset interrupt
input [7:0] inst_jmp; // Decoded Inst: Conditional jump
input inst_mov; // Decoded Inst: mov instruction
input [15:0] inst_sext; // Decoded Inst: source extended instruction word
input [7:0] inst_so; // Decoded Inst: Single-operand arithmetic
input [15:0] inst_src; // Decoded Inst: source (one hot)
input [2:0] inst_type; // Decoded Instruction type
input mclk; // Main system clock
input [15:0] mdb_in; // Memory data bus input
input [15:0] pc; // Program counter
input [15:0] pc_nxt; // Next PC value (for CALL & IRQ)
input puc_rst; // Main system reset
input scan_enable; // Scan enable (active during scan shifting)
//=============================================================================
// 1) INTERNAL WIRES/REGISTERS/PARAMETERS DECLARATION
//=============================================================================
wire [15:0] alu_out;
wire [15:0] alu_out_add;
wire [3:0] alu_stat;
wire [3:0] alu_stat_wr;
wire [15:0] op_dst;
wire [15:0] op_src;
wire [15:0] reg_dest;
wire [15:0] reg_src;
wire [15:0] mdb_in_bw;
wire [15:0] mdb_in_val;
wire [3:0] status;
//=============================================================================
// 2) REGISTER FILE
//=============================================================================
wire reg_dest_wr = ((e_state==`E_EXEC) & (
(inst_type[`INST_TO] & inst_ad[`DIR] & ~inst_alu[`EXEC_NO_WR]) |
(inst_type[`INST_SO] & inst_as[`DIR] & ~(inst_so[`PUSH] | inst_so[`CALL] | inst_so[`RETI])) |
inst_type[`INST_JMP])) | dbg_reg_wr;
wire reg_sp_wr = (((e_state==`E_IRQ_1) | (e_state==`E_IRQ_3)) & ~inst_irq_rst) |
((e_state==`E_DST_RD) & ((inst_so[`PUSH] | inst_so[`CALL]) & ~inst_as[`IDX] & ~((inst_as[`INDIR] | inst_as[`INDIR_I]) & inst_src[1]))) |
((e_state==`E_SRC_AD) & ((inst_so[`PUSH] | inst_so[`CALL]) & inst_as[`IDX])) |
((e_state==`E_SRC_RD) & ((inst_so[`PUSH] | inst_so[`CALL]) & ((inst_as[`INDIR] | inst_as[`INDIR_I]) & inst_src[1])));
wire reg_sr_wr = (e_state==`E_DST_RD) & inst_so[`RETI];
wire reg_sr_clr = (e_state==`E_IRQ_2);
wire reg_pc_call = ((e_state==`E_EXEC) & inst_so[`CALL]) |
((e_state==`E_DST_WR) & inst_so[`RETI]);
wire reg_incr = (exec_done & inst_as[`INDIR_I]) |
((e_state==`E_SRC_RD) & inst_so[`RETI]) |
((e_state==`E_EXEC) & inst_so[`RETI]);
assign dbg_reg_din = reg_dest;
omsp_register_file register_file_0 (
// OUTPUTs
.cpuoff (cpuoff), // Turns off the CPU
.gie (gie), // General interrupt enable
.oscoff (oscoff), // Turns off LFXT1 clock input
.pc_sw (pc_sw), // Program counter software value
.pc_sw_wr (pc_sw_wr), // Program counter software write
.reg_dest (reg_dest), // Selected register destination content
.reg_src (reg_src), // Selected register source content
.scg0 (scg0), // System clock generator 1. Turns off the DCO
.scg1 (scg1), // System clock generator 1. Turns off the SMCLK
.status (status), // R2 Status {V,N,Z,C}
// INPUTs
.alu_stat (alu_stat), // ALU Status {V,N,Z,C}
.alu_stat_wr (alu_stat_wr), // ALU Status write {V,N,Z,C}
.inst_bw (inst_bw), // Decoded Inst: byte width
.inst_dest (inst_dest), // Register destination selection
.inst_src (inst_src), // Register source selection
.mclk (mclk), // Main system clock
.pc (pc), // Program counter
.puc_rst (puc_rst), // Main system reset
.reg_dest_val (alu_out), // Selected register destination value
.reg_dest_wr (reg_dest_wr), // Write selected register destination
.reg_pc_call (reg_pc_call), // Trigger PC update for a CALL instruction
.reg_sp_val (alu_out_add), // Stack Pointer next value
.reg_sp_wr (reg_sp_wr), // Stack Pointer write
.reg_sr_clr (reg_sr_clr), // Status register clear for interrupts
.reg_sr_wr (reg_sr_wr), // Status Register update for RETI instruction
.reg_incr (reg_incr), // Increment source register
.scan_enable (scan_enable) // Scan enable (active during scan shifting)
);
//=============================================================================
// 3) SOURCE OPERAND MUXING
//=============================================================================
// inst_as[`DIR] : Register direct. -> Source is in register
// inst_as[`IDX] : Register indexed. -> Source is in memory, address is register+offset
// inst_as[`INDIR] : Register indirect.
// inst_as[`INDIR_I]: Register indirect autoincrement.
// inst_as[`SYMB] : Symbolic (operand is in memory at address PC+x).
// inst_as[`IMM] : Immediate (operand is next word in the instruction stream).
// inst_as[`ABS] : Absolute (operand is in memory at address x).
// inst_as[`CONST] : Constant.
wire src_reg_src_sel = (e_state==`E_IRQ_0) |
(e_state==`E_IRQ_2) |
((e_state==`E_SRC_RD) & ~inst_as[`ABS]) |
((e_state==`E_SRC_WR) & ~inst_as[`ABS]) |
((e_state==`E_EXEC) & inst_as[`DIR] & ~inst_type[`INST_JMP]);
wire src_reg_dest_sel = (e_state==`E_IRQ_1) |
(e_state==`E_IRQ_3) |
((e_state==`E_DST_RD) & (inst_so[`PUSH] | inst_so[`CALL])) |
((e_state==`E_SRC_AD) & (inst_so[`PUSH] | inst_so[`CALL]) & inst_as[`IDX]);
wire src_mdb_in_val_sel = ((e_state==`E_DST_RD) & inst_so[`RETI]) |
((e_state==`E_EXEC) & (inst_as[`INDIR] | inst_as[`INDIR_I] |
inst_as[`IDX] | inst_as[`SYMB] |
inst_as[`ABS]));
wire src_inst_dext_sel = ((e_state==`E_DST_RD) & ~(inst_so[`PUSH] | inst_so[`CALL])) |
((e_state==`E_DST_WR) & ~(inst_so[`PUSH] | inst_so[`CALL] |
inst_so[`RETI]));
wire src_inst_sext_sel = ((e_state==`E_EXEC) & (inst_type[`INST_JMP] | inst_as[`IMM] |
inst_as[`CONST] | inst_so[`RETI]));
assign op_src = src_reg_src_sel ? reg_src :
src_reg_dest_sel ? reg_dest :
src_mdb_in_val_sel ? mdb_in_val :
src_inst_dext_sel ? inst_dext :
src_inst_sext_sel ? inst_sext : 16'h0000;
//=============================================================================
// 4) DESTINATION OPERAND MUXING
//=============================================================================
// inst_ad[`DIR] : Register direct.
// inst_ad[`IDX] : Register indexed.
// inst_ad[`SYMB] : Symbolic (operand is in memory at address PC+x).
// inst_ad[`ABS] : Absolute (operand is in memory at address x).
wire dst_inst_sext_sel = ((e_state==`E_SRC_RD) & (inst_as[`IDX] | inst_as[`SYMB] |
inst_as[`ABS])) |
((e_state==`E_SRC_WR) & (inst_as[`IDX] | inst_as[`SYMB] |
inst_as[`ABS]));
wire dst_mdb_in_bw_sel = ((e_state==`E_DST_WR) & inst_so[`RETI]) |
((e_state==`E_EXEC) & ~(inst_ad[`DIR] | inst_type[`INST_JMP] |
inst_type[`INST_SO]) & ~inst_so[`RETI]);
wire dst_fffe_sel = (e_state==`E_IRQ_0) |
(e_state==`E_IRQ_1) |
(e_state==`E_IRQ_3) |
((e_state==`E_DST_RD) & (inst_so[`PUSH] | inst_so[`CALL]) & ~inst_so[`RETI]) |
((e_state==`E_SRC_AD) & (inst_so[`PUSH] | inst_so[`CALL]) & inst_as[`IDX]) |
((e_state==`E_SRC_RD) & (inst_so[`PUSH] | inst_so[`CALL]) & (inst_as[`INDIR] | inst_as[`INDIR_I]) & inst_src[1]);
wire dst_reg_dest_sel = ((e_state==`E_DST_RD) & ~(inst_so[`PUSH] | inst_so[`CALL] | inst_ad[`ABS] | inst_so[`RETI])) |
((e_state==`E_DST_WR) & ~inst_ad[`ABS]) |
((e_state==`E_EXEC) & (inst_ad[`DIR] | inst_type[`INST_JMP] |
inst_type[`INST_SO]) & ~inst_so[`RETI]);
assign op_dst = dbg_halt_st ? dbg_mem_dout :
dst_inst_sext_sel ? inst_sext :
dst_mdb_in_bw_sel ? mdb_in_bw :
dst_reg_dest_sel ? reg_dest :
dst_fffe_sel ? 16'hfffe : 16'h0000;
//=============================================================================
// 5) ALU
//=============================================================================
wire exec_cycle = (e_state==`E_EXEC);
omsp_alu alu_0 (
// OUTPUTs
.alu_out (alu_out), // ALU output value
.alu_out_add (alu_out_add), // ALU adder output value
.alu_stat (alu_stat), // ALU Status {V,N,Z,C}
.alu_stat_wr (alu_stat_wr), // ALU Status write {V,N,Z,C}
// INPUTs
.dbg_halt_st (dbg_halt_st), // Halt/Run status from CPU
.exec_cycle (exec_cycle), // Instruction execution cycle
.inst_alu (inst_alu), // ALU control signals
.inst_bw (inst_bw), // Decoded Inst: byte width
.inst_jmp (inst_jmp), // Decoded Inst: Conditional jump
.inst_so (inst_so), // Single-operand arithmetic
.op_dst (op_dst), // Destination operand
.op_src (op_src), // Source operand
.status (status) // R2 Status {V,N,Z,C}
);
//=============================================================================
// 6) MEMORY INTERFACE
//=============================================================================
// Detect memory read/write access
assign mb_en = ((e_state==`E_IRQ_1) & ~inst_irq_rst) |
((e_state==`E_IRQ_3) & ~inst_irq_rst) |
((e_state==`E_SRC_RD) & ~inst_as[`IMM]) |
(e_state==`E_SRC_WR) |
((e_state==`E_EXEC) & inst_so[`RETI]) |
((e_state==`E_DST_RD) & ~inst_type[`INST_SO]
& ~inst_mov) |
(e_state==`E_DST_WR);
wire [1:0] mb_wr_msk = inst_alu[`EXEC_NO_WR] ? 2'b00 :
~inst_bw ? 2'b11 :
alu_out_add[0] ? 2'b10 : 2'b01;
assign mb_wr = ({2{(e_state==`E_IRQ_1)}} |
{2{(e_state==`E_IRQ_3)}} |
{2{(e_state==`E_DST_WR)}} |
{2{(e_state==`E_SRC_WR)}}) & mb_wr_msk;
// Memory address bus
assign mab = alu_out_add[15:0];
// Memory data bus output
reg [15:0] mdb_out_nxt;
`ifdef CLOCK_GATING
wire mdb_out_nxt_en = (e_state==`E_DST_RD) |
(((e_state==`E_EXEC) & ~inst_so[`CALL]) |
(e_state==`E_IRQ_0) | (e_state==`E_IRQ_2));
wire mclk_mdb_out_nxt;
omsp_clock_gate clock_gate_mdb_out_nxt (.gclk(mclk_mdb_out_nxt),
.clk (mclk), .enable(mdb_out_nxt_en), .scan_enable(scan_enable));
`else
wire mclk_mdb_out_nxt = mclk;
`endif
always @(posedge mclk_mdb_out_nxt or posedge puc_rst)
if (puc_rst) mdb_out_nxt <= 16'h0000;
else if (e_state==`E_DST_RD) mdb_out_nxt <= pc_nxt;
`ifdef CLOCK_GATING
else mdb_out_nxt <= alu_out;
`else
else if ((e_state==`E_EXEC & ~inst_so[`CALL]) |
(e_state==`E_IRQ_0) | (e_state==`E_IRQ_2)) mdb_out_nxt <= alu_out;
`endif
assign mdb_out = inst_bw ? {2{mdb_out_nxt[7:0]}} : mdb_out_nxt;
// Format memory data bus input depending on BW
reg mab_lsb;
always @(posedge mclk or posedge puc_rst)
if (puc_rst) mab_lsb <= 1'b0;
else if (mb_en) mab_lsb <= alu_out_add[0];
assign mdb_in_bw = ~inst_bw ? mdb_in :
mab_lsb ? {2{mdb_in[15:8]}} : mdb_in;
// Memory data bus input buffer (buffer after a source read)
reg mdb_in_buf_en;
always @(posedge mclk or posedge puc_rst)
if (puc_rst) mdb_in_buf_en <= 1'b0;
else mdb_in_buf_en <= (e_state==`E_SRC_RD);
reg mdb_in_buf_valid;
always @(posedge mclk or posedge puc_rst)
if (puc_rst) mdb_in_buf_valid <= 1'b0;
else if (e_state==`E_EXEC) mdb_in_buf_valid <= 1'b0;
else if (mdb_in_buf_en) mdb_in_buf_valid <= 1'b1;
reg [15:0] mdb_in_buf;
`ifdef CLOCK_GATING
wire mclk_mdb_in_buf;
omsp_clock_gate clock_gate_mdb_in_buf (.gclk(mclk_mdb_in_buf),
.clk (mclk), .enable(mdb_in_buf_en), .scan_enable(scan_enable));
`else
wire mclk_mdb_in_buf = mclk;
`endif
always @(posedge mclk_mdb_in_buf or posedge puc_rst)
if (puc_rst) mdb_in_buf <= 16'h0000;
`ifdef CLOCK_GATING
else mdb_in_buf <= mdb_in_bw;
`else
else if (mdb_in_buf_en) mdb_in_buf <= mdb_in_bw;
`endif
assign mdb_in_val = mdb_in_buf_valid ? mdb_in_buf : mdb_in_bw;
endmodule // omsp_execution_unit
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_undefines.v"
`endif

View file

@ -0,0 +1,966 @@
//----------------------------------------------------------------------------
// Copyright (C) 2009 , Olivier Girard
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the authors nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
// THE POSSIBILITY OF SUCH DAMAGE
//
//----------------------------------------------------------------------------
//
// *File Name: omsp_frontend.v
//
// *Module Description:
// openMSP430 Instruction fetch and decode unit
//
// *Author(s):
// - Olivier Girard, olgirard@gmail.com
//
//----------------------------------------------------------------------------
// $Rev: 134 $
// $LastChangedBy: olivier.girard $
// $LastChangedDate: 2012-03-22 21:31:06 +0100 (Thu, 22 Mar 2012) $
//----------------------------------------------------------------------------
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_defines.v"
`endif
module omsp_frontend (
// OUTPUTs
dbg_halt_st, // Halt/Run status from CPU
decode_noirq, // Frontend decode instruction
e_state, // Execution state
exec_done, // Execution completed
inst_ad, // Decoded Inst: destination addressing mode
inst_as, // Decoded Inst: source addressing mode
inst_alu, // ALU control signals
inst_bw, // Decoded Inst: byte width
inst_dest, // Decoded Inst: destination (one hot)
inst_dext, // Decoded Inst: destination extended instruction word
inst_irq_rst, // Decoded Inst: Reset interrupt
inst_jmp, // Decoded Inst: Conditional jump
inst_mov, // Decoded Inst: mov instruction
inst_sext, // Decoded Inst: source extended instruction word
inst_so, // Decoded Inst: Single-operand arithmetic
inst_src, // Decoded Inst: source (one hot)
inst_type, // Decoded Instruction type
irq_acc, // Interrupt request accepted (one-hot signal)
mab, // Frontend Memory address bus
mb_en, // Frontend Memory bus enable
mclk_enable, // Main System Clock enable
mclk_wkup, // Main System Clock wake-up (asynchronous)
nmi_acc, // Non-Maskable interrupt request accepted
pc, // Program counter
pc_nxt, // Next PC value (for CALL & IRQ)
// INPUTs
cpu_en_s, // Enable CPU code execution (synchronous)
cpuoff, // Turns off the CPU
dbg_halt_cmd, // Halt CPU command
dbg_reg_sel, // Debug selected register for rd/wr access
fe_pmem_wait, // Frontend wait for Instruction fetch
gie, // General interrupt enable
irq, // Maskable interrupts
mclk, // Main system clock
mdb_in, // Frontend Memory data bus input
nmi_pnd, // Non-maskable interrupt pending
nmi_wkup, // NMI Wakeup
pc_sw, // Program counter software value
pc_sw_wr, // Program counter software write
puc_rst, // Main system reset
scan_enable, // Scan enable (active during scan shifting)
wdt_irq, // Watchdog-timer interrupt
wdt_wkup, // Watchdog Wakeup
wkup // System Wake-up (asynchronous)
);
// OUTPUTs
//=========
output dbg_halt_st; // Halt/Run status from CPU
output decode_noirq; // Frontend decode instruction
output [3:0] e_state; // Execution state
output exec_done; // Execution completed
output [7:0] inst_ad; // Decoded Inst: destination addressing mode
output [7:0] inst_as; // Decoded Inst: source addressing mode
output [11:0] inst_alu; // ALU control signals
output inst_bw; // Decoded Inst: byte width
output [15:0] inst_dest; // Decoded Inst: destination (one hot)
output [15:0] inst_dext; // Decoded Inst: destination extended instruction word
output inst_irq_rst; // Decoded Inst: Reset interrupt
output [7:0] inst_jmp; // Decoded Inst: Conditional jump
output inst_mov; // Decoded Inst: mov instruction
output [15:0] inst_sext; // Decoded Inst: source extended instruction word
output [7:0] inst_so; // Decoded Inst: Single-operand arithmetic
output [15:0] inst_src; // Decoded Inst: source (one hot)
output [2:0] inst_type; // Decoded Instruction type
output [13:0] irq_acc; // Interrupt request accepted (one-hot signal)
output [15:0] mab; // Frontend Memory address bus
output mb_en; // Frontend Memory bus enable
output mclk_enable; // Main System Clock enable
output mclk_wkup; // Main System Clock wake-up (asynchronous)
output nmi_acc; // Non-Maskable interrupt request accepted
output [15:0] pc; // Program counter
output [15:0] pc_nxt; // Next PC value (for CALL & IRQ)
// INPUTs
//=========
input cpu_en_s; // Enable CPU code execution (synchronous)
input cpuoff; // Turns off the CPU
input dbg_halt_cmd; // Halt CPU command
input [3:0] dbg_reg_sel; // Debug selected register for rd/wr access
input fe_pmem_wait; // Frontend wait for Instruction fetch
input gie; // General interrupt enable
input [13:0] irq; // Maskable interrupts
input mclk; // Main system clock
input [15:0] mdb_in; // Frontend Memory data bus input
input nmi_pnd; // Non-maskable interrupt pending
input nmi_wkup; // NMI Wakeup
input [15:0] pc_sw; // Program counter software value
input pc_sw_wr; // Program counter software write
input puc_rst; // Main system reset
input scan_enable; // Scan enable (active during scan shifting)
input wdt_irq; // Watchdog-timer interrupt
input wdt_wkup; // Watchdog Wakeup
input wkup; // System Wake-up (asynchronous)
//=============================================================================
// 1) UTILITY FUNCTIONS
//=============================================================================
// 16 bits one-hot decoder
function [15:0] one_hot16;
input [3:0] binary;
begin
one_hot16 = 16'h0000;
one_hot16[binary] = 1'b1;
end
endfunction
// 8 bits one-hot decoder
function [7:0] one_hot8;
input [2:0] binary;
begin
one_hot8 = 8'h00;
one_hot8[binary] = 1'b1;
end
endfunction
//=============================================================================
// 2) PARAMETER DEFINITIONS
//=============================================================================
//
// 2.1) Instruction State machine definitons
//-------------------------------------------
parameter I_IRQ_FETCH = `I_IRQ_FETCH;
parameter I_IRQ_DONE = `I_IRQ_DONE;
parameter I_DEC = `I_DEC; // New instruction ready for decode
parameter I_EXT1 = `I_EXT1; // 1st Extension word
parameter I_EXT2 = `I_EXT2; // 2nd Extension word
parameter I_IDLE = `I_IDLE; // CPU is in IDLE mode
//
// 2.2) Execution State machine definitons
//-------------------------------------------
parameter E_IRQ_0 = `E_IRQ_0;
parameter E_IRQ_1 = `E_IRQ_1;
parameter E_IRQ_2 = `E_IRQ_2;
parameter E_IRQ_3 = `E_IRQ_3;
parameter E_IRQ_4 = `E_IRQ_4;
parameter E_SRC_AD = `E_SRC_AD;
parameter E_SRC_RD = `E_SRC_RD;
parameter E_SRC_WR = `E_SRC_WR;
parameter E_DST_AD = `E_DST_AD;
parameter E_DST_RD = `E_DST_RD;
parameter E_DST_WR = `E_DST_WR;
parameter E_EXEC = `E_EXEC;
parameter E_JUMP = `E_JUMP;
parameter E_IDLE = `E_IDLE;
//=============================================================================
// 3) FRONTEND STATE MACHINE
//=============================================================================
// The wire "conv" is used as state bits to calculate the next response
reg [2:0] i_state;
reg [2:0] i_state_nxt;
reg [1:0] inst_sz;
wire [1:0] inst_sz_nxt;
wire irq_detect;
wire [2:0] inst_type_nxt;
wire is_const;
reg [15:0] sconst_nxt;
reg [3:0] e_state_nxt;
// CPU on/off through the debug interface or cpu_en port
wire cpu_halt_cmd = dbg_halt_cmd | ~cpu_en_s;
// States Transitions
always @(i_state or inst_sz or inst_sz_nxt or pc_sw_wr or exec_done or
irq_detect or cpuoff or cpu_halt_cmd or e_state)
case(i_state)
I_IDLE : i_state_nxt = (irq_detect & ~cpu_halt_cmd) ? I_IRQ_FETCH :
(~cpuoff & ~cpu_halt_cmd) ? I_DEC : I_IDLE;
I_IRQ_FETCH: i_state_nxt = I_IRQ_DONE;
I_IRQ_DONE : i_state_nxt = I_DEC;
I_DEC : i_state_nxt = irq_detect ? I_IRQ_FETCH :
(cpuoff | cpu_halt_cmd) & exec_done ? I_IDLE :
cpu_halt_cmd & (e_state==E_IDLE) ? I_IDLE :
pc_sw_wr ? I_DEC :
~exec_done & ~(e_state==E_IDLE) ? I_DEC : // Wait in decode state
(inst_sz_nxt!=2'b00) ? I_EXT1 : I_DEC; // until execution is completed
I_EXT1 : i_state_nxt = pc_sw_wr ? I_DEC :
(inst_sz!=2'b01) ? I_EXT2 : I_DEC;
I_EXT2 : i_state_nxt = I_DEC;
// pragma coverage off
default : i_state_nxt = I_IRQ_FETCH;
// pragma coverage on
endcase
// State machine
always @(posedge mclk or posedge puc_rst)
if (puc_rst) i_state <= I_IRQ_FETCH;
else i_state <= i_state_nxt;
// Utility signals
wire decode_noirq = ((i_state==I_DEC) & (exec_done | (e_state==E_IDLE)));
wire decode = decode_noirq | irq_detect;
wire fetch = ~((i_state==I_DEC) & ~(exec_done | (e_state==E_IDLE))) & ~(e_state_nxt==E_IDLE);
// Debug interface cpu status
reg dbg_halt_st;
always @(posedge mclk or posedge puc_rst)
if (puc_rst) dbg_halt_st <= 1'b0;
else dbg_halt_st <= cpu_halt_cmd & (i_state_nxt==I_IDLE);
//=============================================================================
// 4) INTERRUPT HANDLING & SYSTEM WAKEUP
//=============================================================================
//
// 4.1) INTERRUPT HANDLING
//-----------------------------------------
// Detect reset interrupt
reg inst_irq_rst;
always @(posedge mclk or posedge puc_rst)
if (puc_rst) inst_irq_rst <= 1'b1;
else if (exec_done) inst_irq_rst <= 1'b0;
// Detect other interrupts
assign irq_detect = (nmi_pnd | ((|irq | wdt_irq) & gie)) & ~cpu_halt_cmd & ~dbg_halt_st & (exec_done | (i_state==I_IDLE));
`ifdef CLOCK_GATING
wire mclk_irq_num;
omsp_clock_gate clock_gate_irq_num (.gclk(mclk_irq_num),
.clk (mclk), .enable(irq_detect), .scan_enable(scan_enable));
`else
wire mclk_irq_num = mclk;
`endif
// Select interrupt vector
reg [3:0] irq_num;
always @(posedge mclk_irq_num or posedge puc_rst)
if (puc_rst) irq_num <= 4'hf;
`ifdef CLOCK_GATING
else irq_num <= nmi_pnd ? 4'he :
`else
else if (irq_detect) irq_num <= nmi_pnd ? 4'he :
`endif
irq[13] ? 4'hd :
irq[12] ? 4'hc :
irq[11] ? 4'hb :
(irq[10] | wdt_irq) ? 4'ha :
irq[9] ? 4'h9 :
irq[8] ? 4'h8 :
irq[7] ? 4'h7 :
irq[6] ? 4'h6 :
irq[5] ? 4'h5 :
irq[4] ? 4'h4 :
irq[3] ? 4'h3 :
irq[2] ? 4'h2 :
irq[1] ? 4'h1 :
irq[0] ? 4'h0 : 4'hf;
wire [15:0] irq_addr = {11'h7ff, irq_num, 1'b0};
// Interrupt request accepted
wire [15:0] irq_acc_all = one_hot16(irq_num) & {16{(i_state==I_IRQ_FETCH)}};
wire [13:0] irq_acc = irq_acc_all[13:0];
wire nmi_acc = irq_acc_all[14];
//
// 4.2) SYSTEM WAKEUP
//-----------------------------------------
`ifdef CPUOFF_EN
// Generate the main system clock enable signal
// Keep the clock running if:
wire mclk_enable = inst_irq_rst ? cpu_en_s : // - the RESET interrupt is currently executing
// and if the CPU is enabled
// otherwise if:
~((cpuoff | ~cpu_en_s) & // - the CPUOFF flag, cpu_en command, instruction
(i_state==I_IDLE) & // and execution state machines are all two
(e_state==E_IDLE)); // not idle.
// Wakeup condition from maskable interrupts
wire mirq_wkup;
omsp_and_gate and_mirq_wkup (.y(mirq_wkup), .a(wkup | wdt_wkup), .b(gie));
// Combined asynchronous wakeup detection from nmi & irq (masked if the cpu is disabled)
omsp_and_gate and_mclk_wkup (.y(mclk_wkup), .a(nmi_wkup | mirq_wkup), .b(cpu_en_s));
`else
// In the CPUOFF feature is disabled, the wake-up and enable signals are always 1
assign mclk_wkup = 1'b1;
assign mclk_enable = 1'b1;
`endif
//=============================================================================
// 5) FETCH INSTRUCTION
//=============================================================================
//
// 5.1) PROGRAM COUNTER & MEMORY INTERFACE
//-----------------------------------------
// Program counter
reg [15:0] pc;
// Compute next PC value
wire [15:0] pc_incr = pc + {14'h0000, fetch, 1'b0};
wire [15:0] pc_nxt = pc_sw_wr ? pc_sw :
(i_state==I_IRQ_FETCH) ? irq_addr :
(i_state==I_IRQ_DONE) ? mdb_in : pc_incr;
`ifdef CLOCK_GATING
wire pc_en = fetch |
pc_sw_wr |
(i_state==I_IRQ_FETCH) |
(i_state==I_IRQ_DONE);
wire mclk_pc;
omsp_clock_gate clock_gate_pc (.gclk(mclk_pc),
.clk (mclk), .enable(pc_en), .scan_enable(scan_enable));
`else
wire mclk_pc = mclk;
`endif
always @(posedge mclk_pc or posedge puc_rst)
if (puc_rst) pc <= 16'h0000;
else pc <= pc_nxt;
// Check if ROM has been busy in order to retry ROM access
reg pmem_busy;
always @(posedge mclk or posedge puc_rst)
if (puc_rst) pmem_busy <= 1'b0;
else pmem_busy <= fe_pmem_wait;
// Memory interface
wire [15:0] mab = pc_nxt;
wire mb_en = fetch | pc_sw_wr | (i_state==I_IRQ_FETCH) | pmem_busy | (dbg_halt_st & ~cpu_halt_cmd);
//
// 5.2) INSTRUCTION REGISTER
//--------------------------------
// Instruction register
wire [15:0] ir = mdb_in;
// Detect if source extension word is required
wire is_sext = (inst_as[`IDX] | inst_as[`SYMB] | inst_as[`ABS] | inst_as[`IMM]);
// For the Symbolic addressing mode, add -2 to the extension word in order
// to make up for the PC address
wire [15:0] ext_incr = ((i_state==I_EXT1) & inst_as[`SYMB]) |
((i_state==I_EXT2) & inst_ad[`SYMB]) |
((i_state==I_EXT1) & ~inst_as[`SYMB] &
~(i_state_nxt==I_EXT2) & inst_ad[`SYMB]) ? 16'hfffe : 16'h0000;
wire [15:0] ext_nxt = ir + ext_incr;
// Store source extension word
reg [15:0] inst_sext;
`ifdef CLOCK_GATING
wire inst_sext_en = (decode & is_const) |
(decode & inst_type_nxt[`INST_JMP]) |
((i_state==I_EXT1) & is_sext);
wire mclk_inst_sext;
omsp_clock_gate clock_gate_inst_sext (.gclk(mclk_inst_sext),
.clk (mclk), .enable(inst_sext_en), .scan_enable(scan_enable));
`else
wire mclk_inst_sext = mclk;
`endif
always @(posedge mclk_inst_sext or posedge puc_rst)
if (puc_rst) inst_sext <= 16'h0000;
else if (decode & is_const) inst_sext <= sconst_nxt;
else if (decode & inst_type_nxt[`INST_JMP]) inst_sext <= {{5{ir[9]}},ir[9:0],1'b0};
`ifdef CLOCK_GATING
else inst_sext <= ext_nxt;
`else
else if ((i_state==I_EXT1) & is_sext) inst_sext <= ext_nxt;
`endif
// Source extension word is ready
wire inst_sext_rdy = (i_state==I_EXT1) & is_sext;
// Store destination extension word
reg [15:0] inst_dext;
`ifdef CLOCK_GATING
wire inst_dext_en = ((i_state==I_EXT1) & ~is_sext) |
(i_state==I_EXT2);
wire mclk_inst_dext;
omsp_clock_gate clock_gate_inst_dext (.gclk(mclk_inst_dext),
.clk (mclk), .enable(inst_dext_en), .scan_enable(scan_enable));
`else
wire mclk_inst_dext = mclk;
`endif
always @(posedge mclk_inst_dext or posedge puc_rst)
if (puc_rst) inst_dext <= 16'h0000;
else if ((i_state==I_EXT1) & ~is_sext) inst_dext <= ext_nxt;
`ifdef CLOCK_GATING
else inst_dext <= ext_nxt;
`else
else if (i_state==I_EXT2) inst_dext <= ext_nxt;
`endif
// Destination extension word is ready
wire inst_dext_rdy = (((i_state==I_EXT1) & ~is_sext) | (i_state==I_EXT2));
//=============================================================================
// 6) DECODE INSTRUCTION
//=============================================================================
`ifdef CLOCK_GATING
wire mclk_decode;
omsp_clock_gate clock_gate_decode (.gclk(mclk_decode),
.clk (mclk), .enable(decode), .scan_enable(scan_enable));
`else
wire mclk_decode = mclk;
`endif
//
// 6.1) OPCODE: INSTRUCTION TYPE
//----------------------------------------
// Instructions type is encoded in a one hot fashion as following:
//
// 3'b001: Single-operand arithmetic
// 3'b010: Conditional jump
// 3'b100: Two-operand arithmetic
reg [2:0] inst_type;
assign inst_type_nxt = {(ir[15:14]!=2'b00),
(ir[15:13]==3'b001),
(ir[15:13]==3'b000)} & {3{~irq_detect}};
always @(posedge mclk_decode or posedge puc_rst)
if (puc_rst) inst_type <= 3'b000;
`ifdef CLOCK_GATING
else inst_type <= inst_type_nxt;
`else
else if (decode) inst_type <= inst_type_nxt;
`endif
//
// 6.2) OPCODE: SINGLE-OPERAND ARITHMETIC
//----------------------------------------
// Instructions are encoded in a one hot fashion as following:
//
// 8'b00000001: RRC
// 8'b00000010: SWPB
// 8'b00000100: RRA
// 8'b00001000: SXT
// 8'b00010000: PUSH
// 8'b00100000: CALL
// 8'b01000000: RETI
// 8'b10000000: IRQ
reg [7:0] inst_so;
wire [7:0] inst_so_nxt = irq_detect ? 8'h80 : (one_hot8(ir[9:7]) & {8{inst_type_nxt[`INST_SO]}});
always @(posedge mclk_decode or posedge puc_rst)
if (puc_rst) inst_so <= 8'h00;
`ifdef CLOCK_GATING
else inst_so <= inst_so_nxt;
`else
else if (decode) inst_so <= inst_so_nxt;
`endif
//
// 6.3) OPCODE: CONDITIONAL JUMP
//--------------------------------
// Instructions are encoded in a one hot fashion as following:
//
// 8'b00000001: JNE/JNZ
// 8'b00000010: JEQ/JZ
// 8'b00000100: JNC/JLO
// 8'b00001000: JC/JHS
// 8'b00010000: JN
// 8'b00100000: JGE
// 8'b01000000: JL
// 8'b10000000: JMP
reg [2:0] inst_jmp_bin;
always @(posedge mclk_decode or posedge puc_rst)
if (puc_rst) inst_jmp_bin <= 3'h0;
`ifdef CLOCK_GATING
else inst_jmp_bin <= ir[12:10];
`else
else if (decode) inst_jmp_bin <= ir[12:10];
`endif
wire [7:0] inst_jmp = one_hot8(inst_jmp_bin) & {8{inst_type[`INST_JMP]}};
//
// 6.4) OPCODE: TWO-OPERAND ARITHMETIC
//-------------------------------------
// Instructions are encoded in a one hot fashion as following:
//
// 12'b000000000001: MOV
// 12'b000000000010: ADD
// 12'b000000000100: ADDC
// 12'b000000001000: SUBC
// 12'b000000010000: SUB
// 12'b000000100000: CMP
// 12'b000001000000: DADD
// 12'b000010000000: BIT
// 12'b000100000000: BIC
// 12'b001000000000: BIS
// 12'b010000000000: XOR
// 12'b100000000000: AND
wire [15:0] inst_to_1hot = one_hot16(ir[15:12]) & {16{inst_type_nxt[`INST_TO]}};
wire [11:0] inst_to_nxt = inst_to_1hot[15:4];
reg inst_mov;
always @(posedge mclk_decode or posedge puc_rst)
if (puc_rst) inst_mov <= 1'b0;
`ifdef CLOCK_GATING
else inst_mov <= inst_to_nxt[`MOV];
`else
else if (decode) inst_mov <= inst_to_nxt[`MOV];
`endif
//
// 6.5) SOURCE AND DESTINATION REGISTERS
//---------------------------------------
// Destination register
reg [3:0] inst_dest_bin;
always @(posedge mclk_decode or posedge puc_rst)
if (puc_rst) inst_dest_bin <= 4'h0;
`ifdef CLOCK_GATING
else inst_dest_bin <= ir[3:0];
`else
else if (decode) inst_dest_bin <= ir[3:0];
`endif
wire [15:0] inst_dest = dbg_halt_st ? one_hot16(dbg_reg_sel) :
inst_type[`INST_JMP] ? 16'h0001 :
inst_so[`IRQ] |
inst_so[`PUSH] |
inst_so[`CALL] ? 16'h0002 :
one_hot16(inst_dest_bin);
// Source register
reg [3:0] inst_src_bin;
always @(posedge mclk_decode or posedge puc_rst)
if (puc_rst) inst_src_bin <= 4'h0;
`ifdef CLOCK_GATING
else inst_src_bin <= ir[11:8];
`else
else if (decode) inst_src_bin <= ir[11:8];
`endif
wire [15:0] inst_src = inst_type[`INST_TO] ? one_hot16(inst_src_bin) :
inst_so[`RETI] ? 16'h0002 :
inst_so[`IRQ] ? 16'h0001 :
inst_type[`INST_SO] ? one_hot16(inst_dest_bin) : 16'h0000;
//
// 6.6) SOURCE ADDRESSING MODES
//--------------------------------
// Source addressing modes are encoded in a one hot fashion as following:
//
// 13'b0000000000001: Register direct.
// 13'b0000000000010: Register indexed.
// 13'b0000000000100: Register indirect.
// 13'b0000000001000: Register indirect autoincrement.
// 13'b0000000010000: Symbolic (operand is in memory at address PC+x).
// 13'b0000000100000: Immediate (operand is next word in the instruction stream).
// 13'b0000001000000: Absolute (operand is in memory at address x).
// 13'b0000010000000: Constant 4.
// 13'b0000100000000: Constant 8.
// 13'b0001000000000: Constant 0.
// 13'b0010000000000: Constant 1.
// 13'b0100000000000: Constant 2.
// 13'b1000000000000: Constant -1.
reg [12:0] inst_as_nxt;
wire [3:0] src_reg = inst_type_nxt[`INST_SO] ? ir[3:0] : ir[11:8];
always @(src_reg or ir or inst_type_nxt)
begin
if (inst_type_nxt[`INST_JMP])
inst_as_nxt = 13'b0000000000001;
else if (src_reg==4'h3) // Addressing mode using R3
case (ir[5:4])
2'b11 : inst_as_nxt = 13'b1000000000000;
2'b10 : inst_as_nxt = 13'b0100000000000;
2'b01 : inst_as_nxt = 13'b0010000000000;
default: inst_as_nxt = 13'b0001000000000;
endcase
else if (src_reg==4'h2) // Addressing mode using R2
case (ir[5:4])
2'b11 : inst_as_nxt = 13'b0000100000000;
2'b10 : inst_as_nxt = 13'b0000010000000;
2'b01 : inst_as_nxt = 13'b0000001000000;
default: inst_as_nxt = 13'b0000000000001;
endcase
else if (src_reg==4'h0) // Addressing mode using R0
case (ir[5:4])
2'b11 : inst_as_nxt = 13'b0000000100000;
2'b10 : inst_as_nxt = 13'b0000000000100;
2'b01 : inst_as_nxt = 13'b0000000010000;
default: inst_as_nxt = 13'b0000000000001;
endcase
else // General Addressing mode
case (ir[5:4])
2'b11 : inst_as_nxt = 13'b0000000001000;
2'b10 : inst_as_nxt = 13'b0000000000100;
2'b01 : inst_as_nxt = 13'b0000000000010;
default: inst_as_nxt = 13'b0000000000001;
endcase
end
assign is_const = |inst_as_nxt[12:7];
reg [7:0] inst_as;
always @(posedge mclk_decode or posedge puc_rst)
if (puc_rst) inst_as <= 8'h00;
`ifdef CLOCK_GATING
else inst_as <= {is_const, inst_as_nxt[6:0]};
`else
else if (decode) inst_as <= {is_const, inst_as_nxt[6:0]};
`endif
// 13'b0000010000000: Constant 4.
// 13'b0000100000000: Constant 8.
// 13'b0001000000000: Constant 0.
// 13'b0010000000000: Constant 1.
// 13'b0100000000000: Constant 2.
// 13'b1000000000000: Constant -1.
always @(inst_as_nxt)
begin
if (inst_as_nxt[7]) sconst_nxt = 16'h0004;
else if (inst_as_nxt[8]) sconst_nxt = 16'h0008;
else if (inst_as_nxt[9]) sconst_nxt = 16'h0000;
else if (inst_as_nxt[10]) sconst_nxt = 16'h0001;
else if (inst_as_nxt[11]) sconst_nxt = 16'h0002;
else if (inst_as_nxt[12]) sconst_nxt = 16'hffff;
else sconst_nxt = 16'h0000;
end
//
// 6.7) DESTINATION ADDRESSING MODES
//-----------------------------------
// Destination addressing modes are encoded in a one hot fashion as following:
//
// 8'b00000001: Register direct.
// 8'b00000010: Register indexed.
// 8'b00010000: Symbolic (operand is in memory at address PC+x).
// 8'b01000000: Absolute (operand is in memory at address x).
reg [7:0] inst_ad_nxt;
wire [3:0] dest_reg = ir[3:0];
always @(dest_reg or ir or inst_type_nxt)
begin
if (~inst_type_nxt[`INST_TO])
inst_ad_nxt = 8'b00000000;
else if (dest_reg==4'h2) // Addressing mode using R2
case (ir[7])
1'b1 : inst_ad_nxt = 8'b01000000;
default: inst_ad_nxt = 8'b00000001;
endcase
else if (dest_reg==4'h0) // Addressing mode using R0
case (ir[7])
1'b1 : inst_ad_nxt = 8'b00010000;
default: inst_ad_nxt = 8'b00000001;
endcase
else // General Addressing mode
case (ir[7])
1'b1 : inst_ad_nxt = 8'b00000010;
default: inst_ad_nxt = 8'b00000001;
endcase
end
reg [7:0] inst_ad;
always @(posedge mclk_decode or posedge puc_rst)
if (puc_rst) inst_ad <= 8'h00;
`ifdef CLOCK_GATING
else inst_ad <= inst_ad_nxt;
`else
else if (decode) inst_ad <= inst_ad_nxt;
`endif
//
// 6.8) REMAINING INSTRUCTION DECODING
//-------------------------------------
// Operation size
reg inst_bw;
always @(posedge mclk or posedge puc_rst)
if (puc_rst) inst_bw <= 1'b0;
else if (decode) inst_bw <= ir[6] & ~inst_type_nxt[`INST_JMP] & ~irq_detect & ~cpu_halt_cmd;
// Extended instruction size
assign inst_sz_nxt = {1'b0, (inst_as_nxt[`IDX] | inst_as_nxt[`SYMB] | inst_as_nxt[`ABS] | inst_as_nxt[`IMM])} +
{1'b0, ((inst_ad_nxt[`IDX] | inst_ad_nxt[`SYMB] | inst_ad_nxt[`ABS]) & ~inst_type_nxt[`INST_SO])};
always @(posedge mclk_decode or posedge puc_rst)
if (puc_rst) inst_sz <= 2'b00;
`ifdef CLOCK_GATING
else inst_sz <= inst_sz_nxt;
`else
else if (decode) inst_sz <= inst_sz_nxt;
`endif
//=============================================================================
// 7) EXECUTION-UNIT STATE MACHINE
//=============================================================================
// State machine registers
reg [3:0] e_state;
// State machine control signals
//--------------------------------
wire src_acalc_pre = inst_as_nxt[`IDX] | inst_as_nxt[`SYMB] | inst_as_nxt[`ABS];
wire src_rd_pre = inst_as_nxt[`INDIR] | inst_as_nxt[`INDIR_I] | inst_as_nxt[`IMM] | inst_so_nxt[`RETI];
wire dst_acalc_pre = inst_ad_nxt[`IDX] | inst_ad_nxt[`SYMB] | inst_ad_nxt[`ABS];
wire dst_acalc = inst_ad[`IDX] | inst_ad[`SYMB] | inst_ad[`ABS];
wire dst_rd_pre = inst_ad_nxt[`IDX] | inst_so_nxt[`PUSH] | inst_so_nxt[`CALL] | inst_so_nxt[`RETI];
wire dst_rd = inst_ad[`IDX] | inst_so[`PUSH] | inst_so[`CALL] | inst_so[`RETI];
wire inst_branch = (inst_ad_nxt[`DIR] & (ir[3:0]==4'h0)) | inst_type_nxt[`INST_JMP] | inst_so_nxt[`RETI];
reg exec_jmp;
always @(posedge mclk or posedge puc_rst)
if (puc_rst) exec_jmp <= 1'b0;
else if (inst_branch & decode) exec_jmp <= 1'b1;
else if (e_state==E_JUMP) exec_jmp <= 1'b0;
reg exec_dst_wr;
always @(posedge mclk or posedge puc_rst)
if (puc_rst) exec_dst_wr <= 1'b0;
else if (e_state==E_DST_RD) exec_dst_wr <= 1'b1;
else if (e_state==E_DST_WR) exec_dst_wr <= 1'b0;
reg exec_src_wr;
always @(posedge mclk or posedge puc_rst)
if (puc_rst) exec_src_wr <= 1'b0;
else if (inst_type[`INST_SO] & (e_state==E_SRC_RD)) exec_src_wr <= 1'b1;
else if ((e_state==E_SRC_WR) || (e_state==E_DST_WR)) exec_src_wr <= 1'b0;
reg exec_dext_rdy;
always @(posedge mclk or posedge puc_rst)
if (puc_rst) exec_dext_rdy <= 1'b0;
else if (e_state==E_DST_RD) exec_dext_rdy <= 1'b0;
else if (inst_dext_rdy) exec_dext_rdy <= 1'b1;
// Execution first state
wire [3:0] e_first_state = ~dbg_halt_st & inst_so_nxt[`IRQ] ? E_IRQ_0 :
cpu_halt_cmd | (i_state==I_IDLE) ? E_IDLE :
cpuoff ? E_IDLE :
src_acalc_pre ? E_SRC_AD :
src_rd_pre ? E_SRC_RD :
dst_acalc_pre ? E_DST_AD :
dst_rd_pre ? E_DST_RD : E_EXEC;
// State machine
//--------------------------------
// States Transitions
always @(e_state or dst_acalc or dst_rd or inst_sext_rdy or
inst_dext_rdy or exec_dext_rdy or exec_jmp or exec_dst_wr or
e_first_state or exec_src_wr)
case(e_state)
E_IDLE : e_state_nxt = e_first_state;
E_IRQ_0 : e_state_nxt = E_IRQ_1;
E_IRQ_1 : e_state_nxt = E_IRQ_2;
E_IRQ_2 : e_state_nxt = E_IRQ_3;
E_IRQ_3 : e_state_nxt = E_IRQ_4;
E_IRQ_4 : e_state_nxt = E_EXEC;
E_SRC_AD : e_state_nxt = inst_sext_rdy ? E_SRC_RD : E_SRC_AD;
E_SRC_RD : e_state_nxt = dst_acalc ? E_DST_AD :
dst_rd ? E_DST_RD : E_EXEC;
E_DST_AD : e_state_nxt = (inst_dext_rdy |
exec_dext_rdy) ? E_DST_RD : E_DST_AD;
E_DST_RD : e_state_nxt = E_EXEC;
E_EXEC : e_state_nxt = exec_dst_wr ? E_DST_WR :
exec_jmp ? E_JUMP :
exec_src_wr ? E_SRC_WR : e_first_state;
E_JUMP : e_state_nxt = e_first_state;
E_DST_WR : e_state_nxt = exec_jmp ? E_JUMP : e_first_state;
E_SRC_WR : e_state_nxt = e_first_state;
// pragma coverage off
default : e_state_nxt = E_IRQ_0;
// pragma coverage on
endcase
// State machine
always @(posedge mclk or posedge puc_rst)
if (puc_rst) e_state <= E_IRQ_1;
else e_state <= e_state_nxt;
// Frontend State machine control signals
//----------------------------------------
wire exec_done = exec_jmp ? (e_state==E_JUMP) :
exec_dst_wr ? (e_state==E_DST_WR) :
exec_src_wr ? (e_state==E_SRC_WR) : (e_state==E_EXEC);
//=============================================================================
// 8) EXECUTION-UNIT STATE CONTROL
//=============================================================================
//
// 8.1) ALU CONTROL SIGNALS
//-------------------------------------
//
// 12'b000000000001: Enable ALU source inverter
// 12'b000000000010: Enable Incrementer
// 12'b000000000100: Enable Incrementer on carry bit
// 12'b000000001000: Select Adder
// 12'b000000010000: Select AND
// 12'b000000100000: Select OR
// 12'b000001000000: Select XOR
// 12'b000010000000: Select DADD
// 12'b000100000000: Update N, Z & C (C=~Z)
// 12'b001000000000: Update all status bits
// 12'b010000000000: Update status bit for XOR instruction
// 12'b100000000000: Don't write to destination
reg [11:0] inst_alu;
wire alu_src_inv = inst_to_nxt[`SUB] | inst_to_nxt[`SUBC] |
inst_to_nxt[`CMP] | inst_to_nxt[`BIC] ;
wire alu_inc = inst_to_nxt[`SUB] | inst_to_nxt[`CMP];
wire alu_inc_c = inst_to_nxt[`ADDC] | inst_to_nxt[`DADD] |
inst_to_nxt[`SUBC];
wire alu_add = inst_to_nxt[`ADD] | inst_to_nxt[`ADDC] |
inst_to_nxt[`SUB] | inst_to_nxt[`SUBC] |
inst_to_nxt[`CMP] | inst_type_nxt[`INST_JMP] |
inst_so_nxt[`RETI];
wire alu_and = inst_to_nxt[`AND] | inst_to_nxt[`BIC] |
inst_to_nxt[`BIT];
wire alu_or = inst_to_nxt[`BIS];
wire alu_xor = inst_to_nxt[`XOR];
wire alu_dadd = inst_to_nxt[`DADD];
wire alu_stat_7 = inst_to_nxt[`BIT] | inst_to_nxt[`AND] |
inst_so_nxt[`SXT];
wire alu_stat_f = inst_to_nxt[`ADD] | inst_to_nxt[`ADDC] |
inst_to_nxt[`SUB] | inst_to_nxt[`SUBC] |
inst_to_nxt[`CMP] | inst_to_nxt[`DADD] |
inst_to_nxt[`BIT] | inst_to_nxt[`XOR] |
inst_to_nxt[`AND] |
inst_so_nxt[`RRC] | inst_so_nxt[`RRA] |
inst_so_nxt[`SXT];
wire alu_shift = inst_so_nxt[`RRC] | inst_so_nxt[`RRA];
wire exec_no_wr = inst_to_nxt[`CMP] | inst_to_nxt[`BIT];
wire [11:0] inst_alu_nxt = {exec_no_wr,
alu_shift,
alu_stat_f,
alu_stat_7,
alu_dadd,
alu_xor,
alu_or,
alu_and,
alu_add,
alu_inc_c,
alu_inc,
alu_src_inv};
always @(posedge mclk_decode or posedge puc_rst)
if (puc_rst) inst_alu <= 12'h000;
`ifdef CLOCK_GATING
else inst_alu <= inst_alu_nxt;
`else
else if (decode) inst_alu <= inst_alu_nxt;
`endif
endmodule // omsp_frontend
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_undefines.v"
`endif

View file

@ -0,0 +1,275 @@
//----------------------------------------------------------------------------
// Copyright (C) 2009 , Olivier Girard
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the authors nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
// THE POSSIBILITY OF SUCH DAMAGE
//
//----------------------------------------------------------------------------
//
// *File Name: omsp_mem_backbone.v
//
// *Module Description:
// Memory interface backbone (decoder + arbiter)
//
// *Author(s):
// - Olivier Girard, olgirard@gmail.com
//
//----------------------------------------------------------------------------
// $Rev: 151 $
// $LastChangedBy: olivier.girard $
// $LastChangedDate: 2012-07-23 00:24:11 +0200 (Mon, 23 Jul 2012) $
//----------------------------------------------------------------------------
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_defines.v"
`endif
module omsp_mem_backbone (
// OUTPUTs
dbg_mem_din, // Debug unit Memory data input
dmem_addr, // Data Memory address
dmem_cen, // Data Memory chip enable (low active)
dmem_din, // Data Memory data input
dmem_wen, // Data Memory write enable (low active)
eu_mdb_in, // Execution Unit Memory data bus input
fe_mdb_in, // Frontend Memory data bus input
fe_pmem_wait, // Frontend wait for Instruction fetch
per_addr, // Peripheral address
per_din, // Peripheral data input
per_we, // Peripheral write enable (high active)
per_en, // Peripheral enable (high active)
pmem_addr, // Program Memory address
pmem_cen, // Program Memory chip enable (low active)
pmem_din, // Program Memory data input (optional)
pmem_wen, // Program Memory write enable (low active) (optional)
// INPUTs
dbg_halt_st, // Halt/Run status from CPU
dbg_mem_addr, // Debug address for rd/wr access
dbg_mem_dout, // Debug unit data output
dbg_mem_en, // Debug unit memory enable
dbg_mem_wr, // Debug unit memory write
dmem_dout, // Data Memory data output
eu_mab, // Execution Unit Memory address bus
eu_mb_en, // Execution Unit Memory bus enable
eu_mb_wr, // Execution Unit Memory bus write transfer
eu_mdb_out, // Execution Unit Memory data bus output
fe_mab, // Frontend Memory address bus
fe_mb_en, // Frontend Memory bus enable
mclk, // Main system clock
per_dout, // Peripheral data output
pmem_dout, // Program Memory data output
puc_rst, // Main system reset
scan_enable // Scan enable (active during scan shifting)
);
// OUTPUTs
//=========
output [15:0] dbg_mem_din; // Debug unit Memory data input
output [`DMEM_MSB:0] dmem_addr; // Data Memory address
output dmem_cen; // Data Memory chip enable (low active)
output [15:0] dmem_din; // Data Memory data input
output [1:0] dmem_wen; // Data Memory write enable (low active)
output [15:0] eu_mdb_in; // Execution Unit Memory data bus input
output [15:0] fe_mdb_in; // Frontend Memory data bus input
output fe_pmem_wait; // Frontend wait for Instruction fetch
output [13:0] per_addr; // Peripheral address
output [15:0] per_din; // Peripheral data input
output [1:0] per_we; // Peripheral write enable (high active)
output per_en; // Peripheral enable (high active)
output [`PMEM_MSB:0] pmem_addr; // Program Memory address
output pmem_cen; // Program Memory chip enable (low active)
output [15:0] pmem_din; // Program Memory data input (optional)
output [1:0] pmem_wen; // Program Memory write enable (low active) (optional)
// INPUTs
//=========
input dbg_halt_st; // Halt/Run status from CPU
input [15:0] dbg_mem_addr; // Debug address for rd/wr access
input [15:0] dbg_mem_dout; // Debug unit data output
input dbg_mem_en; // Debug unit memory enable
input [1:0] dbg_mem_wr; // Debug unit memory write
input [15:0] dmem_dout; // Data Memory data output
input [14:0] eu_mab; // Execution Unit Memory address bus
input eu_mb_en; // Execution Unit Memory bus enable
input [1:0] eu_mb_wr; // Execution Unit Memory bus write transfer
input [15:0] eu_mdb_out; // Execution Unit Memory data bus output
input [14:0] fe_mab; // Frontend Memory address bus
input fe_mb_en; // Frontend Memory bus enable
input mclk; // Main system clock
input [15:0] per_dout; // Peripheral data output
input [15:0] pmem_dout; // Program Memory data output
input puc_rst; // Main system reset
input scan_enable; // Scan enable (active during scan shifting)
//=============================================================================
// 1) DECODER
//=============================================================================
// RAM Interface
//------------------
// Execution unit access
wire eu_dmem_cen = ~(eu_mb_en & (eu_mab>=(`DMEM_BASE>>1)) &
(eu_mab<((`DMEM_BASE+`DMEM_SIZE)>>1)));
wire [15:0] eu_dmem_addr = {1'b0, eu_mab}-(`DMEM_BASE>>1);
// Debug interface access
wire dbg_dmem_cen = ~(dbg_mem_en & (dbg_mem_addr[15:1]>=(`DMEM_BASE>>1)) &
(dbg_mem_addr[15:1]<((`DMEM_BASE+`DMEM_SIZE)>>1)));
wire [15:0] dbg_dmem_addr = {1'b0, dbg_mem_addr[15:1]}-(`DMEM_BASE>>1);
// RAM Interface
wire [`DMEM_MSB:0] dmem_addr = ~dbg_dmem_cen ? dbg_dmem_addr[`DMEM_MSB:0] : eu_dmem_addr[`DMEM_MSB:0];
wire dmem_cen = dbg_dmem_cen & eu_dmem_cen;
wire [1:0] dmem_wen = ~(dbg_mem_wr | eu_mb_wr);
wire [15:0] dmem_din = ~dbg_dmem_cen ? dbg_mem_dout : eu_mdb_out;
// ROM Interface
//------------------
parameter PMEM_OFFSET = (16'hFFFF-`PMEM_SIZE+1);
// Execution unit access (only read access are accepted)
wire eu_pmem_cen = ~(eu_mb_en & ~|eu_mb_wr & (eu_mab>=(PMEM_OFFSET>>1)));
wire [15:0] eu_pmem_addr = eu_mab-(PMEM_OFFSET>>1);
// Front-end access
wire fe_pmem_cen = ~(fe_mb_en & (fe_mab>=(PMEM_OFFSET>>1)));
wire [15:0] fe_pmem_addr = fe_mab-(PMEM_OFFSET>>1);
// Debug interface access
wire dbg_pmem_cen = ~(dbg_mem_en & (dbg_mem_addr[15:1]>=(PMEM_OFFSET>>1)));
wire [15:0] dbg_pmem_addr = {1'b0, dbg_mem_addr[15:1]}-(PMEM_OFFSET>>1);
// ROM Interface (Execution unit has priority)
wire [`PMEM_MSB:0] pmem_addr = ~dbg_pmem_cen ? dbg_pmem_addr[`PMEM_MSB:0] :
~eu_pmem_cen ? eu_pmem_addr[`PMEM_MSB:0] : fe_pmem_addr[`PMEM_MSB:0];
wire pmem_cen = fe_pmem_cen & eu_pmem_cen & dbg_pmem_cen;
wire [1:0] pmem_wen = ~dbg_mem_wr;
wire [15:0] pmem_din = dbg_mem_dout;
wire fe_pmem_wait = (~fe_pmem_cen & ~eu_pmem_cen);
// Peripherals
//--------------------
wire dbg_per_en = dbg_mem_en & (dbg_mem_addr[15:1]<(`PER_SIZE>>1));
wire eu_per_en = eu_mb_en & (eu_mab<(`PER_SIZE>>1));
wire [15:0] per_din = dbg_mem_en ? dbg_mem_dout : eu_mdb_out;
wire [1:0] per_we = dbg_mem_en ? dbg_mem_wr : eu_mb_wr;
wire per_en = dbg_mem_en ? dbg_per_en : eu_per_en;
wire [`PER_MSB:0] per_addr_mux = dbg_mem_en ? dbg_mem_addr[`PER_MSB+1:1] : eu_mab[`PER_MSB:0];
wire [14:0] per_addr_ful = {{15-`PER_AWIDTH{1'b0}}, per_addr_mux};
wire [13:0] per_addr = per_addr_ful[13:0];
reg [15:0] per_dout_val;
always @ (posedge mclk or posedge puc_rst)
if (puc_rst) per_dout_val <= 16'h0000;
else per_dout_val <= per_dout;
// Frontend data Mux
//---------------------------------
// Whenever the frontend doesn't access the ROM, backup the data
// Detect whenever the data should be backuped and restored
reg fe_pmem_cen_dly;
always @(posedge mclk or posedge puc_rst)
if (puc_rst) fe_pmem_cen_dly <= 1'b0;
else fe_pmem_cen_dly <= fe_pmem_cen;
wire fe_pmem_save = ( fe_pmem_cen & ~fe_pmem_cen_dly) & ~dbg_halt_st;
wire fe_pmem_restore = (~fe_pmem_cen & fe_pmem_cen_dly) | dbg_halt_st;
`ifdef CLOCK_GATING
wire mclk_bckup;
omsp_clock_gate clock_gate_bckup (.gclk(mclk_bckup),
.clk (mclk), .enable(fe_pmem_save), .scan_enable(scan_enable));
`else
wire mclk_bckup = mclk;
`endif
reg [15:0] pmem_dout_bckup;
always @(posedge mclk_bckup or posedge puc_rst)
if (puc_rst) pmem_dout_bckup <= 16'h0000;
`ifdef CLOCK_GATING
else pmem_dout_bckup <= pmem_dout;
`else
else if (fe_pmem_save) pmem_dout_bckup <= pmem_dout;
`endif
// Mux between the ROM data and the backup
reg pmem_dout_bckup_sel;
always @(posedge mclk or posedge puc_rst)
if (puc_rst) pmem_dout_bckup_sel <= 1'b0;
else if (fe_pmem_save) pmem_dout_bckup_sel <= 1'b1;
else if (fe_pmem_restore) pmem_dout_bckup_sel <= 1'b0;
assign fe_mdb_in = pmem_dout_bckup_sel ? pmem_dout_bckup : pmem_dout;
// Execution-Unit data Mux
//---------------------------------
// Select between peripherals, RAM and ROM
reg [1:0] eu_mdb_in_sel;
always @(posedge mclk or posedge puc_rst)
if (puc_rst) eu_mdb_in_sel <= 2'b00;
else eu_mdb_in_sel <= {~eu_pmem_cen, per_en};
// Mux
assign eu_mdb_in = eu_mdb_in_sel[1] ? pmem_dout :
eu_mdb_in_sel[0] ? per_dout_val : dmem_dout;
// Debug interface data Mux
//---------------------------------
// Select between peripherals, RAM and ROM
`ifdef DBG_EN
reg [1:0] dbg_mem_din_sel;
always @(posedge mclk or posedge puc_rst)
if (puc_rst) dbg_mem_din_sel <= 2'b00;
else dbg_mem_din_sel <= {~dbg_pmem_cen, dbg_per_en};
`else
wire [1:0] dbg_mem_din_sel = 2'b00;
`endif
// Mux
assign dbg_mem_din = dbg_mem_din_sel[1] ? pmem_dout :
dbg_mem_din_sel[0] ? per_dout_val : dmem_dout;
endmodule // omsp_mem_backbone
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_undefines.v"
`endif

View file

@ -0,0 +1,420 @@
//----------------------------------------------------------------------------
// Copyright (C) 2009 , Olivier Girard
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the authors nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
// THE POSSIBILITY OF SUCH DAMAGE
//
//----------------------------------------------------------------------------
//
// *File Name: omsp_multiplier.v
//
// *Module Description:
// 16x16 Hardware multiplier.
//
// *Author(s):
// - Olivier Girard, olgirard@gmail.com
//
//----------------------------------------------------------------------------
// $Rev: 23 $
// $LastChangedBy: olivier.girard $
// $LastChangedDate: 2009-08-30 18:39:26 +0200 (Sun, 30 Aug 2009) $
//----------------------------------------------------------------------------
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_defines.v"
`endif
module omsp_multiplier (
// OUTPUTs
per_dout, // Peripheral data output
// INPUTs
mclk, // Main system clock
per_addr, // Peripheral address
per_din, // Peripheral data input
per_en, // Peripheral enable (high active)
per_we, // Peripheral write enable (high active)
puc_rst, // Main system reset
scan_enable // Scan enable (active during scan shifting)
);
// OUTPUTs
//=========
output [15:0] per_dout; // Peripheral data output
// INPUTs
//=========
input mclk; // Main system clock
input [13:0] per_addr; // Peripheral address
input [15:0] per_din; // Peripheral data input
input per_en; // Peripheral enable (high active)
input [1:0] per_we; // Peripheral write enable (high active)
input puc_rst; // Main system reset
input scan_enable; // Scan enable (active during scan shifting)
//=============================================================================
// 1) PARAMETER/REGISTERS & WIRE DECLARATION
//=============================================================================
// Register base address (must be aligned to decoder bit width)
parameter [14:0] BASE_ADDR = 15'h0130;
// Decoder bit width (defines how many bits are considered for address decoding)
parameter DEC_WD = 4;
// Register addresses offset
parameter [DEC_WD-1:0] OP1_MPY = 'h0,
OP1_MPYS = 'h2,
OP1_MAC = 'h4,
OP1_MACS = 'h6,
OP2 = 'h8,
RESLO = 'hA,
RESHI = 'hC,
SUMEXT = 'hE;
// Register one-hot decoder utilities
parameter DEC_SZ = (1 << DEC_WD);
parameter [DEC_SZ-1:0] BASE_REG = {{DEC_SZ-1{1'b0}}, 1'b1};
// Register one-hot decoder
parameter [DEC_SZ-1:0] OP1_MPY_D = (BASE_REG << OP1_MPY),
OP1_MPYS_D = (BASE_REG << OP1_MPYS),
OP1_MAC_D = (BASE_REG << OP1_MAC),
OP1_MACS_D = (BASE_REG << OP1_MACS),
OP2_D = (BASE_REG << OP2),
RESLO_D = (BASE_REG << RESLO),
RESHI_D = (BASE_REG << RESHI),
SUMEXT_D = (BASE_REG << SUMEXT);
// Wire pre-declarations
wire result_wr;
wire result_clr;
wire early_read;
//============================================================================
// 2) REGISTER DECODER
//============================================================================
// Local register selection
wire reg_sel = per_en & (per_addr[13:DEC_WD-1]==BASE_ADDR[14:DEC_WD]);
// Register local address
wire [DEC_WD-1:0] reg_addr = {per_addr[DEC_WD-2:0], 1'b0};
// Register address decode
wire [DEC_SZ-1:0] reg_dec = (OP1_MPY_D & {DEC_SZ{(reg_addr == OP1_MPY )}}) |
(OP1_MPYS_D & {DEC_SZ{(reg_addr == OP1_MPYS )}}) |
(OP1_MAC_D & {DEC_SZ{(reg_addr == OP1_MAC )}}) |
(OP1_MACS_D & {DEC_SZ{(reg_addr == OP1_MACS )}}) |
(OP2_D & {DEC_SZ{(reg_addr == OP2 )}}) |
(RESLO_D & {DEC_SZ{(reg_addr == RESLO )}}) |
(RESHI_D & {DEC_SZ{(reg_addr == RESHI )}}) |
(SUMEXT_D & {DEC_SZ{(reg_addr == SUMEXT )}});
// Read/Write probes
wire reg_write = |per_we & reg_sel;
wire reg_read = ~|per_we & reg_sel;
// Read/Write vectors
wire [DEC_SZ-1:0] reg_wr = reg_dec & {DEC_SZ{reg_write}};
wire [DEC_SZ-1:0] reg_rd = reg_dec & {DEC_SZ{reg_read}};
//============================================================================
// 3) REGISTERS
//============================================================================
// OP1 Register
//-----------------
reg [15:0] op1;
wire op1_wr = reg_wr[OP1_MPY] |
reg_wr[OP1_MPYS] |
reg_wr[OP1_MAC] |
reg_wr[OP1_MACS];
`ifdef CLOCK_GATING
wire mclk_op1;
omsp_clock_gate clock_gate_op1 (.gclk(mclk_op1),
.clk (mclk), .enable(op1_wr), .scan_enable(scan_enable));
`else
wire mclk_op1 = mclk;
`endif
always @ (posedge mclk_op1 or posedge puc_rst)
if (puc_rst) op1 <= 16'h0000;
`ifdef CLOCK_GATING
else op1 <= per_din;
`else
else if (op1_wr) op1 <= per_din;
`endif
wire [15:0] op1_rd = op1;
// OP2 Register
//-----------------
reg [15:0] op2;
wire op2_wr = reg_wr[OP2];
`ifdef CLOCK_GATING
wire mclk_op2;
omsp_clock_gate clock_gate_op2 (.gclk(mclk_op2),
.clk (mclk), .enable(op2_wr), .scan_enable(scan_enable));
`else
wire mclk_op2 = mclk;
`endif
always @ (posedge mclk_op2 or posedge puc_rst)
if (puc_rst) op2 <= 16'h0000;
`ifdef CLOCK_GATING
else op2 <= per_din;
`else
else if (op2_wr) op2 <= per_din;
`endif
wire [15:0] op2_rd = op2;
// RESLO Register
//-----------------
reg [15:0] reslo;
wire [15:0] reslo_nxt;
wire reslo_wr = reg_wr[RESLO];
`ifdef CLOCK_GATING
wire reslo_en = reslo_wr | result_clr | result_wr;
wire mclk_reslo;
omsp_clock_gate clock_gate_reslo (.gclk(mclk_reslo),
.clk (mclk), .enable(reslo_en), .scan_enable(scan_enable));
`else
wire mclk_reslo = mclk;
`endif
always @ (posedge mclk_reslo or posedge puc_rst)
if (puc_rst) reslo <= 16'h0000;
else if (reslo_wr) reslo <= per_din;
else if (result_clr) reslo <= 16'h0000;
`ifdef CLOCK_GATING
else reslo <= reslo_nxt;
`else
else if (result_wr) reslo <= reslo_nxt;
`endif
wire [15:0] reslo_rd = early_read ? reslo_nxt : reslo;
// RESHI Register
//-----------------
reg [15:0] reshi;
wire [15:0] reshi_nxt;
wire reshi_wr = reg_wr[RESHI];
`ifdef CLOCK_GATING
wire reshi_en = reshi_wr | result_clr | result_wr;
wire mclk_reshi;
omsp_clock_gate clock_gate_reshi (.gclk(mclk_reshi),
.clk (mclk), .enable(reshi_en), .scan_enable(scan_enable));
`else
wire mclk_reshi = mclk;
`endif
always @ (posedge mclk_reshi or posedge puc_rst)
if (puc_rst) reshi <= 16'h0000;
else if (reshi_wr) reshi <= per_din;
else if (result_clr) reshi <= 16'h0000;
`ifdef CLOCK_GATING
else reshi <= reshi_nxt;
`else
else if (result_wr) reshi <= reshi_nxt;
`endif
wire [15:0] reshi_rd = early_read ? reshi_nxt : reshi;
// SUMEXT Register
//-----------------
reg [1:0] sumext_s;
wire [1:0] sumext_s_nxt;
always @ (posedge mclk or posedge puc_rst)
if (puc_rst) sumext_s <= 2'b00;
else if (op2_wr) sumext_s <= 2'b00;
else if (result_wr) sumext_s <= sumext_s_nxt;
wire [15:0] sumext_nxt = {{14{sumext_s_nxt[1]}}, sumext_s_nxt};
wire [15:0] sumext = {{14{sumext_s[1]}}, sumext_s};
wire [15:0] sumext_rd = early_read ? sumext_nxt : sumext;
//============================================================================
// 4) DATA OUTPUT GENERATION
//============================================================================
// Data output mux
wire [15:0] op1_mux = op1_rd & {16{reg_rd[OP1_MPY] |
reg_rd[OP1_MPYS] |
reg_rd[OP1_MAC] |
reg_rd[OP1_MACS]}};
wire [15:0] op2_mux = op2_rd & {16{reg_rd[OP2]}};
wire [15:0] reslo_mux = reslo_rd & {16{reg_rd[RESLO]}};
wire [15:0] reshi_mux = reshi_rd & {16{reg_rd[RESHI]}};
wire [15:0] sumext_mux = sumext_rd & {16{reg_rd[SUMEXT]}};
wire [15:0] per_dout = op1_mux |
op2_mux |
reslo_mux |
reshi_mux |
sumext_mux;
//============================================================================
// 5) HARDWARE MULTIPLIER FUNCTIONAL LOGIC
//============================================================================
// Multiplier configuration
//--------------------------
// Detect signed mode
reg sign_sel;
always @ (posedge mclk_op1 or posedge puc_rst)
if (puc_rst) sign_sel <= 1'b0;
`ifdef CLOCK_GATING
else sign_sel <= reg_wr[OP1_MPYS] | reg_wr[OP1_MACS];
`else
else if (op1_wr) sign_sel <= reg_wr[OP1_MPYS] | reg_wr[OP1_MACS];
`endif
// Detect accumulate mode
reg acc_sel;
always @ (posedge mclk_op1 or posedge puc_rst)
if (puc_rst) acc_sel <= 1'b0;
`ifdef CLOCK_GATING
else acc_sel <= reg_wr[OP1_MAC] | reg_wr[OP1_MACS];
`else
else if (op1_wr) acc_sel <= reg_wr[OP1_MAC] | reg_wr[OP1_MACS];
`endif
// Detect whenever the RESHI and RESLO registers should be cleared
assign result_clr = op2_wr & ~acc_sel;
// Combine RESHI & RESLO
wire [31:0] result = {reshi, reslo};
// 16x16 Multiplier (result computed in 1 clock cycle)
//-----------------------------------------------------
`ifdef MPY_16x16
// Detect start of a multiplication
reg cycle;
always @ (posedge mclk or posedge puc_rst)
if (puc_rst) cycle <= 1'b0;
else cycle <= op2_wr;
assign result_wr = cycle;
// Expand the operands to support signed & unsigned operations
wire signed [16:0] op1_xp = {sign_sel & op1[15], op1};
wire signed [16:0] op2_xp = {sign_sel & op2[15], op2};
// 17x17 signed multiplication
wire signed [33:0] product = op1_xp * op2_xp;
// Accumulate
wire [32:0] result_nxt = {1'b0, result} + {1'b0, product[31:0]};
// Next register values
assign reslo_nxt = result_nxt[15:0];
assign reshi_nxt = result_nxt[31:16];
assign sumext_s_nxt = sign_sel ? {2{result_nxt[31]}} :
{1'b0, result_nxt[32]};
// Since the MAC is completed within 1 clock cycle,
// an early read can't happen.
assign early_read = 1'b0;
// 16x8 Multiplier (result computed in 2 clock cycles)
//-----------------------------------------------------
`else
// Detect start of a multiplication
reg [1:0] cycle;
always @ (posedge mclk or posedge puc_rst)
if (puc_rst) cycle <= 2'b00;
else cycle <= {cycle[0], op2_wr};
assign result_wr = |cycle;
// Expand the operands to support signed & unsigned operations
wire signed [16:0] op1_xp = {sign_sel & op1[15], op1};
wire signed [8:0] op2_hi_xp = {sign_sel & op2[15], op2[15:8]};
wire signed [8:0] op2_lo_xp = { 1'b0, op2[7:0]};
wire signed [8:0] op2_xp = cycle[0] ? op2_hi_xp : op2_lo_xp;
// 17x9 signed multiplication
wire signed [25:0] product = op1_xp * op2_xp;
wire [31:0] product_xp = cycle[0] ? {product[23:0], 8'h00} :
{{8{sign_sel & product[23]}}, product[23:0]};
// Accumulate
wire [32:0] result_nxt = {1'b0, result} + {1'b0, product_xp[31:0]};
// Next register values
assign reslo_nxt = result_nxt[15:0];
assign reshi_nxt = result_nxt[31:16];
assign sumext_s_nxt = sign_sel ? {2{result_nxt[31]}} :
{1'b0, result_nxt[32] | sumext_s[0]};
// Since the MAC is completed within 2 clock cycle,
// an early read can happen during the second cycle.
assign early_read = cycle[1];
`endif
endmodule // omsp_multiplier
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_undefines.v"
`endif

View file

@ -0,0 +1,618 @@
//----------------------------------------------------------------------------
// Copyright (C) 2009 , Olivier Girard
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the authors nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
// THE POSSIBILITY OF SUCH DAMAGE
//
//----------------------------------------------------------------------------
//
// *File Name: omsp_register_file.v
//
// *Module Description:
// openMSP430 Register files
//
// *Author(s):
// - Olivier Girard, olgirard@gmail.com
//
//----------------------------------------------------------------------------
// $Rev: 134 $
// $LastChangedBy: olivier.girard $
// $LastChangedDate: 2012-03-22 21:31:06 +0100 (Thu, 22 Mar 2012) $
//----------------------------------------------------------------------------
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_defines.v"
`endif
module omsp_register_file (
// OUTPUTs
cpuoff, // Turns off the CPU
gie, // General interrupt enable
oscoff, // Turns off LFXT1 clock input
pc_sw, // Program counter software value
pc_sw_wr, // Program counter software write
reg_dest, // Selected register destination content
reg_src, // Selected register source content
scg0, // System clock generator 1. Turns off the DCO
scg1, // System clock generator 1. Turns off the SMCLK
status, // R2 Status {V,N,Z,C}
// INPUTs
alu_stat, // ALU Status {V,N,Z,C}
alu_stat_wr, // ALU Status write {V,N,Z,C}
inst_bw, // Decoded Inst: byte width
inst_dest, // Register destination selection
inst_src, // Register source selection
mclk, // Main system clock
pc, // Program counter
puc_rst, // Main system reset
reg_dest_val, // Selected register destination value
reg_dest_wr, // Write selected register destination
reg_pc_call, // Trigger PC update for a CALL instruction
reg_sp_val, // Stack Pointer next value
reg_sp_wr, // Stack Pointer write
reg_sr_wr, // Status register update for RETI instruction
reg_sr_clr, // Status register clear for interrupts
reg_incr, // Increment source register
scan_enable // Scan enable (active during scan shifting)
);
// OUTPUTs
//=========
output cpuoff; // Turns off the CPU
output gie; // General interrupt enable
output oscoff; // Turns off LFXT1 clock input
output [15:0] pc_sw; // Program counter software value
output pc_sw_wr; // Program counter software write
output [15:0] reg_dest; // Selected register destination content
output [15:0] reg_src; // Selected register source content
output scg0; // System clock generator 1. Turns off the DCO
output scg1; // System clock generator 1. Turns off the SMCLK
output [3:0] status; // R2 Status {V,N,Z,C}
// INPUTs
//=========
input [3:0] alu_stat; // ALU Status {V,N,Z,C}
input [3:0] alu_stat_wr; // ALU Status write {V,N,Z,C}
input inst_bw; // Decoded Inst: byte width
input [15:0] inst_dest; // Register destination selection
input [15:0] inst_src; // Register source selection
input mclk; // Main system clock
input [15:0] pc; // Program counter
input puc_rst; // Main system reset
input [15:0] reg_dest_val; // Selected register destination value
input reg_dest_wr; // Write selected register destination
input reg_pc_call; // Trigger PC update for a CALL instruction
input [15:0] reg_sp_val; // Stack Pointer next value
input reg_sp_wr; // Stack Pointer write
input reg_sr_wr; // Status register update for RETI instruction
input reg_sr_clr; // Status register clear for interrupts
input reg_incr; // Increment source register
input scan_enable; // Scan enable (active during scan shifting)
//=============================================================================
// 1) AUTOINCREMENT UNIT
//=============================================================================
wire [15:0] inst_src_in;
wire [15:0] incr_op = (inst_bw & ~inst_src_in[1]) ? 16'h0001 : 16'h0002;
wire [15:0] reg_incr_val = reg_src+incr_op;
wire [15:0] reg_dest_val_in = inst_bw ? {8'h00,reg_dest_val[7:0]} : reg_dest_val;
//=============================================================================
// 2) SPECIAL REGISTERS (R1/R2/R3)
//=============================================================================
// Source input selection mask (for interrupt support)
//-----------------------------------------------------
assign inst_src_in = reg_sr_clr ? 16'h0004 : inst_src;
// R0: Program counter
//---------------------
wire [15:0] r0 = pc;
wire [15:0] pc_sw = reg_dest_val_in;
wire pc_sw_wr = (inst_dest[0] & reg_dest_wr) | reg_pc_call;
// R1: Stack pointer
//-------------------
reg [15:0] r1;
wire r1_wr = inst_dest[1] & reg_dest_wr;
wire r1_inc = inst_src_in[1] & reg_incr;
`ifdef CLOCK_GATING
wire r1_en = r1_wr | reg_sp_wr | r1_inc;
wire mclk_r1;
omsp_clock_gate clock_gate_r1 (.gclk(mclk_r1),
.clk (mclk), .enable(r1_en), .scan_enable(scan_enable));
`else
wire mclk_r1 = mclk;
`endif
always @(posedge mclk_r1 or posedge puc_rst)
if (puc_rst) r1 <= 16'h0000;
else if (r1_wr) r1 <= reg_dest_val_in & 16'hfffe;
else if (reg_sp_wr) r1 <= reg_sp_val & 16'hfffe;
`ifdef CLOCK_GATING
else r1 <= reg_incr_val & 16'hfffe;
`else
else if (r1_inc) r1 <= reg_incr_val & 16'hfffe;
`endif
// R2: Status register
//---------------------
reg [15:0] r2;
wire r2_wr = (inst_dest[2] & reg_dest_wr) | reg_sr_wr;
`ifdef CLOCK_GATING // -- WITH CLOCK GATING --
wire r2_c = alu_stat_wr[0] ? alu_stat[0] : reg_dest_val_in[0]; // C
wire r2_z = alu_stat_wr[1] ? alu_stat[1] : reg_dest_val_in[1]; // Z
wire r2_n = alu_stat_wr[2] ? alu_stat[2] : reg_dest_val_in[2]; // N
wire [7:3] r2_nxt = r2_wr ? reg_dest_val_in[7:3] : r2[7:3];
wire r2_v = alu_stat_wr[3] ? alu_stat[3] : reg_dest_val_in[8]; // V
wire r2_en = |alu_stat_wr | r2_wr | reg_sr_clr;
wire mclk_r2;
omsp_clock_gate clock_gate_r2 (.gclk(mclk_r2),
.clk (mclk), .enable(r2_en), .scan_enable(scan_enable));
`else // -- WITHOUT CLOCK GATING --
wire r2_c = alu_stat_wr[0] ? alu_stat[0] :
r2_wr ? reg_dest_val_in[0] : r2[0]; // C
wire r2_z = alu_stat_wr[1] ? alu_stat[1] :
r2_wr ? reg_dest_val_in[1] : r2[1]; // Z
wire r2_n = alu_stat_wr[2] ? alu_stat[2] :
r2_wr ? reg_dest_val_in[2] : r2[2]; // N
wire [7:3] r2_nxt = r2_wr ? reg_dest_val_in[7:3] : r2[7:3];
wire r2_v = alu_stat_wr[3] ? alu_stat[3] :
r2_wr ? reg_dest_val_in[8] : r2[8]; // V
wire mclk_r2 = mclk;
`endif
`ifdef ASIC
`ifdef CPUOFF_EN
wire [15:0] cpuoff_mask = 16'h0010;
`else
wire [15:0] cpuoff_mask = 16'h0000;
`endif
`ifdef OSCOFF_EN
wire [15:0] oscoff_mask = 16'h0020;
`else
wire [15:0] oscoff_mask = 16'h0000;
`endif
`ifdef SCG0_EN
wire [15:0] scg0_mask = 16'h0040;
`else
wire [15:0] scg0_mask = 16'h0000;
`endif
`ifdef SCG1_EN
wire [15:0] scg1_mask = 16'h0080;
`else
wire [15:0] scg1_mask = 16'h0000;
`endif
`else
wire [15:0] cpuoff_mask = 16'h0010; // For the FPGA version: - the CPUOFF mode is emulated
wire [15:0] oscoff_mask = 16'h0020; // - the SCG1 mode is emulated
wire [15:0] scg0_mask = 16'h0000; // - the SCG0 is not supported
wire [15:0] scg1_mask = 16'h0080; // - the SCG1 mode is emulated
`endif
wire [15:0] r2_mask = cpuoff_mask | oscoff_mask | scg0_mask | scg1_mask | 16'h010f;
always @(posedge mclk_r2 or posedge puc_rst)
if (puc_rst) r2 <= 16'h0000;
else if (reg_sr_clr) r2 <= 16'h0000;
else r2 <= {7'h00, r2_v, r2_nxt, r2_n, r2_z, r2_c} & r2_mask;
assign status = {r2[8], r2[2:0]};
assign gie = r2[3];
assign cpuoff = r2[4] | (r2_nxt[4] & r2_wr & cpuoff_mask[4]);
assign oscoff = r2[5];
assign scg0 = r2[6];
assign scg1 = r2[7];
// R3: Constant generator
//-------------------------------------------------------------
// Note: the auto-increment feature is not implemented for R3
// because the @R3+ addressing mode is used for constant
// generation (#-1).
reg [15:0] r3;
wire r3_wr = inst_dest[3] & reg_dest_wr;
`ifdef CLOCK_GATING
wire r3_en = r3_wr;
wire mclk_r3;
omsp_clock_gate clock_gate_r3 (.gclk(mclk_r3),
.clk (mclk), .enable(r3_en), .scan_enable(scan_enable));
`else
wire mclk_r3 = mclk;
`endif
always @(posedge mclk_r3 or posedge puc_rst)
if (puc_rst) r3 <= 16'h0000;
`ifdef CLOCK_GATING
else r3 <= reg_dest_val_in;
`else
else if (r3_wr) r3 <= reg_dest_val_in;
`endif
//=============================================================================
// 4) GENERAL PURPOSE REGISTERS (R4...R15)
//=============================================================================
// R4
//------------
reg [15:0] r4;
wire r4_wr = inst_dest[4] & reg_dest_wr;
wire r4_inc = inst_src_in[4] & reg_incr;
`ifdef CLOCK_GATING
wire r4_en = r4_wr | r4_inc;
wire mclk_r4;
omsp_clock_gate clock_gate_r4 (.gclk(mclk_r4),
.clk (mclk), .enable(r4_en), .scan_enable(scan_enable));
`else
wire mclk_r4 = mclk;
`endif
always @(posedge mclk_r4 or posedge puc_rst)
if (puc_rst) r4 <= 16'h0000;
else if (r4_wr) r4 <= reg_dest_val_in;
`ifdef CLOCK_GATING
else r4 <= reg_incr_val;
`else
else if (r4_inc) r4 <= reg_incr_val;
`endif
// R5
//------------
reg [15:0] r5;
wire r5_wr = inst_dest[5] & reg_dest_wr;
wire r5_inc = inst_src_in[5] & reg_incr;
`ifdef CLOCK_GATING
wire r5_en = r5_wr | r5_inc;
wire mclk_r5;
omsp_clock_gate clock_gate_r5 (.gclk(mclk_r5),
.clk (mclk), .enable(r5_en), .scan_enable(scan_enable));
`else
wire mclk_r5 = mclk;
`endif
always @(posedge mclk_r5 or posedge puc_rst)
if (puc_rst) r5 <= 16'h0000;
else if (r5_wr) r5 <= reg_dest_val_in;
`ifdef CLOCK_GATING
else r5 <= reg_incr_val;
`else
else if (r5_inc) r5 <= reg_incr_val;
`endif
// R6
//------------
reg [15:0] r6;
wire r6_wr = inst_dest[6] & reg_dest_wr;
wire r6_inc = inst_src_in[6] & reg_incr;
`ifdef CLOCK_GATING
wire r6_en = r6_wr | r6_inc;
wire mclk_r6;
omsp_clock_gate clock_gate_r6 (.gclk(mclk_r6),
.clk (mclk), .enable(r6_en), .scan_enable(scan_enable));
`else
wire mclk_r6 = mclk;
`endif
always @(posedge mclk_r6 or posedge puc_rst)
if (puc_rst) r6 <= 16'h0000;
else if (r6_wr) r6 <= reg_dest_val_in;
`ifdef CLOCK_GATING
else r6 <= reg_incr_val;
`else
else if (r6_inc) r6 <= reg_incr_val;
`endif
// R7
//------------
reg [15:0] r7;
wire r7_wr = inst_dest[7] & reg_dest_wr;
wire r7_inc = inst_src_in[7] & reg_incr;
`ifdef CLOCK_GATING
wire r7_en = r7_wr | r7_inc;
wire mclk_r7;
omsp_clock_gate clock_gate_r7 (.gclk(mclk_r7),
.clk (mclk), .enable(r7_en), .scan_enable(scan_enable));
`else
wire mclk_r7 = mclk;
`endif
always @(posedge mclk_r7 or posedge puc_rst)
if (puc_rst) r7 <= 16'h0000;
else if (r7_wr) r7 <= reg_dest_val_in;
`ifdef CLOCK_GATING
else r7 <= reg_incr_val;
`else
else if (r7_inc) r7 <= reg_incr_val;
`endif
// R8
//------------
reg [15:0] r8;
wire r8_wr = inst_dest[8] & reg_dest_wr;
wire r8_inc = inst_src_in[8] & reg_incr;
`ifdef CLOCK_GATING
wire r8_en = r8_wr | r8_inc;
wire mclk_r8;
omsp_clock_gate clock_gate_r8 (.gclk(mclk_r8),
.clk (mclk), .enable(r8_en), .scan_enable(scan_enable));
`else
wire mclk_r8 = mclk;
`endif
always @(posedge mclk_r8 or posedge puc_rst)
if (puc_rst) r8 <= 16'h0000;
else if (r8_wr) r8 <= reg_dest_val_in;
`ifdef CLOCK_GATING
else r8 <= reg_incr_val;
`else
else if (r8_inc) r8 <= reg_incr_val;
`endif
// R9
//------------
reg [15:0] r9;
wire r9_wr = inst_dest[9] & reg_dest_wr;
wire r9_inc = inst_src_in[9] & reg_incr;
`ifdef CLOCK_GATING
wire r9_en = r9_wr | r9_inc;
wire mclk_r9;
omsp_clock_gate clock_gate_r9 (.gclk(mclk_r9),
.clk (mclk), .enable(r9_en), .scan_enable(scan_enable));
`else
wire mclk_r9 = mclk;
`endif
always @(posedge mclk_r9 or posedge puc_rst)
if (puc_rst) r9 <= 16'h0000;
else if (r9_wr) r9 <= reg_dest_val_in;
`ifdef CLOCK_GATING
else r9 <= reg_incr_val;
`else
else if (r9_inc) r9 <= reg_incr_val;
`endif
// R10
//------------
reg [15:0] r10;
wire r10_wr = inst_dest[10] & reg_dest_wr;
wire r10_inc = inst_src_in[10] & reg_incr;
`ifdef CLOCK_GATING
wire r10_en = r10_wr | r10_inc;
wire mclk_r10;
omsp_clock_gate clock_gate_r10 (.gclk(mclk_r10),
.clk (mclk), .enable(r10_en), .scan_enable(scan_enable));
`else
wire mclk_r10 = mclk;
`endif
always @(posedge mclk_r10 or posedge puc_rst)
if (puc_rst) r10 <= 16'h0000;
else if (r10_wr) r10 <= reg_dest_val_in;
`ifdef CLOCK_GATING
else r10 <= reg_incr_val;
`else
else if (r10_inc) r10 <= reg_incr_val;
`endif
// R11
//------------
reg [15:0] r11;
wire r11_wr = inst_dest[11] & reg_dest_wr;
wire r11_inc = inst_src_in[11] & reg_incr;
`ifdef CLOCK_GATING
wire r11_en = r11_wr | r11_inc;
wire mclk_r11;
omsp_clock_gate clock_gate_r11 (.gclk(mclk_r11),
.clk (mclk), .enable(r11_en), .scan_enable(scan_enable));
`else
wire mclk_r11 = mclk;
`endif
always @(posedge mclk_r11 or posedge puc_rst)
if (puc_rst) r11 <= 16'h0000;
else if (r11_wr) r11 <= reg_dest_val_in;
`ifdef CLOCK_GATING
else r11 <= reg_incr_val;
`else
else if (r11_inc) r11 <= reg_incr_val;
`endif
// R12
//------------
reg [15:0] r12;
wire r12_wr = inst_dest[12] & reg_dest_wr;
wire r12_inc = inst_src_in[12] & reg_incr;
`ifdef CLOCK_GATING
wire r12_en = r12_wr | r12_inc;
wire mclk_r12;
omsp_clock_gate clock_gate_r12 (.gclk(mclk_r12),
.clk (mclk), .enable(r12_en), .scan_enable(scan_enable));
`else
wire mclk_r12 = mclk;
`endif
always @(posedge mclk_r12 or posedge puc_rst)
if (puc_rst) r12 <= 16'h0000;
else if (r12_wr) r12 <= reg_dest_val_in;
`ifdef CLOCK_GATING
else r12 <= reg_incr_val;
`else
else if (r12_inc) r12 <= reg_incr_val;
`endif
// R13
//------------
reg [15:0] r13;
wire r13_wr = inst_dest[13] & reg_dest_wr;
wire r13_inc = inst_src_in[13] & reg_incr;
`ifdef CLOCK_GATING
wire r13_en = r13_wr | r13_inc;
wire mclk_r13;
omsp_clock_gate clock_gate_r13 (.gclk(mclk_r13),
.clk (mclk), .enable(r13_en), .scan_enable(scan_enable));
`else
wire mclk_r13 = mclk;
`endif
always @(posedge mclk_r13 or posedge puc_rst)
if (puc_rst) r13 <= 16'h0000;
else if (r13_wr) r13 <= reg_dest_val_in;
`ifdef CLOCK_GATING
else r13 <= reg_incr_val;
`else
else if (r13_inc) r13 <= reg_incr_val;
`endif
// R14
//------------
reg [15:0] r14;
wire r14_wr = inst_dest[14] & reg_dest_wr;
wire r14_inc = inst_src_in[14] & reg_incr;
`ifdef CLOCK_GATING
wire r14_en = r14_wr | r14_inc;
wire mclk_r14;
omsp_clock_gate clock_gate_r14 (.gclk(mclk_r14),
.clk (mclk), .enable(r14_en), .scan_enable(scan_enable));
`else
wire mclk_r14 = mclk;
`endif
always @(posedge mclk_r14 or posedge puc_rst)
if (puc_rst) r14 <= 16'h0000;
else if (r14_wr) r14 <= reg_dest_val_in;
`ifdef CLOCK_GATING
else r14 <= reg_incr_val;
`else
else if (r14_inc) r14 <= reg_incr_val;
`endif
// R15
//------------
reg [15:0] r15;
wire r15_wr = inst_dest[15] & reg_dest_wr;
wire r15_inc = inst_src_in[15] & reg_incr;
`ifdef CLOCK_GATING
wire r15_en = r15_wr | r15_inc;
wire mclk_r15;
omsp_clock_gate clock_gate_r15 (.gclk(mclk_r15),
.clk (mclk), .enable(r15_en), .scan_enable(scan_enable));
`else
wire mclk_r15 = mclk;
`endif
always @(posedge mclk_r15 or posedge puc_rst)
if (puc_rst) r15 <= 16'h0000;
else if (r15_wr) r15 <= reg_dest_val_in;
`ifdef CLOCK_GATING
else r15 <= reg_incr_val;
`else
else if (r15_inc) r15 <= reg_incr_val;
`endif
//=============================================================================
// 5) READ MUX
//=============================================================================
assign reg_src = (r0 & {16{inst_src_in[0]}}) |
(r1 & {16{inst_src_in[1]}}) |
(r2 & {16{inst_src_in[2]}}) |
(r3 & {16{inst_src_in[3]}}) |
(r4 & {16{inst_src_in[4]}}) |
(r5 & {16{inst_src_in[5]}}) |
(r6 & {16{inst_src_in[6]}}) |
(r7 & {16{inst_src_in[7]}}) |
(r8 & {16{inst_src_in[8]}}) |
(r9 & {16{inst_src_in[9]}}) |
(r10 & {16{inst_src_in[10]}}) |
(r11 & {16{inst_src_in[11]}}) |
(r12 & {16{inst_src_in[12]}}) |
(r13 & {16{inst_src_in[13]}}) |
(r14 & {16{inst_src_in[14]}}) |
(r15 & {16{inst_src_in[15]}});
assign reg_dest = (r0 & {16{inst_dest[0]}}) |
(r1 & {16{inst_dest[1]}}) |
(r2 & {16{inst_dest[2]}}) |
(r3 & {16{inst_dest[3]}}) |
(r4 & {16{inst_dest[4]}}) |
(r5 & {16{inst_dest[5]}}) |
(r6 & {16{inst_dest[6]}}) |
(r7 & {16{inst_dest[7]}}) |
(r8 & {16{inst_dest[8]}}) |
(r9 & {16{inst_dest[9]}}) |
(r10 & {16{inst_dest[10]}}) |
(r11 & {16{inst_dest[11]}}) |
(r12 & {16{inst_dest[12]}}) |
(r13 & {16{inst_dest[13]}}) |
(r14 & {16{inst_dest[14]}}) |
(r15 & {16{inst_dest[15]}});
endmodule // omsp_register_file
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_undefines.v"
`endif

View file

@ -0,0 +1,75 @@
//----------------------------------------------------------------------------
// Copyright (C) 2009 , Olivier Girard
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the authors nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
// THE POSSIBILITY OF SUCH DAMAGE
//
//----------------------------------------------------------------------------
//
// *File Name: omsp_scan_mux.v
//
// *Module Description:
// Generic mux for scan mode
//
// *Author(s):
// - Olivier Girard, olgirard@gmail.com
//
//----------------------------------------------------------------------------
// $Rev: 103 $
// $LastChangedBy: olivier.girard $
// $LastChangedDate: 2011-03-05 15:44:48 +0100 (Sat, 05 Mar 2011) $
//----------------------------------------------------------------------------
module omsp_scan_mux (
// OUTPUTs
data_out, // Scan mux data output
// INPUTs
data_in_scan, // Selected data input for scan mode
data_in_func, // Selected data input for functional mode
scan_mode // Scan mode
);
// OUTPUTs
//=========
output data_out; // Scan mux data output
// INPUTs
//=========
input data_in_scan; // Selected data input for scan mode
input data_in_func; // Selected data input for functional mode
input scan_mode; // Scan mode
//=============================================================================
// 1) SCAN MUX
//=============================================================================
assign data_out = scan_mode ? data_in_scan : data_in_func;
endmodule // omsp_scan_mux

View file

@ -0,0 +1,353 @@
//----------------------------------------------------------------------------
// Copyright (C) 2009 , Olivier Girard
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the authors nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
// THE POSSIBILITY OF SUCH DAMAGE
//
//----------------------------------------------------------------------------
//
// *File Name: omsp_sfr.v
//
// *Module Description:
// Processor Special function register
// Non-Maskable Interrupt generation
//
// *Author(s):
// - Olivier Girard, olgirard@gmail.com
//
//----------------------------------------------------------------------------
// $Rev: 134 $
// $LastChangedBy: olivier.girard $
// $LastChangedDate: 2012-03-22 21:31:06 +0100 (Thu, 22 Mar 2012) $
//----------------------------------------------------------------------------
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_defines.v"
`endif
module omsp_sfr (
// OUTPUTs
cpu_id, // CPU ID
nmi_pnd, // NMI Pending
nmi_wkup, // NMI Wakeup
per_dout, // Peripheral data output
wdtie, // Watchdog-timer interrupt enable
wdtifg_sw_clr, // Watchdog-timer interrupt flag software clear
wdtifg_sw_set, // Watchdog-timer interrupt flag software set
// INPUTs
mclk, // Main system clock
nmi, // Non-maskable interrupt (asynchronous)
nmi_acc, // Non-Maskable interrupt request accepted
per_addr, // Peripheral address
per_din, // Peripheral data input
per_en, // Peripheral enable (high active)
per_we, // Peripheral write enable (high active)
puc_rst, // Main system reset
scan_mode, // Scan mode
wdtifg, // Watchdog-timer interrupt flag
wdtnmies // Watchdog-timer NMI edge selection
);
// OUTPUTs
//=========
output [31:0] cpu_id; // CPU ID
output nmi_pnd; // NMI Pending
output nmi_wkup; // NMI Wakeup
output [15:0] per_dout; // Peripheral data output
output wdtie; // Watchdog-timer interrupt enable
output wdtifg_sw_clr;// Watchdog-timer interrupt flag software clear
output wdtifg_sw_set;// Watchdog-timer interrupt flag software set
// INPUTs
//=========
input mclk; // Main system clock
input nmi; // Non-maskable interrupt (asynchronous)
input nmi_acc; // Non-Maskable interrupt request accepted
input [13:0] per_addr; // Peripheral address
input [15:0] per_din; // Peripheral data input
input per_en; // Peripheral enable (high active)
input [1:0] per_we; // Peripheral write enable (high active)
input puc_rst; // Main system reset
input scan_mode; // Scan mode
input wdtifg; // Watchdog-timer interrupt flag
input wdtnmies; // Watchdog-timer NMI edge selection
//=============================================================================
// 1) PARAMETER DECLARATION
//=============================================================================
// Register base address (must be aligned to decoder bit width)
parameter [14:0] BASE_ADDR = 15'h0000;
// Decoder bit width (defines how many bits are considered for address decoding)
parameter DEC_WD = 3;
// Register addresses offset
parameter [DEC_WD-1:0] IE1 = 'h0,
IFG1 = 'h2,
CPU_ID_LO = 'h4,
CPU_ID_HI = 'h6;
// Register one-hot decoder utilities
parameter DEC_SZ = (1 << DEC_WD);
parameter [DEC_SZ-1:0] BASE_REG = {{DEC_SZ-1{1'b0}}, 1'b1};
// Register one-hot decoder
parameter [DEC_SZ-1:0] IE1_D = (BASE_REG << IE1),
IFG1_D = (BASE_REG << IFG1),
CPU_ID_LO_D = (BASE_REG << CPU_ID_LO),
CPU_ID_HI_D = (BASE_REG << CPU_ID_HI);
//============================================================================
// 2) REGISTER DECODER
//============================================================================
// Local register selection
wire reg_sel = per_en & (per_addr[13:DEC_WD-1]==BASE_ADDR[14:DEC_WD]);
// Register local address
wire [DEC_WD-1:0] reg_addr = {1'b0, per_addr[DEC_WD-2:0]};
// Register address decode
wire [DEC_SZ-1:0] reg_dec = (IE1_D & {DEC_SZ{(reg_addr==(IE1 >>1))}}) |
(IFG1_D & {DEC_SZ{(reg_addr==(IFG1 >>1))}}) |
(CPU_ID_LO_D & {DEC_SZ{(reg_addr==(CPU_ID_LO >>1))}}) |
(CPU_ID_HI_D & {DEC_SZ{(reg_addr==(CPU_ID_HI >>1))}});
// Read/Write probes
wire reg_lo_write = per_we[0] & reg_sel;
wire reg_hi_write = per_we[1] & reg_sel;
wire reg_read = ~|per_we & reg_sel;
// Read/Write vectors
wire [DEC_SZ-1:0] reg_hi_wr = reg_dec & {DEC_SZ{reg_hi_write}};
wire [DEC_SZ-1:0] reg_lo_wr = reg_dec & {DEC_SZ{reg_lo_write}};
wire [DEC_SZ-1:0] reg_rd = reg_dec & {DEC_SZ{reg_read}};
//============================================================================
// 3) REGISTERS
//============================================================================
// IE1 Register
//--------------
wire [7:0] ie1;
wire ie1_wr = IE1[0] ? reg_hi_wr[IE1] : reg_lo_wr[IE1];
wire [7:0] ie1_nxt = IE1[0] ? per_din[15:8] : per_din[7:0];
`ifdef NMI
reg nmie;
always @ (posedge mclk or posedge puc_rst)
if (puc_rst) nmie <= 1'b0;
else if (nmi_acc) nmie <= 1'b0;
else if (ie1_wr) nmie <= ie1_nxt[4];
`else
wire nmie = 1'b0;
`endif
`ifdef WATCHDOG
reg wdtie;
always @ (posedge mclk or posedge puc_rst)
if (puc_rst) wdtie <= 1'b0;
else if (ie1_wr) wdtie <= ie1_nxt[0];
`else
wire wdtie = 1'b0;
`endif
assign ie1 = {3'b000, nmie, 3'b000, wdtie};
// IFG1 Register
//---------------
wire [7:0] ifg1;
wire ifg1_wr = IFG1[0] ? reg_hi_wr[IFG1] : reg_lo_wr[IFG1];
wire [7:0] ifg1_nxt = IFG1[0] ? per_din[15:8] : per_din[7:0];
`ifdef NMI
reg nmiifg;
wire nmi_edge;
always @ (posedge mclk or posedge puc_rst)
if (puc_rst) nmiifg <= 1'b0;
else if (nmi_edge) nmiifg <= 1'b1;
else if (ifg1_wr) nmiifg <= ifg1_nxt[4];
`else
wire nmiifg = 1'b0;
`endif
`ifdef WATCHDOG
assign wdtifg_sw_clr = ifg1_wr & ~ifg1_nxt[0];
assign wdtifg_sw_set = ifg1_wr & ifg1_nxt[0];
`else
assign wdtifg_sw_clr = 1'b0;
assign wdtifg_sw_set = 1'b0;
`endif
assign ifg1 = {3'b000, nmiifg, 3'b000, wdtifg};
// CPU_ID Register (READ ONLY)
//-----------------------------
// -------------------------------------------------------------------
// CPU_ID_LO: | 15 14 13 12 11 10 9 | 8 7 6 5 4 | 3 | 2 1 0 |
// |----------------------------+-----------------+------+-------------|
// | PER_SPACE | USER_VERSION | ASIC | CPU_VERSION |
// --------------------------------------------------------------------
// CPU_ID_HI: | 15 14 13 12 11 10 | 9 8 7 6 5 4 3 2 1 | 0 |
// |----------------------------+-------------------------------+------|
// | PMEM_SIZE | DMEM_SIZE | MPY |
// -------------------------------------------------------------------
wire [2:0] cpu_version = `CPU_VERSION;
`ifdef ASIC
wire cpu_asic = 1'b1;
`else
wire cpu_asic = 1'b0;
`endif
wire [4:0] user_version = `USER_VERSION;
wire [6:0] per_space = (`PER_SIZE >> 9); // cpu_id_per * 512 = peripheral space size
`ifdef MULTIPLIER
wire mpy_info = 1'b1;
`else
wire mpy_info = 1'b0;
`endif
wire [8:0] dmem_size = (`DMEM_SIZE >> 7); // cpu_id_dmem * 128 = data memory size
wire [5:0] pmem_size = (`PMEM_SIZE >> 10); // cpu_id_pmem * 1024 = program memory size
assign cpu_id = {pmem_size,
dmem_size,
mpy_info,
per_space,
user_version,
cpu_asic,
cpu_version};
//============================================================================
// 4) DATA OUTPUT GENERATION
//============================================================================
// Data output mux
wire [15:0] ie1_rd = {8'h00, (ie1 & {8{reg_rd[IE1]}})} << (8 & {4{IE1[0]}});
wire [15:0] ifg1_rd = {8'h00, (ifg1 & {8{reg_rd[IFG1]}})} << (8 & {4{IFG1[0]}});
wire [15:0] cpu_id_lo_rd = cpu_id[15:0] & {16{reg_rd[CPU_ID_LO]}};
wire [15:0] cpu_id_hi_rd = cpu_id[31:16] & {16{reg_rd[CPU_ID_HI]}};
wire [15:0] per_dout = ie1_rd |
ifg1_rd |
cpu_id_lo_rd |
cpu_id_hi_rd;
//=============================================================================
// 5) NMI GENERATION
//=============================================================================
// NOTE THAT THE NMI INPUT IS ASSUMED TO BE NON-GLITCHY
`ifdef NMI
//-----------------------------------
// Edge selection
//-----------------------------------
wire nmi_pol = nmi ^ wdtnmies;
//-----------------------------------
// Pulse capture and synchronization
//-----------------------------------
`ifdef SYNC_NMI
`ifdef ASIC
// Glitch free reset for the event capture
reg nmi_capture_rst;
always @(posedge mclk or posedge puc_rst)
if (puc_rst) nmi_capture_rst <= 1'b1;
else nmi_capture_rst <= ifg1_wr & ~ifg1_nxt[4];
// NMI event capture
wire nmi_capture;
omsp_wakeup_cell wakeup_cell_nmi (
.wkup_out (nmi_capture), // Wakup signal (asynchronous)
.scan_clk (mclk), // Scan clock
.scan_mode (scan_mode), // Scan mode
.scan_rst (puc_rst), // Scan reset
.wkup_clear (nmi_capture_rst), // Glitch free wakeup event clear
.wkup_event (nmi_pol) // Glitch free asynchronous wakeup event
);
`else
wire nmi_capture = nmi_pol;
`endif
// Synchronization
wire nmi_s;
omsp_sync_cell sync_cell_nmi (
.data_out (nmi_s),
.data_in (nmi_capture),
.clk (mclk),
.rst (puc_rst)
);
`else
wire nmi_capture = nmi_pol;
wire nmi_s = nmi_pol;
`endif
//-----------------------------------
// NMI Pending flag
//-----------------------------------
// Delay
reg nmi_dly;
always @ (posedge mclk or posedge puc_rst)
if (puc_rst) nmi_dly <= 1'b0;
else nmi_dly <= nmi_s;
// Edge detection
assign nmi_edge = ~nmi_dly & nmi_s;
// NMI pending
wire nmi_pnd = nmiifg & nmie;
// NMI wakeup
`ifdef ASIC
wire nmi_wkup;
omsp_and_gate and_nmi_wkup (.y(nmi_wkup), .a(nmi_capture ^ nmi_dly), .b(nmie));
`else
wire nmi_wkup = 1'b0;
`endif
`else
wire nmi_pnd = 1'b0;
wire nmi_wkup = 1'b0;
`endif
endmodule // omsp_sfr
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_undefines.v"
`endif

View file

@ -0,0 +1,80 @@
//----------------------------------------------------------------------------
// Copyright (C) 2009 , Olivier Girard
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the authors nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
// THE POSSIBILITY OF SUCH DAMAGE
//
//----------------------------------------------------------------------------
//
// *File Name: omsp_sync_cell.v
//
// *Module Description:
// Generic synchronizer for the openMSP430
//
// *Author(s):
// - Olivier Girard, olgirard@gmail.com
//
//----------------------------------------------------------------------------
// $Rev: 103 $
// $LastChangedBy: olivier.girard $
// $LastChangedDate: 2011-03-05 15:44:48 +0100 (Sat, 05 Mar 2011) $
//----------------------------------------------------------------------------
module omsp_sync_cell (
// OUTPUTs
data_out, // Synchronized data output
// INPUTs
clk, // Receiving clock
data_in, // Asynchronous data input
rst // Receiving reset (active high)
);
// OUTPUTs
//=========
output data_out; // Synchronized data output
// INPUTs
//=========
input clk; // Receiving clock
input data_in; // Asynchronous data input
input rst; // Receiving reset (active high)
//=============================================================================
// 1) SYNCHRONIZER
//=============================================================================
reg [1:0] data_sync;
always @(posedge clk or posedge rst)
if (rst) data_sync <= 2'b00;
else data_sync <= {data_sync[0], data_in};
assign data_out = data_sync[1];
endmodule // omsp_sync_cell

View file

@ -0,0 +1,78 @@
//----------------------------------------------------------------------------
// Copyright (C) 2009 , Olivier Girard
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the authors nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
// THE POSSIBILITY OF SUCH DAMAGE
//
//----------------------------------------------------------------------------
//
// *File Name: omsp_sync_reset.v
//
// *Module Description:
// Generic reset synchronizer for the openMSP430
//
// *Author(s):
// - Olivier Girard, olgirard@gmail.com
//
//----------------------------------------------------------------------------
// $Rev: 103 $
// $LastChangedBy: olivier.girard $
// $LastChangedDate: 2011-03-05 15:44:48 +0100 (Sat, 05 Mar 2011) $
//----------------------------------------------------------------------------
module omsp_sync_reset (
// OUTPUTs
rst_s, // Synchronized reset
// INPUTs
clk, // Receiving clock
rst_a // Asynchronous reset
);
// OUTPUTs
//=========
output rst_s; // Synchronized reset
// INPUTs
//=========
input clk; // Receiving clock
input rst_a; // Asynchronous reset
//=============================================================================
// 1) SYNCHRONIZER
//=============================================================================
reg [1:0] data_sync;
always @(posedge clk or posedge rst_a)
if (rst_a) data_sync <= 2'b11;
else data_sync <= {data_sync[0], 1'b0};
assign rst_s = data_sync[1];
endmodule // omsp_sync_reset

View file

@ -0,0 +1,108 @@
//----------------------------------------------------------------------------
// Copyright (C) 2009 , Olivier Girard
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the authors nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
// THE POSSIBILITY OF SUCH DAMAGE
//
//----------------------------------------------------------------------------
//
// *File Name: omsp_wakeup_cell.v
//
// *Module Description:
// Generic Wakeup cell
//
// *Author(s):
// - Olivier Girard, olgirard@gmail.com
//
//----------------------------------------------------------------------------
// $Rev: 103 $
// $LastChangedBy: olivier.girard $
// $LastChangedDate: 2011-03-05 15:44:48 +0100 (Sat, 05 Mar 2011) $
//----------------------------------------------------------------------------
module omsp_wakeup_cell (
// OUTPUTs
wkup_out, // Wakup signal (asynchronous)
// INPUTs
scan_clk, // Scan clock
scan_mode, // Scan mode
scan_rst, // Scan reset
wkup_clear, // Glitch free wakeup event clear
wkup_event // Glitch free asynchronous wakeup event
);
// OUTPUTs
//=========
output wkup_out; // Wakup signal (asynchronous)
// INPUTs
//=========
input scan_clk; // Scan clock
input scan_mode; // Scan mode
input scan_rst; // Scan reset
input wkup_clear; // Glitch free wakeup event clear
input wkup_event; // Glitch free asynchronous wakeup event
//=============================================================================
// 1) AND GATE
//=============================================================================
// Scan stuff for the ASIC mode
`ifdef ASIC
wire wkup_rst;
omsp_scan_mux scan_mux_rst (
.scan_mode (scan_mode),
.data_in_scan (scan_rst),
.data_in_func (wkup_clear),
.data_out (wkup_rst)
);
wire wkup_clk;
omsp_scan_mux scan_mux_clk (
.scan_mode (scan_mode),
.data_in_scan (scan_clk),
.data_in_func (wkup_event),
.data_out (wkup_clk)
);
`else
wire wkup_rst = wkup_clear;
wire wkup_clk = wkup_event;
`endif
// Wakeup capture
reg wkup_out;
always @(posedge wkup_clk or posedge wkup_rst)
if (wkup_rst) wkup_out <= 1'b0;
else wkup_out <= 1'b1;
endmodule // omsp_wakeup_cell

View file

@ -0,0 +1,556 @@
//----------------------------------------------------------------------------
// Copyright (C) 2009 , Olivier Girard
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the authors nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
// THE POSSIBILITY OF SUCH DAMAGE
//
//----------------------------------------------------------------------------
//
// *File Name: omsp_watchdog.v
//
// *Module Description:
// Watchdog Timer
//
// *Author(s):
// - Olivier Girard, olgirard@gmail.com
//
//----------------------------------------------------------------------------
// $Rev: 134 $
// $LastChangedBy: olivier.girard $
// $LastChangedDate: 2012-03-22 21:31:06 +0100 (Thu, 22 Mar 2012) $
//----------------------------------------------------------------------------
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_defines.v"
`endif
module omsp_watchdog (
// OUTPUTs
per_dout, // Peripheral data output
wdt_irq, // Watchdog-timer interrupt
wdt_reset, // Watchdog-timer reset
wdt_wkup, // Watchdog Wakeup
wdtifg, // Watchdog-timer interrupt flag
wdtnmies, // Watchdog-timer NMI edge selection
// INPUTs
aclk, // ACLK
aclk_en, // ACLK enable
dbg_freeze, // Freeze Watchdog counter
mclk, // Main system clock
per_addr, // Peripheral address
per_din, // Peripheral data input
per_en, // Peripheral enable (high active)
per_we, // Peripheral write enable (high active)
por, // Power-on reset
puc_rst, // Main system reset
scan_enable, // Scan enable (active during scan shifting)
scan_mode, // Scan mode
smclk, // SMCLK
smclk_en, // SMCLK enable
wdtie, // Watchdog timer interrupt enable
wdtifg_irq_clr, // Watchdog-timer interrupt flag irq accepted clear
wdtifg_sw_clr, // Watchdog-timer interrupt flag software clear
wdtifg_sw_set // Watchdog-timer interrupt flag software set
);
// OUTPUTs
//=========
output [15:0] per_dout; // Peripheral data output
output wdt_irq; // Watchdog-timer interrupt
output wdt_reset; // Watchdog-timer reset
output wdt_wkup; // Watchdog Wakeup
output wdtifg; // Watchdog-timer interrupt flag
output wdtnmies; // Watchdog-timer NMI edge selection
// INPUTs
//=========
input aclk; // ACLK
input aclk_en; // ACLK enable
input dbg_freeze; // Freeze Watchdog counter
input mclk; // Main system clock
input [13:0] per_addr; // Peripheral address
input [15:0] per_din; // Peripheral data input
input per_en; // Peripheral enable (high active)
input [1:0] per_we; // Peripheral write enable (high active)
input por; // Power-on reset
input puc_rst; // Main system reset
input scan_enable; // Scan enable (active during scan shifting)
input scan_mode; // Scan mode
input smclk; // SMCLK
input smclk_en; // SMCLK enable
input wdtie; // Watchdog timer interrupt enable
input wdtifg_irq_clr; // Clear Watchdog-timer interrupt flag
input wdtifg_sw_clr; // Watchdog-timer interrupt flag software clear
input wdtifg_sw_set; // Watchdog-timer interrupt flag software set
//=============================================================================
// 1) PARAMETER DECLARATION
//=============================================================================
// Register base address (must be aligned to decoder bit width)
parameter [14:0] BASE_ADDR = 15'h0120;
// Decoder bit width (defines how many bits are considered for address decoding)
parameter DEC_WD = 2;
// Register addresses offset
parameter [DEC_WD-1:0] WDTCTL = 'h0;
// Register one-hot decoder utilities
parameter DEC_SZ = (1 << DEC_WD);
parameter [DEC_SZ-1:0] BASE_REG = {{DEC_SZ-1{1'b0}}, 1'b1};
// Register one-hot decoder
parameter [DEC_SZ-1:0] WDTCTL_D = (BASE_REG << WDTCTL);
//============================================================================
// 2) REGISTER DECODER
//============================================================================
// Local register selection
wire reg_sel = per_en & (per_addr[13:DEC_WD-1]==BASE_ADDR[14:DEC_WD]);
// Register local address
wire [DEC_WD-1:0] reg_addr = {per_addr[DEC_WD-2:0], 1'b0};
// Register address decode
wire [DEC_SZ-1:0] reg_dec = (WDTCTL_D & {DEC_SZ{(reg_addr==WDTCTL)}});
// Read/Write probes
wire reg_write = |per_we & reg_sel;
wire reg_read = ~|per_we & reg_sel;
// Read/Write vectors
wire [DEC_SZ-1:0] reg_wr = reg_dec & {DEC_SZ{reg_write}};
wire [DEC_SZ-1:0] reg_rd = reg_dec & {DEC_SZ{reg_read}};
//============================================================================
// 3) REGISTERS
//============================================================================
// WDTCTL Register
//-----------------
// WDTNMI is not implemented and therefore masked
reg [7:0] wdtctl;
wire wdtctl_wr = reg_wr[WDTCTL];
`ifdef CLOCK_GATING
wire mclk_wdtctl;
omsp_clock_gate clock_gate_wdtctl (.gclk(mclk_wdtctl),
.clk (mclk), .enable(wdtctl_wr), .scan_enable(scan_enable));
`else
wire mclk_wdtctl = mclk;
`endif
`ifdef NMI
parameter [7:0] WDTNMIES_MASK = 8'h40;
`else
parameter [7:0] WDTNMIES_MASK = 8'h00;
`endif
`ifdef ASIC
`ifdef WATCHDOG_MUX
parameter [7:0] WDTSSEL_MASK = 8'h04;
`else
parameter [7:0] WDTSSEL_MASK = 8'h00;
`endif
`else
parameter [7:0] WDTSSEL_MASK = 8'h04;
`endif
parameter [7:0] WDTCTL_MASK = (8'b1001_0011 | WDTSSEL_MASK | WDTNMIES_MASK);
always @ (posedge mclk_wdtctl or posedge puc_rst)
if (puc_rst) wdtctl <= 8'h00;
`ifdef CLOCK_GATING
else wdtctl <= per_din[7:0] & WDTCTL_MASK;
`else
else if (wdtctl_wr) wdtctl <= per_din[7:0] & WDTCTL_MASK;
`endif
wire wdtpw_error = wdtctl_wr & (per_din[15:8]!=8'h5a);
wire wdttmsel = wdtctl[4];
wire wdtnmies = wdtctl[6];
//============================================================================
// 4) DATA OUTPUT GENERATION
//============================================================================
`ifdef NMI
parameter [7:0] WDTNMI_RD_MASK = 8'h20;
`else
parameter [7:0] WDTNMI_RD_MASK = 8'h00;
`endif
`ifdef WATCHDOG_MUX
parameter [7:0] WDTSSEL_RD_MASK = 8'h00;
`else
`ifdef WATCHDOG_NOMUX_ACLK
parameter [7:0] WDTSSEL_RD_MASK = 8'h04;
`else
parameter [7:0] WDTSSEL_RD_MASK = 8'h00;
`endif
`endif
parameter [7:0] WDTCTL_RD_MASK = WDTNMI_RD_MASK | WDTSSEL_RD_MASK;
// Data output mux
wire [15:0] wdtctl_rd = {8'h69, wdtctl | WDTCTL_RD_MASK} & {16{reg_rd[WDTCTL]}};
wire [15:0] per_dout = wdtctl_rd;
//=============================================================================
// 5) WATCHDOG TIMER (ASIC IMPLEMENTATION)
//=============================================================================
`ifdef ASIC
// Watchdog clock source selection
//---------------------------------
wire wdt_clk;
`ifdef WATCHDOG_MUX
omsp_clock_mux clock_mux_watchdog (
.clk_out (wdt_clk),
.clk_in0 (smclk),
.clk_in1 (aclk),
.reset (puc_rst),
.scan_mode (scan_mode),
.select (wdtctl[2])
);
`else
`ifdef WATCHDOG_NOMUX_ACLK
assign wdt_clk = aclk;
`else
assign wdt_clk = smclk;
`endif
`endif
// Reset synchronizer for the watchdog local clock domain
//--------------------------------------------------------
wire wdt_rst_noscan;
wire wdt_rst;
// Reset Synchronizer
omsp_sync_reset sync_reset_por (
.rst_s (wdt_rst_noscan),
.clk (wdt_clk),
.rst_a (puc_rst)
);
// Scan Reset Mux
omsp_scan_mux scan_mux_wdt_rst (
.scan_mode (scan_mode),
.data_in_scan (puc_rst),
.data_in_func (wdt_rst_noscan),
.data_out (wdt_rst)
);
// Watchog counter clear (synchronization)
//-----------------------------------------
// Toggle bit whenever the watchog needs to be cleared
reg wdtcnt_clr_toggle;
wire wdtcnt_clr_detect = (wdtctl_wr & per_din[3]);
always @ (posedge mclk or posedge puc_rst)
if (puc_rst) wdtcnt_clr_toggle <= 1'b0;
else if (wdtcnt_clr_detect) wdtcnt_clr_toggle <= ~wdtcnt_clr_toggle;
// Synchronization
wire wdtcnt_clr_sync;
omsp_sync_cell sync_cell_wdtcnt_clr (
.data_out (wdtcnt_clr_sync),
.data_in (wdtcnt_clr_toggle),
.clk (wdt_clk),
.rst (wdt_rst)
);
// Edge detection
reg wdtcnt_clr_sync_dly;
always @ (posedge wdt_clk or posedge wdt_rst)
if (wdt_rst) wdtcnt_clr_sync_dly <= 1'b0;
else wdtcnt_clr_sync_dly <= wdtcnt_clr_sync;
wire wdtqn_edge;
wire wdtcnt_clr = (wdtcnt_clr_sync ^ wdtcnt_clr_sync_dly) | wdtqn_edge;
// Watchog counter increment (synchronization)
//----------------------------------------------
wire wdtcnt_incr;
omsp_sync_cell sync_cell_wdtcnt_incr (
.data_out (wdtcnt_incr),
.data_in (~wdtctl[7] & ~dbg_freeze),
.clk (wdt_clk),
.rst (wdt_rst)
);
// Watchdog 16 bit counter
//--------------------------
reg [15:0] wdtcnt;
wire [15:0] wdtcnt_nxt = wdtcnt+16'h0001;
`ifdef CLOCK_GATING
wire wdtcnt_en = wdtcnt_clr | wdtcnt_incr;
wire wdt_clk_cnt;
omsp_clock_gate clock_gate_wdtcnt (.gclk(wdt_clk_cnt),
.clk (wdt_clk), .enable(wdtcnt_en), .scan_enable(scan_enable));
`else
wire wdt_clk_cnt = wdt_clk;
`endif
always @ (posedge wdt_clk_cnt or posedge wdt_rst)
if (wdt_rst) wdtcnt <= 16'h0000;
else if (wdtcnt_clr) wdtcnt <= 16'h0000;
`ifdef CLOCK_GATING
else wdtcnt <= wdtcnt_nxt;
`else
else if (wdtcnt_incr) wdtcnt <= wdtcnt_nxt;
`endif
// Local synchronizer for the wdtctl.WDTISx
// configuration (note that we can live with
// a full bus synchronizer as it won't hurt
// if we get a wrong WDTISx value for a
// single clock cycle)
//--------------------------------------------
reg [1:0] wdtisx_s;
reg [1:0] wdtisx_ss;
always @ (posedge wdt_clk_cnt or posedge wdt_rst)
if (wdt_rst)
begin
wdtisx_s <= 2'h0;
wdtisx_ss <= 2'h0;
end
else
begin
wdtisx_s <= wdtctl[1:0];
wdtisx_ss <= wdtisx_s;
end
// Interval selection mux
//--------------------------
reg wdtqn;
always @(wdtisx_ss or wdtcnt_nxt)
case(wdtisx_ss)
2'b00 : wdtqn = wdtcnt_nxt[15];
2'b01 : wdtqn = wdtcnt_nxt[13];
2'b10 : wdtqn = wdtcnt_nxt[9];
default: wdtqn = wdtcnt_nxt[6];
endcase
// Watchdog event detection
//-----------------------------
// Interval end detection
assign wdtqn_edge = (wdtqn & wdtcnt_incr);
// Toggle bit for the transmition to the MCLK domain
reg wdt_evt_toggle;
always @ (posedge wdt_clk_cnt or posedge wdt_rst)
if (wdt_rst) wdt_evt_toggle <= 1'b0;
else if (wdtqn_edge) wdt_evt_toggle <= ~wdt_evt_toggle;
// Synchronize in the MCLK domain
wire wdt_evt_toggle_sync;
omsp_sync_cell sync_cell_wdt_evt (
.data_out (wdt_evt_toggle_sync),
.data_in (wdt_evt_toggle),
.clk (mclk),
.rst (puc_rst)
);
// Delay for edge detection of the toggle bit
reg wdt_evt_toggle_sync_dly;
always @ (posedge mclk or posedge puc_rst)
if (puc_rst) wdt_evt_toggle_sync_dly <= 1'b0;
else wdt_evt_toggle_sync_dly <= wdt_evt_toggle_sync;
wire wdtifg_evt = (wdt_evt_toggle_sync_dly ^ wdt_evt_toggle_sync) | wdtpw_error;
// Watchdog wakeup generation
//-------------------------------------------------------------
// Clear wakeup when the watchdog flag is cleared (glitch free)
reg wdtifg_clr_reg;
wire wdtifg_clr;
always @ (posedge mclk or posedge puc_rst)
if (puc_rst) wdtifg_clr_reg <= 1'b1;
else wdtifg_clr_reg <= wdtifg_clr;
// Set wakeup when the watchdog event is detected (glitch free)
reg wdtqn_edge_reg;
always @ (posedge wdt_clk_cnt or posedge wdt_rst)
if (wdt_rst) wdtqn_edge_reg <= 1'b0;
else wdtqn_edge_reg <= wdtqn_edge;
// Watchdog wakeup cell
wire wdt_wkup_pre;
omsp_wakeup_cell wakeup_cell_wdog (
.wkup_out (wdt_wkup_pre), // Wakup signal (asynchronous)
.scan_clk (mclk), // Scan clock
.scan_mode (scan_mode), // Scan mode
.scan_rst (puc_rst), // Scan reset
.wkup_clear (wdtifg_clr_reg), // Glitch free wakeup event clear
.wkup_event (wdtqn_edge_reg) // Glitch free asynchronous wakeup event
);
// When not in HOLD, the watchdog can generate a wakeup when:
// - in interval mode (if interrupts are enabled)
// - in reset mode (always)
reg wdt_wkup_en;
always @ (posedge mclk or posedge puc_rst)
if (puc_rst) wdt_wkup_en <= 1'b0;
else wdt_wkup_en <= ~wdtctl[7] & (~wdttmsel | (wdttmsel & wdtie));
// Make wakeup when not enabled
wire wdt_wkup;
omsp_and_gate and_wdt_wkup (.y(wdt_wkup), .a(wdt_wkup_pre), .b(wdt_wkup_en));
// Watchdog interrupt flag
//------------------------------
reg wdtifg;
wire wdtifg_set = wdtifg_evt | wdtifg_sw_set;
assign wdtifg_clr = (wdtifg_irq_clr & wdttmsel) | wdtifg_sw_clr;
always @ (posedge mclk or posedge por)
if (por) wdtifg <= 1'b0;
else if (wdtifg_set) wdtifg <= 1'b1;
else if (wdtifg_clr) wdtifg <= 1'b0;
// Watchdog interrupt generation
//---------------------------------
wire wdt_irq = wdttmsel & wdtifg & wdtie;
// Watchdog reset generation
//-----------------------------
reg wdt_reset;
always @ (posedge mclk or posedge por)
if (por) wdt_reset <= 1'b0;
else wdt_reset <= wdtpw_error | (wdtifg_set & ~wdttmsel);
//=============================================================================
// 6) WATCHDOG TIMER (FPGA IMPLEMENTATION)
//=============================================================================
`else
// Watchdog clock source selection
//---------------------------------
wire clk_src_en = wdtctl[2] ? aclk_en : smclk_en;
// Watchdog 16 bit counter
//--------------------------
reg [15:0] wdtcnt;
wire wdtifg_evt;
wire wdtcnt_clr = (wdtctl_wr & per_din[3]) | wdtifg_evt;
wire wdtcnt_incr = ~wdtctl[7] & clk_src_en & ~dbg_freeze;
wire [15:0] wdtcnt_nxt = wdtcnt+16'h0001;
always @ (posedge mclk or posedge puc_rst)
if (puc_rst) wdtcnt <= 16'h0000;
else if (wdtcnt_clr) wdtcnt <= 16'h0000;
else if (wdtcnt_incr) wdtcnt <= wdtcnt_nxt;
// Interval selection mux
//--------------------------
reg wdtqn;
always @(wdtctl or wdtcnt_nxt)
case(wdtctl[1:0])
2'b00 : wdtqn = wdtcnt_nxt[15];
2'b01 : wdtqn = wdtcnt_nxt[13];
2'b10 : wdtqn = wdtcnt_nxt[9];
default: wdtqn = wdtcnt_nxt[6];
endcase
// Watchdog event detection
//-----------------------------
assign wdtifg_evt = (wdtqn & wdtcnt_incr) | wdtpw_error;
// Watchdog interrupt flag
//------------------------------
reg wdtifg;
wire wdtifg_set = wdtifg_evt | wdtifg_sw_set;
wire wdtifg_clr = (wdtifg_irq_clr & wdttmsel) | wdtifg_sw_clr;
always @ (posedge mclk or posedge por)
if (por) wdtifg <= 1'b0;
else if (wdtifg_set) wdtifg <= 1'b1;
else if (wdtifg_clr) wdtifg <= 1'b0;
// Watchdog interrupt generation
//---------------------------------
wire wdt_irq = wdttmsel & wdtifg & wdtie;
wire wdt_wkup = 1'b0;
// Watchdog reset generation
//-----------------------------
reg wdt_reset;
always @ (posedge mclk or posedge por)
if (por) wdt_reset <= 1'b0;
else wdt_reset <= wdtpw_error | (wdtifg_set & ~wdttmsel);
`endif
endmodule // omsp_watchdog
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_undefines.v"
`endif

View file

@ -0,0 +1,584 @@
//----------------------------------------------------------------------------
// Copyright (C) 2009 , Olivier Girard
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the authors nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
// THE POSSIBILITY OF SUCH DAMAGE
//
//----------------------------------------------------------------------------
//
// *File Name: openMSP430.v
//
// *Module Description:
// openMSP430 Top level file
//
// *Author(s):
// - Olivier Girard, olgirard@gmail.com
//
//----------------------------------------------------------------------------
// $Rev: 134 $
// $LastChangedBy: olivier.girard $
// $LastChangedDate: 2012-03-22 21:31:06 +0100 (Thu, 22 Mar 2012) $
//----------------------------------------------------------------------------
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_defines.v"
`endif
module openMSP430 (
// OUTPUTs
aclk, // ASIC ONLY: ACLK
aclk_en, // FPGA ONLY: ACLK enable
dbg_freeze, // Freeze peripherals
dbg_uart_txd, // Debug interface: UART TXD
dco_enable, // ASIC ONLY: Fast oscillator enable
dco_wkup, // ASIC ONLY: Fast oscillator wake-up (asynchronous)
dmem_addr, // Data Memory address
dmem_cen, // Data Memory chip enable (low active)
dmem_din, // Data Memory data input
dmem_wen, // Data Memory write enable (low active)
irq_acc, // Interrupt request accepted (one-hot signal)
lfxt_enable, // ASIC ONLY: Low frequency oscillator enable
lfxt_wkup, // ASIC ONLY: Low frequency oscillator wake-up (asynchronous)
mclk, // Main system clock
per_addr, // Peripheral address
per_din, // Peripheral data input
per_we, // Peripheral write enable (high active)
per_en, // Peripheral enable (high active)
pmem_addr, // Program Memory address
pmem_cen, // Program Memory chip enable (low active)
pmem_din, // Program Memory data input (optional)
pmem_wen, // Program Memory write enable (low active) (optional)
puc_rst, // Main system reset
smclk, // ASIC ONLY: SMCLK
smclk_en, // FPGA ONLY: SMCLK enable
// INPUTs
cpu_en, // Enable CPU code execution (asynchronous and non-glitchy)
dbg_en, // Debug interface enable (asynchronous and non-glitchy)
dbg_uart_rxd, // Debug interface: UART RXD (asynchronous)
dco_clk, // Fast oscillator (fast clock)
dmem_dout, // Data Memory data output
irq, // Maskable interrupts
lfxt_clk, // Low frequency oscillator (typ 32kHz)
nmi, // Non-maskable interrupt (asynchronous)
per_dout, // Peripheral data output
pmem_dout, // Program Memory data output
reset_n, // Reset Pin (low active, asynchronous and non-glitchy)
scan_enable, // ASIC ONLY: Scan enable (active during scan shifting)
scan_mode, // ASIC ONLY: Scan mode
wkup // ASIC ONLY: System Wake-up (asynchronous and non-glitchy)
);
// OUTPUTs
//=========
output aclk; // ASIC ONLY: ACLK
output aclk_en; // FPGA ONLY: ACLK enable
output dbg_freeze; // Freeze peripherals
output dbg_uart_txd; // Debug interface: UART TXD
output dco_enable; // ASIC ONLY: Fast oscillator enable
output dco_wkup; // ASIC ONLY: Fast oscillator wake-up (asynchronous)
output [`DMEM_MSB:0] dmem_addr; // Data Memory address
output dmem_cen; // Data Memory chip enable (low active)
output [15:0] dmem_din; // Data Memory data input
output [1:0] dmem_wen; // Data Memory write enable (low active)
output [13:0] irq_acc; // Interrupt request accepted (one-hot signal)
output lfxt_enable; // ASIC ONLY: Low frequency oscillator enable
output lfxt_wkup; // ASIC ONLY: Low frequency oscillator wake-up (asynchronous)
output mclk; // Main system clock
output [13:0] per_addr; // Peripheral address
output [15:0] per_din; // Peripheral data input
output [1:0] per_we; // Peripheral write enable (high active)
output per_en; // Peripheral enable (high active)
output [`PMEM_MSB:0] pmem_addr; // Program Memory address
output pmem_cen; // Program Memory chip enable (low active)
output [15:0] pmem_din; // Program Memory data input (optional)
output [1:0] pmem_wen; // Program Memory write enable (low active) (optional)
output puc_rst; // Main system reset
output smclk; // ASIC ONLY: SMCLK
output smclk_en; // FPGA ONLY: SMCLK enable
// INPUTs
//=========
input cpu_en; // Enable CPU code execution (asynchronous and non-glitchy)
input dbg_en; // Debug interface enable (asynchronous and non-glitchy)
input dbg_uart_rxd; // Debug interface: UART RXD (asynchronous)
input dco_clk; // Fast oscillator (fast clock)
input [15:0] dmem_dout; // Data Memory data output
input [13:0] irq; // Maskable interrupts
input lfxt_clk; // Low frequency oscillator (typ 32kHz)
input nmi; // Non-maskable interrupt (asynchronous and non-glitchy)
input [15:0] per_dout; // Peripheral data output
input [15:0] pmem_dout; // Program Memory data output
input reset_n; // Reset Pin (active low, asynchronous and non-glitchy)
input scan_enable; // ASIC ONLY: Scan enable (active during scan shifting)
input scan_mode; // ASIC ONLY: Scan mode
input wkup; // ASIC ONLY: System Wake-up (asynchronous and non-glitchy)
//=============================================================================
// 1) INTERNAL WIRES/REGISTERS/PARAMETERS DECLARATION
//=============================================================================
wire [7:0] inst_ad;
wire [7:0] inst_as;
wire [11:0] inst_alu;
wire inst_bw;
wire inst_irq_rst;
wire inst_mov;
wire [15:0] inst_dest;
wire [15:0] inst_dext;
wire [15:0] inst_sext;
wire [7:0] inst_so;
wire [15:0] inst_src;
wire [2:0] inst_type;
wire [7:0] inst_jmp;
wire [3:0] e_state;
wire exec_done;
wire decode_noirq;
wire cpu_en_s;
wire cpuoff;
wire oscoff;
wire scg0;
wire scg1;
wire por;
wire gie;
wire mclk_enable;
wire mclk_wkup;
wire [31:0] cpu_id;
wire [15:0] eu_mab;
wire [15:0] eu_mdb_in;
wire [15:0] eu_mdb_out;
wire [1:0] eu_mb_wr;
wire eu_mb_en;
wire [15:0] fe_mab;
wire [15:0] fe_mdb_in;
wire fe_mb_en;
wire fe_pmem_wait;
wire pc_sw_wr;
wire [15:0] pc_sw;
wire [15:0] pc;
wire [15:0] pc_nxt;
wire nmi_acc;
wire nmi_pnd;
wire nmi_wkup;
wire wdtie;
wire wdtnmies;
wire wdtifg;
wire wdt_irq;
wire wdt_wkup;
wire wdt_reset;
wire wdtifg_sw_clr;
wire wdtifg_sw_set;
wire dbg_clk;
wire dbg_rst;
wire dbg_en_s;
wire dbg_halt_st;
wire dbg_halt_cmd;
wire dbg_mem_en;
wire dbg_reg_wr;
wire dbg_cpu_reset;
wire [15:0] dbg_mem_addr;
wire [15:0] dbg_mem_dout;
wire [15:0] dbg_mem_din;
wire [15:0] dbg_reg_din;
wire [1:0] dbg_mem_wr;
wire puc_pnd_set;
wire [15:0] per_dout_or;
wire [15:0] per_dout_sfr;
wire [15:0] per_dout_wdog;
wire [15:0] per_dout_mpy;
wire [15:0] per_dout_clk;
//=============================================================================
// 2) GLOBAL CLOCK & RESET MANAGEMENT
//=============================================================================
omsp_clock_module clock_module_0 (
// OUTPUTs
.aclk (aclk), // ACLK
.aclk_en (aclk_en), // ACLK enablex
.cpu_en_s (cpu_en_s), // Enable CPU code execution (synchronous)
.dbg_clk (dbg_clk), // Debug unit clock
.dbg_en_s (dbg_en_s), // Debug interface enable (synchronous)
.dbg_rst (dbg_rst), // Debug unit reset
.dco_enable (dco_enable), // Fast oscillator enable
.dco_wkup (dco_wkup), // Fast oscillator wake-up (asynchronous)
.lfxt_enable (lfxt_enable), // Low frequency oscillator enable
.lfxt_wkup (lfxt_wkup), // Low frequency oscillator wake-up (asynchronous)
.mclk (mclk), // Main system clock
.per_dout (per_dout_clk), // Peripheral data output
.por (por), // Power-on reset
.puc_pnd_set (puc_pnd_set), // PUC pending set for the serial debug interface
.puc_rst (puc_rst), // Main system reset
.smclk (smclk), // SMCLK
.smclk_en (smclk_en), // SMCLK enable
// INPUTs
.cpu_en (cpu_en), // Enable CPU code execution (asynchronous)
.cpuoff (cpuoff), // Turns off the CPU
.dbg_cpu_reset(dbg_cpu_reset), // Reset CPU from debug interface
.dbg_en (dbg_en), // Debug interface enable (asynchronous)
.dco_clk (dco_clk), // Fast oscillator (fast clock)
.lfxt_clk (lfxt_clk), // Low frequency oscillator (typ 32kHz)
.mclk_enable (mclk_enable), // Main System Clock enable
.mclk_wkup (mclk_wkup), // Main System Clock wake-up (asynchronous)
.oscoff (oscoff), // Turns off LFXT1 clock input
.per_addr (per_addr), // Peripheral address
.per_din (per_din), // Peripheral data input
.per_en (per_en), // Peripheral enable (high active)
.per_we (per_we), // Peripheral write enable (high active)
.reset_n (reset_n), // Reset Pin (low active, asynchronous)
.scan_enable (scan_enable), // Scan enable (active during scan shifting)
.scan_mode (scan_mode), // Scan mode
.scg0 (scg0), // System clock generator 1. Turns off the DCO
.scg1 (scg1), // System clock generator 1. Turns off the SMCLK
.wdt_reset (wdt_reset) // Watchdog-timer reset
);
//=============================================================================
// 3) FRONTEND (<=> FETCH & DECODE)
//=============================================================================
omsp_frontend frontend_0 (
// OUTPUTs
.dbg_halt_st (dbg_halt_st), // Halt/Run status from CPU
.decode_noirq (decode_noirq), // Frontend decode instruction
.e_state (e_state), // Execution state
.exec_done (exec_done), // Execution completed
.inst_ad (inst_ad), // Decoded Inst: destination addressing mode
.inst_as (inst_as), // Decoded Inst: source addressing mode
.inst_alu (inst_alu), // ALU control signals
.inst_bw (inst_bw), // Decoded Inst: byte width
.inst_dest (inst_dest), // Decoded Inst: destination (one hot)
.inst_dext (inst_dext), // Decoded Inst: destination extended instruction word
.inst_irq_rst (inst_irq_rst), // Decoded Inst: Reset interrupt
.inst_jmp (inst_jmp), // Decoded Inst: Conditional jump
.inst_mov (inst_mov), // Decoded Inst: mov instruction
.inst_sext (inst_sext), // Decoded Inst: source extended instruction word
.inst_so (inst_so), // Decoded Inst: Single-operand arithmetic
.inst_src (inst_src), // Decoded Inst: source (one hot)
.inst_type (inst_type), // Decoded Instruction type
.irq_acc (irq_acc), // Interrupt request accepted
.mab (fe_mab), // Frontend Memory address bus
.mb_en (fe_mb_en), // Frontend Memory bus enable
.mclk_enable (mclk_enable), // Main System Clock enable
.mclk_wkup (mclk_wkup), // Main System Clock wake-up (asynchronous)
.nmi_acc (nmi_acc), // Non-Maskable interrupt request accepted
.pc (pc), // Program counter
.pc_nxt (pc_nxt), // Next PC value (for CALL & IRQ)
// INPUTs
.cpu_en_s (cpu_en_s), // Enable CPU code execution (synchronous)
.cpuoff (cpuoff), // Turns off the CPU
.dbg_halt_cmd (dbg_halt_cmd), // Halt CPU command
.dbg_reg_sel (dbg_mem_addr[3:0]), // Debug selected register for rd/wr access
.fe_pmem_wait (fe_pmem_wait), // Frontend wait for Instruction fetch
.gie (gie), // General interrupt enable
.irq (irq), // Maskable interrupts
.mclk (mclk), // Main system clock
.mdb_in (fe_mdb_in), // Frontend Memory data bus input
.nmi_pnd (nmi_pnd), // Non-maskable interrupt pending
.nmi_wkup (nmi_wkup), // NMI Wakeup
.pc_sw (pc_sw), // Program counter software value
.pc_sw_wr (pc_sw_wr), // Program counter software write
.puc_rst (puc_rst), // Main system reset
.scan_enable (scan_enable), // Scan enable (active during scan shifting)
.wdt_irq (wdt_irq), // Watchdog-timer interrupt
.wdt_wkup (wdt_wkup), // Watchdog Wakeup
.wkup (wkup) // System Wake-up (asynchronous)
);
//=============================================================================
// 4) EXECUTION UNIT
//=============================================================================
omsp_execution_unit execution_unit_0 (
// OUTPUTs
.cpuoff (cpuoff), // Turns off the CPU
.dbg_reg_din (dbg_reg_din), // Debug unit CPU register data input
.mab (eu_mab), // Memory address bus
.mb_en (eu_mb_en), // Memory bus enable
.mb_wr (eu_mb_wr), // Memory bus write transfer
.mdb_out (eu_mdb_out), // Memory data bus output
.oscoff (oscoff), // Turns off LFXT1 clock input
.pc_sw (pc_sw), // Program counter software value
.pc_sw_wr (pc_sw_wr), // Program counter software write
.scg0 (scg0), // System clock generator 1. Turns off the DCO
.scg1 (scg1), // System clock generator 1. Turns off the SMCLK
// INPUTs
.dbg_halt_st (dbg_halt_st), // Halt/Run status from CPU
.dbg_mem_dout (dbg_mem_dout), // Debug unit data output
.dbg_reg_wr (dbg_reg_wr), // Debug unit CPU register write
.e_state (e_state), // Execution state
.exec_done (exec_done), // Execution completed
.gie (gie), // General interrupt enable
.inst_ad (inst_ad), // Decoded Inst: destination addressing mode
.inst_as (inst_as), // Decoded Inst: source addressing mode
.inst_alu (inst_alu), // ALU control signals
.inst_bw (inst_bw), // Decoded Inst: byte width
.inst_dest (inst_dest), // Decoded Inst: destination (one hot)
.inst_dext (inst_dext), // Decoded Inst: destination extended instruction word
.inst_irq_rst (inst_irq_rst), // Decoded Inst: reset interrupt
.inst_jmp (inst_jmp), // Decoded Inst: Conditional jump
.inst_mov (inst_mov), // Decoded Inst: mov instruction
.inst_sext (inst_sext), // Decoded Inst: source extended instruction word
.inst_so (inst_so), // Decoded Inst: Single-operand arithmetic
.inst_src (inst_src), // Decoded Inst: source (one hot)
.inst_type (inst_type), // Decoded Instruction type
.mclk (mclk), // Main system clock
.mdb_in (eu_mdb_in), // Memory data bus input
.pc (pc), // Program counter
.pc_nxt (pc_nxt), // Next PC value (for CALL & IRQ)
.puc_rst (puc_rst), // Main system reset
.scan_enable (scan_enable) // Scan enable (active during scan shifting)
);
//=============================================================================
// 5) MEMORY BACKBONE
//=============================================================================
omsp_mem_backbone mem_backbone_0 (
// OUTPUTs
.dbg_mem_din (dbg_mem_din), // Debug unit Memory data input
.dmem_addr (dmem_addr), // Data Memory address
.dmem_cen (dmem_cen), // Data Memory chip enable (low active)
.dmem_din (dmem_din), // Data Memory data input
.dmem_wen (dmem_wen), // Data Memory write enable (low active)
.eu_mdb_in (eu_mdb_in), // Execution Unit Memory data bus input
.fe_mdb_in (fe_mdb_in), // Frontend Memory data bus input
.fe_pmem_wait (fe_pmem_wait), // Frontend wait for Instruction fetch
.per_addr (per_addr), // Peripheral address
.per_din (per_din), // Peripheral data input
.per_we (per_we), // Peripheral write enable (high active)
.per_en (per_en), // Peripheral enable (high active)
.pmem_addr (pmem_addr), // Program Memory address
.pmem_cen (pmem_cen), // Program Memory chip enable (low active)
.pmem_din (pmem_din), // Program Memory data input (optional)
.pmem_wen (pmem_wen), // Program Memory write enable (low active) (optional)
// INPUTs
.dbg_halt_st (dbg_halt_st), // Halt/Run status from CPU
.dbg_mem_addr (dbg_mem_addr), // Debug address for rd/wr access
.dbg_mem_dout (dbg_mem_dout), // Debug unit data output
.dbg_mem_en (dbg_mem_en), // Debug unit memory enable
.dbg_mem_wr (dbg_mem_wr), // Debug unit memory write
.dmem_dout (dmem_dout), // Data Memory data output
.eu_mab (eu_mab[15:1]), // Execution Unit Memory address bus
.eu_mb_en (eu_mb_en), // Execution Unit Memory bus enable
.eu_mb_wr (eu_mb_wr), // Execution Unit Memory bus write transfer
.eu_mdb_out (eu_mdb_out), // Execution Unit Memory data bus output
.fe_mab (fe_mab[15:1]), // Frontend Memory address bus
.fe_mb_en (fe_mb_en), // Frontend Memory bus enable
.mclk (mclk), // Main system clock
.per_dout (per_dout_or), // Peripheral data output
.pmem_dout (pmem_dout), // Program Memory data output
.puc_rst (puc_rst), // Main system reset
.scan_enable (scan_enable) // Scan enable (active during scan shifting)
);
//=============================================================================
// 6) SPECIAL FUNCTION REGISTERS
//=============================================================================
omsp_sfr sfr_0 (
// OUTPUTs
.cpu_id (cpu_id), // CPU ID
.nmi_pnd (nmi_pnd), // NMI Pending
.nmi_wkup (nmi_wkup), // NMI Wakeup
.per_dout (per_dout_sfr), // Peripheral data output
.wdtie (wdtie), // Watchdog-timer interrupt enable
.wdtifg_sw_clr(wdtifg_sw_clr), // Watchdog-timer interrupt flag software clear
.wdtifg_sw_set(wdtifg_sw_set), // Watchdog-timer interrupt flag software set
// INPUTs
.mclk (mclk), // Main system clock
.nmi (nmi), // Non-maskable interrupt (asynchronous)
.nmi_acc (nmi_acc), // Non-Maskable interrupt request accepted
.per_addr (per_addr), // Peripheral address
.per_din (per_din), // Peripheral data input
.per_en (per_en), // Peripheral enable (high active)
.per_we (per_we), // Peripheral write enable (high active)
.puc_rst (puc_rst), // Main system reset
.scan_mode (scan_mode), // Scan mode
.wdtifg (wdtifg), // Watchdog-timer interrupt flag
.wdtnmies (wdtnmies) // Watchdog-timer NMI edge selection
);
//=============================================================================
// 7) WATCHDOG TIMER
//=============================================================================
`ifdef WATCHDOG
omsp_watchdog watchdog_0 (
// OUTPUTs
.per_dout (per_dout_wdog), // Peripheral data output
.wdt_irq (wdt_irq), // Watchdog-timer interrupt
.wdt_reset (wdt_reset), // Watchdog-timer reset
.wdt_wkup (wdt_wkup), // Watchdog Wakeup
.wdtifg (wdtifg), // Watchdog-timer interrupt flag
.wdtnmies (wdtnmies), // Watchdog-timer NMI edge selection
// INPUTs
.aclk (aclk), // ACLK
.aclk_en (aclk_en), // ACLK enable
.dbg_freeze (dbg_freeze), // Freeze Watchdog counter
.mclk (mclk), // Main system clock
.per_addr (per_addr), // Peripheral address
.per_din (per_din), // Peripheral data input
.per_en (per_en), // Peripheral enable (high active)
.per_we (per_we), // Peripheral write enable (high active)
.por (por), // Power-on reset
.puc_rst (puc_rst), // Main system reset
.scan_enable (scan_enable), // Scan enable (active during scan shifting)
.scan_mode (scan_mode), // Scan mode
.smclk (smclk), // SMCLK
.smclk_en (smclk_en), // SMCLK enable
.wdtie (wdtie), // Watchdog-timer interrupt enable
.wdtifg_irq_clr (irq_acc[10]), // Clear Watchdog-timer interrupt flag
.wdtifg_sw_clr (wdtifg_sw_clr), // Watchdog-timer interrupt flag software clear
.wdtifg_sw_set (wdtifg_sw_set) // Watchdog-timer interrupt flag software set
);
`else
assign per_dout_wdog = 16'h0000;
assign wdt_irq = 1'b0;
assign wdt_reset = 1'b0;
assign wdt_wkup = 1'b0;
assign wdtifg = 1'b0;
assign wdtnmies = 1'b0;
`endif
//=============================================================================
// 8) HARDWARE MULTIPLIER
//=============================================================================
`ifdef MULTIPLIER
omsp_multiplier multiplier_0 (
// OUTPUTs
.per_dout (per_dout_mpy), // Peripheral data output
// INPUTs
.mclk (mclk), // Main system clock
.per_addr (per_addr), // Peripheral address
.per_din (per_din), // Peripheral data input
.per_en (per_en), // Peripheral enable (high active)
.per_we (per_we), // Peripheral write enable (high active)
.puc_rst (puc_rst), // Main system reset
.scan_enable (scan_enable) // Scan enable (active during scan shifting)
);
`else
assign per_dout_mpy = 16'h0000;
`endif
//=============================================================================
// 9) PERIPHERALS' OUTPUT BUS
//=============================================================================
assign per_dout_or = per_dout |
per_dout_clk |
per_dout_sfr |
per_dout_wdog |
per_dout_mpy;
//=============================================================================
// 10) DEBUG INTERFACE
//=============================================================================
`ifdef DBG_EN
omsp_dbg dbg_0 (
// OUTPUTs
.dbg_freeze (dbg_freeze), // Freeze peripherals
.dbg_halt_cmd (dbg_halt_cmd), // Halt CPU command
.dbg_mem_addr (dbg_mem_addr), // Debug address for rd/wr access
.dbg_mem_dout (dbg_mem_dout), // Debug unit data output
.dbg_mem_en (dbg_mem_en), // Debug unit memory enable
.dbg_mem_wr (dbg_mem_wr), // Debug unit memory write
.dbg_reg_wr (dbg_reg_wr), // Debug unit CPU register write
.dbg_cpu_reset(dbg_cpu_reset), // Reset CPU from debug interface
.dbg_uart_txd (dbg_uart_txd), // Debug interface: UART TXD
// INPUTs
.cpu_en_s (cpu_en_s), // Enable CPU code execution (synchronous)
.cpu_id (cpu_id), // CPU ID
.dbg_clk (dbg_clk), // Debug unit clock
.dbg_en_s (dbg_en_s), // Debug interface enable (synchronous)
.dbg_halt_st (dbg_halt_st), // Halt/Run status from CPU
.dbg_mem_din (dbg_mem_din), // Debug unit Memory data input
.dbg_reg_din (dbg_reg_din), // Debug unit CPU register data input
.dbg_rst (dbg_rst), // Debug unit reset
.dbg_uart_rxd (dbg_uart_rxd), // Debug interface: UART RXD (asynchronous)
.decode_noirq (decode_noirq), // Frontend decode instruction
.eu_mab (eu_mab), // Execution-Unit Memory address bus
.eu_mb_en (eu_mb_en), // Execution-Unit Memory bus enable
.eu_mb_wr (eu_mb_wr), // Execution-Unit Memory bus write transfer
.eu_mdb_in (eu_mdb_in), // Memory data bus input
.eu_mdb_out (eu_mdb_out), // Memory data bus output
.exec_done (exec_done), // Execution completed
.fe_mb_en (fe_mb_en), // Frontend Memory bus enable
.fe_mdb_in (fe_mdb_in), // Frontend Memory data bus input
.pc (pc), // Program counter
.puc_pnd_set (puc_pnd_set) // PUC pending set for the serial debug interface
);
`else
assign dbg_freeze = ~cpu_en_s;
assign dbg_halt_cmd = 1'b0;
assign dbg_mem_addr = 16'h0000;
assign dbg_mem_dout = 16'h0000;
assign dbg_mem_en = 1'b0;
assign dbg_mem_wr = 2'b00;
assign dbg_reg_wr = 1'b0;
assign dbg_cpu_reset = 1'b0;
assign dbg_uart_txd = 1'b0;
`endif
endmodule // openMSP430
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_undefines.v"
`endif

View file

@ -0,0 +1,843 @@
//----------------------------------------------------------------------------
// Copyright (C) 2009 , Olivier Girard
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the authors nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
// THE POSSIBILITY OF SUCH DAMAGE
//
//----------------------------------------------------------------------------
//
// *File Name: openMSP430_defines.v
//
// *Module Description:
// openMSP430 Configuration file
//
// *Author(s):
// - Olivier Girard, olgirard@gmail.com
//
//----------------------------------------------------------------------------
// $Rev: 151 $
// $LastChangedBy: olivier.girard $
// $LastChangedDate: 2012-07-23 00:24:11 +0200 (Mon, 23 Jul 2012) $
//----------------------------------------------------------------------------
//`define OMSP_NO_INCLUDE
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_undefines.v"
`endif
//============================================================================
//============================================================================
// BASIC SYSTEM CONFIGURATION
//============================================================================
//============================================================================
//
// Note: the sum of program, data and peripheral memory spaces must not
// exceed 64 kB
//
// Program Memory Size:
// Uncomment the required memory size
//-------------------------------------------------------
//`define PMEM_SIZE_CUSTOM
//`define PMEM_SIZE_59_KB
//`define PMEM_SIZE_55_KB
//`define PMEM_SIZE_54_KB
//`define PMEM_SIZE_51_KB
//`define PMEM_SIZE_48_KB
//`define PMEM_SIZE_41_KB
//`define PMEM_SIZE_32_KB
//`define PMEM_SIZE_24_KB
//`define PMEM_SIZE_16_KB
//`define PMEM_SIZE_12_KB
//`define PMEM_SIZE_8_KB
//`define PMEM_SIZE_4_KB
`define PMEM_SIZE_2_KB
//`define PMEM_SIZE_1_KB
// Data Memory Size:
// Uncomment the required memory size
//-------------------------------------------------------
//`define DMEM_SIZE_CUSTOM
//`define DMEM_SIZE_32_KB
//`define DMEM_SIZE_24_KB
//`define DMEM_SIZE_16_KB
//`define DMEM_SIZE_10_KB
//`define DMEM_SIZE_8_KB
//`define DMEM_SIZE_5_KB
//`define DMEM_SIZE_4_KB
//`define DMEM_SIZE_2p5_KB
//`define DMEM_SIZE_2_KB
//`define DMEM_SIZE_1_KB
//`define DMEM_SIZE_512_B
//`define DMEM_SIZE_256_B
`define DMEM_SIZE_128_B
// Include/Exclude Hardware Multiplier
`define MULTIPLIER
// Include/Exclude Serial Debug interface
`define DBG_EN
//============================================================================
//============================================================================
// ADVANCED SYSTEM CONFIGURATION (FOR EXPERIENCED USERS)
//============================================================================
//============================================================================
//-------------------------------------------------------
// Custom user version number
//-------------------------------------------------------
// This 5 bit field can be freely used in order to allow
// custom identification of the system through the debug
// interface.
// (see CPU_ID.USER_VERSION field in the documentation)
//-------------------------------------------------------
`define USER_VERSION 5'b00000
//-------------------------------------------------------
// Include/Exclude Watchdog timer
//-------------------------------------------------------
// When excluded, the following functionality will be
// lost:
// - Watchog (both interval and watchdog modes)
// - NMI interrupt edge selection
// - Possibility to generate a software PUC reset
//-------------------------------------------------------
`define WATCHDOG
///-------------------------------------------------------
// Include/Exclude Non-Maskable-Interrupt support
//-------------------------------------------------------
`define NMI
//-------------------------------------------------------
// Input synchronizers
//-------------------------------------------------------
// In some cases, the asynchronous input ports might
// already be synchronized externally.
// If an extensive CDC design review showed that this
// is really the case, the individual synchronizers
// can be disabled with the following defines.
//
// Notes:
// - all three signals are all sampled in the MCLK domain
//
// - the dbg_en signal reset the debug interface
// when 0. Therefore make sure it is glitch free.
//
//-------------------------------------------------------
`define SYNC_NMI
//`define SYNC_CPU_EN
//`define SYNC_DBG_EN
//-------------------------------------------------------
// Peripheral Memory Space:
//-------------------------------------------------------
// The original MSP430 architecture map the peripherals
// from 0x0000 to 0x01FF (i.e. 512B of the memory space).
// The following defines allow you to expand this space
// up to 32 kB (i.e. from 0x0000 to 0x7fff).
// As a consequence, the data memory mapping will be
// shifted up and a custom linker script will therefore
// be required by the GCC compiler.
//-------------------------------------------------------
//`define PER_SIZE_CUSTOM
//`define PER_SIZE_32_KB
//`define PER_SIZE_16_KB
//`define PER_SIZE_8_KB
//`define PER_SIZE_4_KB
//`define PER_SIZE_2_KB
//`define PER_SIZE_1_KB
`define PER_SIZE_512_B
//-------------------------------------------------------
// Defines the debugger CPU_CTL.RST_BRK_EN reset value
// (CPU break on PUC reset)
//-------------------------------------------------------
// When defined, the CPU will automatically break after
// a PUC occurrence by default. This is typically useful
// when the program memory can only be initialized through
// the serial debug interface.
//-------------------------------------------------------
`define DBG_RST_BRK_EN
//============================================================================
//============================================================================
// EXPERT SYSTEM CONFIGURATION ( !!!! EXPERTS ONLY !!!! )
//============================================================================
//============================================================================
//
// IMPORTANT NOTE: Please update following configuration options ONLY if
// you have a good reason to do so... and if you know what
// you are doing :-P
//
//============================================================================
//-------------------------------------------------------
// Number of hardware breakpoint/watchpoint units
// (each unit contains two hardware addresses available
// for breakpoints or watchpoints):
// - DBG_HWBRK_0 -> Include hardware breakpoints unit 0
// - DBG_HWBRK_1 -> Include hardware breakpoints unit 1
// - DBG_HWBRK_2 -> Include hardware breakpoints unit 2
// - DBG_HWBRK_3 -> Include hardware breakpoints unit 3
//-------------------------------------------------------
// Please keep in mind that hardware breakpoints only
// make sense whenever the program memory is not an SRAM
// (i.e. Flash/OTP/ROM/...) or when you are interested
// in data breakpoints.
//-------------------------------------------------------
//`define DBG_HWBRK_0
//`define DBG_HWBRK_1
//`define DBG_HWBRK_2
//`define DBG_HWBRK_3
//-------------------------------------------------------
// Enable/Disable the hardware breakpoint RANGE mode
//-------------------------------------------------------
// When enabled this feature allows the hardware breakpoint
// units to stop the cpu whenever an instruction or data
// access lays within an address range.
// Note that this feature is not supported by GDB.
//-------------------------------------------------------
//`define DBG_HWBRK_RANGE
//-------------------------------------------------------
// Custom Program/Data and Peripheral Memory Spaces
//-------------------------------------------------------
// The following values are valid only if the
// corresponding *_SIZE_CUSTOM defines are uncommented:
//
// - *_SIZE : size of the section in bytes.
// - *_AWIDTH : address port width, this value must allow
// to address all WORDS of the section
// (i.e. the *_SIZE divided by 2)
//-------------------------------------------------------
// Custom Program memory (enabled with PMEM_SIZE_CUSTOM)
`define PMEM_CUSTOM_AWIDTH 10
`define PMEM_CUSTOM_SIZE 2028
// Custom Data memory (enabled with DMEM_SIZE_CUSTOM)
`define DMEM_CUSTOM_AWIDTH 6
`define DMEM_CUSTOM_SIZE 128
// Custom Peripheral memory (enabled with PER_SIZE_CUSTOM)
`define PER_CUSTOM_AWIDTH 8
`define PER_CUSTOM_SIZE 512
//-------------------------------------------------------
// ASIC version
//-------------------------------------------------------
// When uncommented, this define will enable the
// ASIC system configuration section (see below) and
// will activate scan support for production test.
//
// WARNING: if you target an FPGA, leave this define
// commented.
//-------------------------------------------------------
//`define ASIC
//============================================================================
//============================================================================
// ASIC SYSTEM CONFIGURATION ( !!!! EXPERTS/PROFESSIONALS ONLY !!!! )
//============================================================================
//============================================================================
`ifdef ASIC
//===============================================================
// FINE GRAINED CLOCK GATING
//===============================================================
//-------------------------------------------------------
// When uncommented, this define will enable the fine
// grained clock gating of all registers in the core.
//-------------------------------------------------------
`define CLOCK_GATING
//===============================================================
// LFXT CLOCK DOMAIN
//===============================================================
//-------------------------------------------------------
// When uncommented, this define will enable the lfxt_clk
// clock domain.
// When commented out, the whole chip is clocked with dco_clk.
//-------------------------------------------------------
`define LFXT_DOMAIN
//===============================================================
// CLOCK MUXES
//===============================================================
//-------------------------------------------------------
// MCLK: Clock Mux
//-------------------------------------------------------
// When uncommented, this define will enable the
// MCLK clock MUX allowing the selection between
// DCO_CLK and LFXT_CLK with the BCSCTL2.SELMx register.
// When commented, DCO_CLK is selected.
//-------------------------------------------------------
`define MCLK_MUX
//-------------------------------------------------------
// SMCLK: Clock Mux
//-------------------------------------------------------
// When uncommented, this define will enable the
// SMCLK clock MUX allowing the selection between
// DCO_CLK and LFXT_CLK with the BCSCTL2.SELS register.
// When commented, DCO_CLK is selected.
//-------------------------------------------------------
`define SMCLK_MUX
//-------------------------------------------------------
// WATCHDOG: Clock Mux
//-------------------------------------------------------
// When uncommented, this define will enable the
// Watchdog clock MUX allowing the selection between
// ACLK and SMCLK with the WDTCTL.WDTSSEL register.
// When commented out, ACLK is selected if the
// WATCHDOG_NOMUX_ACLK define is uncommented, SMCLK is
// selected otherwise.
//-------------------------------------------------------
`define WATCHDOG_MUX
//`define WATCHDOG_NOMUX_ACLK
//===============================================================
// CLOCK DIVIDERS
//===============================================================
//-------------------------------------------------------
// MCLK: Clock divider
//-------------------------------------------------------
// When uncommented, this define will enable the
// MCLK clock divider (/1/2/4/8)
//-------------------------------------------------------
`define MCLK_DIVIDER
//-------------------------------------------------------
// SMCLK: Clock divider (/1/2/4/8)
//-------------------------------------------------------
// When uncommented, this define will enable the
// SMCLK clock divider
//-------------------------------------------------------
`define SMCLK_DIVIDER
//-------------------------------------------------------
// ACLK: Clock divider (/1/2/4/8)
//-------------------------------------------------------
// When uncommented, this define will enable the
// ACLK clock divider
//-------------------------------------------------------
`define ACLK_DIVIDER
//===============================================================
// LOW POWER MODES
//===============================================================
//-------------------------------------------------------
// LOW POWER MODE: CPUOFF
//-------------------------------------------------------
// When uncommented, this define will include the
// clock gate allowing to switch off MCLK in
// all low power modes: LPM0, LPM1, LPM2, LPM3, LPM4
//-------------------------------------------------------
`define CPUOFF_EN
//-------------------------------------------------------
// LOW POWER MODE: SCG0
//-------------------------------------------------------
// When uncommented, this define will enable the
// DCO_ENABLE/WKUP port control (always 1 when commented).
// This allows to switch off the DCO oscillator in the
// following low power modes: LPM1, LPM3, LPM4
//-------------------------------------------------------
`define SCG0_EN
//-------------------------------------------------------
// LOW POWER MODE: SCG1
//-------------------------------------------------------
// When uncommented, this define will include the
// clock gate allowing to switch off SMCLK in
// the following low power modes: LPM2, LPM3, LPM4
//-------------------------------------------------------
`define SCG1_EN
//-------------------------------------------------------
// LOW POWER MODE: OSCOFF
//-------------------------------------------------------
// When uncommented, this define will include the
// LFXT_CLK clock gate and enable the LFXT_ENABLE/WKUP
// port control (always 1 when commented).
// This allows to switch off the low frequency oscillator
// in the following low power modes: LPM4
//-------------------------------------------------------
`define OSCOFF_EN
`endif
//==========================================================================//
//==========================================================================//
//==========================================================================//
//==========================================================================//
//===== SYSTEM CONSTANTS --- !!!!!!!! DO NOT EDIT !!!!!!!! =====//
//==========================================================================//
//==========================================================================//
//==========================================================================//
//==========================================================================//
//
// PROGRAM, DATA & PERIPHERAL MEMORY CONFIGURATION
//==================================================
// Program Memory Size
`ifdef PMEM_SIZE_59_KB
`define PMEM_AWIDTH 15
`define PMEM_SIZE 60416
`endif
`ifdef PMEM_SIZE_55_KB
`define PMEM_AWIDTH 15
`define PMEM_SIZE 56320
`endif
`ifdef PMEM_SIZE_54_KB
`define PMEM_AWIDTH 15
`define PMEM_SIZE 55296
`endif
`ifdef PMEM_SIZE_51_KB
`define PMEM_AWIDTH 15
`define PMEM_SIZE 52224
`endif
`ifdef PMEM_SIZE_48_KB
`define PMEM_AWIDTH 15
`define PMEM_SIZE 49152
`endif
`ifdef PMEM_SIZE_41_KB
`define PMEM_AWIDTH 15
`define PMEM_SIZE 41984
`endif
`ifdef PMEM_SIZE_32_KB
`define PMEM_AWIDTH 14
`define PMEM_SIZE 32768
`endif
`ifdef PMEM_SIZE_24_KB
`define PMEM_AWIDTH 14
`define PMEM_SIZE 24576
`endif
`ifdef PMEM_SIZE_16_KB
`define PMEM_AWIDTH 13
`define PMEM_SIZE 16384
`endif
`ifdef PMEM_SIZE_12_KB
`define PMEM_AWIDTH 13
`define PMEM_SIZE 12288
`endif
`ifdef PMEM_SIZE_8_KB
`define PMEM_AWIDTH 12
`define PMEM_SIZE 8192
`endif
`ifdef PMEM_SIZE_4_KB
`define PMEM_AWIDTH 11
`define PMEM_SIZE 4096
`endif
`ifdef PMEM_SIZE_2_KB
`define PMEM_AWIDTH 10
`define PMEM_SIZE 2048
`endif
`ifdef PMEM_SIZE_1_KB
`define PMEM_AWIDTH 9
`define PMEM_SIZE 1024
`endif
`ifdef PMEM_SIZE_CUSTOM
`define PMEM_AWIDTH `PMEM_CUSTOM_AWIDTH
`define PMEM_SIZE `PMEM_CUSTOM_SIZE
`endif
// Data Memory Size
`ifdef DMEM_SIZE_32_KB
`define DMEM_AWIDTH 14
`define DMEM_SIZE 32768
`endif
`ifdef DMEM_SIZE_24_KB
`define DMEM_AWIDTH 14
`define DMEM_SIZE 24576
`endif
`ifdef DMEM_SIZE_16_KB
`define DMEM_AWIDTH 13
`define DMEM_SIZE 16384
`endif
`ifdef DMEM_SIZE_10_KB
`define DMEM_AWIDTH 13
`define DMEM_SIZE 10240
`endif
`ifdef DMEM_SIZE_8_KB
`define DMEM_AWIDTH 12
`define DMEM_SIZE 8192
`endif
`ifdef DMEM_SIZE_5_KB
`define DMEM_AWIDTH 12
`define DMEM_SIZE 5120
`endif
`ifdef DMEM_SIZE_4_KB
`define DMEM_AWIDTH 11
`define DMEM_SIZE 4096
`endif
`ifdef DMEM_SIZE_2p5_KB
`define DMEM_AWIDTH 11
`define DMEM_SIZE 2560
`endif
`ifdef DMEM_SIZE_2_KB
`define DMEM_AWIDTH 10
`define DMEM_SIZE 2048
`endif
`ifdef DMEM_SIZE_1_KB
`define DMEM_AWIDTH 9
`define DMEM_SIZE 1024
`endif
`ifdef DMEM_SIZE_512_B
`define DMEM_AWIDTH 8
`define DMEM_SIZE 512
`endif
`ifdef DMEM_SIZE_256_B
`define DMEM_AWIDTH 7
`define DMEM_SIZE 256
`endif
`ifdef DMEM_SIZE_128_B
`define DMEM_AWIDTH 6
`define DMEM_SIZE 128
`endif
`ifdef DMEM_SIZE_CUSTOM
`define DMEM_AWIDTH `DMEM_CUSTOM_AWIDTH
`define DMEM_SIZE `DMEM_CUSTOM_SIZE
`endif
// Peripheral Memory Size
`ifdef PER_SIZE_32_KB
`define PER_AWIDTH 14
`define PER_SIZE 32768
`endif
`ifdef PER_SIZE_16_KB
`define PER_AWIDTH 13
`define PER_SIZE 16384
`endif
`ifdef PER_SIZE_8_KB
`define PER_AWIDTH 12
`define PER_SIZE 8192
`endif
`ifdef PER_SIZE_4_KB
`define PER_AWIDTH 11
`define PER_SIZE 4096
`endif
`ifdef PER_SIZE_2_KB
`define PER_AWIDTH 10
`define PER_SIZE 2048
`endif
`ifdef PER_SIZE_1_KB
`define PER_AWIDTH 9
`define PER_SIZE 1024
`endif
`ifdef PER_SIZE_512_B
`define PER_AWIDTH 8
`define PER_SIZE 512
`endif
`ifdef PER_SIZE_CUSTOM
`define PER_AWIDTH `PER_CUSTOM_AWIDTH
`define PER_SIZE `PER_CUSTOM_SIZE
`endif
// Data Memory Base Adresses
`define DMEM_BASE `PER_SIZE
// Program & Data Memory most significant address bit (for 16 bit words)
`define PMEM_MSB `PMEM_AWIDTH-1
`define DMEM_MSB `DMEM_AWIDTH-1
`define PER_MSB `PER_AWIDTH-1
//
// STATES, REGISTER FIELDS, ...
//======================================
// Instructions type
`define INST_SO 0
`define INST_JMP 1
`define INST_TO 2
// Single-operand arithmetic
`define RRC 0
`define SWPB 1
`define RRA 2
`define SXT 3
`define PUSH 4
`define CALL 5
`define RETI 6
`define IRQ 7
// Conditional jump
`define JNE 0
`define JEQ 1
`define JNC 2
`define JC 3
`define JN 4
`define JGE 5
`define JL 6
`define JMP 7
// Two-operand arithmetic
`define MOV 0
`define ADD 1
`define ADDC 2
`define SUBC 3
`define SUB 4
`define CMP 5
`define DADD 6
`define BIT 7
`define BIC 8
`define BIS 9
`define XOR 10
`define AND 11
// Addressing modes
`define DIR 0
`define IDX 1
`define INDIR 2
`define INDIR_I 3
`define SYMB 4
`define IMM 5
`define ABS 6
`define CONST 7
// Instruction state machine
`define I_IRQ_FETCH 3'h0
`define I_IRQ_DONE 3'h1
`define I_DEC 3'h2
`define I_EXT1 3'h3
`define I_EXT2 3'h4
`define I_IDLE 3'h5
// Execution state machine
// (swapped E_IRQ_0 and E_IRQ_2 values to suppress glitch generation warning from lint tool)
`define E_IRQ_0 4'h2
`define E_IRQ_1 4'h1
`define E_IRQ_2 4'h0
`define E_IRQ_3 4'h3
`define E_IRQ_4 4'h4
`define E_SRC_AD 4'h5
`define E_SRC_RD 4'h6
`define E_SRC_WR 4'h7
`define E_DST_AD 4'h8
`define E_DST_RD 4'h9
`define E_DST_WR 4'hA
`define E_EXEC 4'hB
`define E_JUMP 4'hC
`define E_IDLE 4'hD
// ALU control signals
`define ALU_SRC_INV 0
`define ALU_INC 1
`define ALU_INC_C 2
`define ALU_ADD 3
`define ALU_AND 4
`define ALU_OR 5
`define ALU_XOR 6
`define ALU_DADD 7
`define ALU_STAT_7 8
`define ALU_STAT_F 9
`define ALU_SHIFT 10
`define EXEC_NO_WR 11
// Debug interface
`define DBG_UART_WR 18
`define DBG_UART_BW 17
`define DBG_UART_ADDR 16:11
// Debug interface CPU_CTL register
`define HALT 0
`define RUN 1
`define ISTEP 2
`define SW_BRK_EN 3
`define FRZ_BRK_EN 4
`define RST_BRK_EN 5
`define CPU_RST 6
// Debug interface CPU_STAT register
`define HALT_RUN 0
`define PUC_PND 1
`define SWBRK_PND 3
`define HWBRK0_PND 4
`define HWBRK1_PND 5
// Debug interface BRKx_CTL register
`define BRK_MODE_RD 0
`define BRK_MODE_WR 1
`define BRK_MODE 1:0
`define BRK_EN 2
`define BRK_I_EN 3
`define BRK_RANGE 4
// Basic clock module: BCSCTL1 Control Register
`define DIVAx 5:4
// Basic clock module: BCSCTL2 Control Register
`define SELMx 7
`define DIVMx 5:4
`define SELS 3
`define DIVSx 2:1
// MCLK Clock gate
`ifdef CPUOFF_EN
`define MCLK_CGATE
`else
`ifdef MCLK_DIVIDER
`define MCLK_CGATE
`endif
`endif
// SMCLK Clock gate
`ifdef SCG1_EN
`define SMCLK_CGATE
`else
`ifdef SMCLK_DIVIDER
`define SMCLK_CGATE
`endif
`endif
//
// DEBUG INTERFACE EXTRA CONFIGURATION
//======================================
// Debug interface: CPU version
`define CPU_VERSION 3'h2
// Debug interface: Software breakpoint opcode
`define DBG_SWBRK_OP 16'h4343
// Debug UART interface auto data synchronization
// If the following define is commented out, then
// the DBG_UART_BAUD and DBG_DCO_FREQ need to be properly
// defined.
`define DBG_UART_AUTO_SYNC
// Debug UART interface data rate
// In order to properly setup the UART debug interface, you
// need to specify the DCO_CLK frequency (DBG_DCO_FREQ) and
// the chosen BAUD rate from the UART interface.
//
//`define DBG_UART_BAUD 9600
//`define DBG_UART_BAUD 19200
//`define DBG_UART_BAUD 38400
//`define DBG_UART_BAUD 57600
//`define DBG_UART_BAUD 115200
//`define DBG_UART_BAUD 230400
//`define DBG_UART_BAUD 460800
//`define DBG_UART_BAUD 576000
//`define DBG_UART_BAUD 921600
`define DBG_UART_BAUD 2000000
`define DBG_DCO_FREQ 20000000
`define DBG_UART_CNT ((`DBG_DCO_FREQ/`DBG_UART_BAUD)-1)
// Debug interface selection
// `define DBG_UART -> Enable UART (8N1) debug interface
// `define DBG_JTAG -> DON'T UNCOMMENT, NOT SUPPORTED
//
`define DBG_UART
//`define DBG_JTAG
// Debug interface input synchronizer
`define SYNC_DBG_UART_RXD
// Enable/Disable the hardware breakpoint RANGE mode
`ifdef DBG_HWBRK_RANGE
`define HWBRK_RANGE 1'b1
`else
`define HWBRK_RANGE 1'b0
`endif
// Counter width for the debug interface UART
`define DBG_UART_XFER_CNT_W 16
// Check configuration
`ifdef DBG_EN
`ifdef DBG_UART
`ifdef DBG_JTAG
CONFIGURATION ERROR: JTAG AND UART DEBUG INTERFACE ARE BOTH ENABLED
`endif
`else
`ifdef DBG_JTAG
CONFIGURATION ERROR: JTAG INTERFACE NOT SUPPORTED
`else
CONFIGURATION ERROR: JTAG OR UART DEBUG INTERFACE SHOULD BE ENABLED
`endif
`endif
`endif
//
// MULTIPLIER CONFIGURATION
//======================================
// If uncommented, the following define selects
// the 16x16 multiplier (1 cycle) instead of the
// default 16x8 multplier (2 cycles)
//`define MPY_16x16
//======================================
// CONFIGURATION CHECKS
//======================================
`ifdef LFXT_DOMAIN
`else
`ifdef MCLK_MUX
CONFIGURATION ERROR: THE MCLK_MUX CAN ONLY BE ENABLED IF THE LFXT_DOMAIN IS ENABLED AS WELL
`endif
`ifdef SMCLK_MUX
CONFIGURATION ERROR: THE SMCLK_MUX CAN ONLY BE ENABLED IF THE LFXT_DOMAIN IS ENABLED AS WELL
`endif
`ifdef WATCHDOG_MUX
CONFIGURATION ERROR: THE WATCHDOG_MUX CAN ONLY BE ENABLED IF THE LFXT_DOMAIN IS ENABLED AS WELL
`else
`ifdef WATCHDOG_NOMUX_ACLK
CONFIGURATION ERROR: THE WATCHDOG_NOMUX_ACLK CAN ONLY BE ENABLED IF THE LFXT_DOMAIN IS ENABLED AS WELL
`endif
`endif
`ifdef OSCOFF_EN
CONFIGURATION ERROR: THE OSCOFF LOW POWER MODE CAN ONLY BE ENABLED IF THE LFXT_DOMAIN IS ENABLED AS WELL
`endif
`endif

View file

@ -0,0 +1,732 @@
//----------------------------------------------------------------------------
// Copyright (C) 2009 , Olivier Girard
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the authors nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
// THE POSSIBILITY OF SUCH DAMAGE
//
//----------------------------------------------------------------------------
//
// *File Name: openMSP430_undefines.v
//
// *Module Description:
// openMSP430 Verilog `undef file
//
// *Author(s):
// - Olivier Girard, olgirard@gmail.com
//
//----------------------------------------------------------------------------
// $Rev: 23 $
// $LastChangedBy: olivier.girard $
// $LastChangedDate: 2009-08-30 18:39:26 +0200 (Sun, 30 Aug 2009) $
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// BASIC SYSTEM CONFIGURATION
//----------------------------------------------------------------------------
// Program Memory sizes
`ifdef PMEM_SIZE_59_KB
`undef PMEM_SIZE_59_KB
`endif
`ifdef PMEM_SIZE_55_KB
`undef PMEM_SIZE_55_KB
`endif
`ifdef PMEM_SIZE_54_KB
`undef PMEM_SIZE_54_KB
`endif
`ifdef PMEM_SIZE_51_KB
`undef PMEM_SIZE_51_KB
`endif
`ifdef PMEM_SIZE_48_KB
`undef PMEM_SIZE_48_KB
`endif
`ifdef PMEM_SIZE_41_KB
`undef PMEM_SIZE_41_KB
`endif
`ifdef PMEM_SIZE_32_KB
`undef PMEM_SIZE_32_KB
`endif
`ifdef PMEM_SIZE_24_KB
`undef PMEM_SIZE_24_KB
`endif
`ifdef PMEM_SIZE_16_KB
`undef PMEM_SIZE_16_KB
`endif
`ifdef PMEM_SIZE_12_KB
`undef PMEM_SIZE_12_KB
`endif
`ifdef PMEM_SIZE_8_KB
`undef PMEM_SIZE_8_KB
`endif
`ifdef PMEM_SIZE_4_KB
`undef PMEM_SIZE_4_KB
`endif
`ifdef PMEM_SIZE_2_KB
`undef PMEM_SIZE_2_KB
`endif
`ifdef PMEM_SIZE_1_KB
`undef PMEM_SIZE_1_KB
`endif
// Data Memory sizes
`ifdef DMEM_SIZE_32_KB
`undef DMEM_SIZE_32_KB
`endif
`ifdef DMEM_SIZE_24_KB
`undef DMEM_SIZE_24_KB
`endif
`ifdef DMEM_SIZE_16_KB
`undef DMEM_SIZE_16_KB
`endif
`ifdef DMEM_SIZE_10_KB
`undef DMEM_SIZE_10_KB
`endif
`ifdef DMEM_SIZE_8_KB
`undef DMEM_SIZE_8_KB
`endif
`ifdef DMEM_SIZE_5_KB
`undef DMEM_SIZE_5_KB
`endif
`ifdef DMEM_SIZE_4_KB
`undef DMEM_SIZE_4_KB
`endif
`ifdef DMEM_SIZE_2p5_KB
`undef DMEM_SIZE_2p5_KB
`endif
`ifdef DMEM_SIZE_2_KB
`undef DMEM_SIZE_2_KB
`endif
`ifdef DMEM_SIZE_1_KB
`undef DMEM_SIZE_1_KB
`endif
`ifdef DMEM_SIZE_512_B
`undef DMEM_SIZE_512_B
`endif
`ifdef DMEM_SIZE_256_B
`undef DMEM_SIZE_256_B
`endif
`ifdef DMEM_SIZE_128_B
`undef DMEM_SIZE_128_B
`endif
// Include/Exclude Hardware Multiplier
`ifdef MULTIPLIER
`undef MULTIPLIER
`endif
// Include Debug interface
`ifdef DBG_EN
`undef DBG_EN
`endif
//----------------------------------------------------------------------------
// ADVANCED SYSTEM CONFIGURATION (FOR EXPERIENCED USERS)
//----------------------------------------------------------------------------
// Peripheral Memory Space:
`ifdef PER_SIZE_32_KB
`undef PER_SIZE_32_KB
`endif
`ifdef PER_SIZE_16_KB
`undef PER_SIZE_16_KB
`endif
`ifdef PER_SIZE_8_KB
`undef PER_SIZE_8_KB
`endif
`ifdef PER_SIZE_4_KB
`undef PER_SIZE_4_KB
`endif
`ifdef PER_SIZE_2_KB
`undef PER_SIZE_2_KB
`endif
`ifdef PER_SIZE_1_KB
`undef PER_SIZE_1_KB
`endif
`ifdef PER_SIZE_512_B
`undef PER_SIZE_512_B
`endif
// Let the CPU break after a PUC occurrence by default
`ifdef DBG_RST_BRK_EN
`undef DBG_RST_BRK_EN
`endif
// Custom user version number
`ifdef USER_VERSION
`undef USER_VERSION
`endif
// Include/Exclude Watchdog timer
`ifdef WATCHDOG
`undef WATCHDOG
`endif
// Include/Exclude Non-Maskable-Interrupt support
`ifdef NMI
`undef NMI
`endif
//----------------------------------------------------------------------------
// EXPERT SYSTEM CONFIGURATION ( !!!! EXPERTS ONLY !!!! )
//----------------------------------------------------------------------------
// Number of hardware breakpoint units
`ifdef DBG_HWBRK_0
`undef DBG_HWBRK_0
`endif
`ifdef DBG_HWBRK_1
`undef DBG_HWBRK_1
`endif
`ifdef DBG_HWBRK_2
`undef DBG_HWBRK_2
`endif
`ifdef DBG_HWBRK_3
`undef DBG_HWBRK_3
`endif
// Enable/Disable the hardware breakpoint RANGE mode
`ifdef DBG_HWBRK_RANGE
`undef DBG_HWBRK_RANGE
`endif
// Input synchronizers
`ifdef SYNC_CPU_EN
`undef SYNC_CPU_EN
`endif
`ifdef SYNC_DBG_EN
`undef SYNC_DBG_EN
`endif
`ifdef SYNC_DBG_UART_RXD
`undef SYNC_DBG_UART_RXD
`endif
`ifdef SYNC_NMI
`undef SYNC_NMI
`endif
// ASIC version
`ifdef ASIC
`undef ASIC
`endif
//----------------------------------------------------------------------------
// ASIC SYSTEM CONFIGURATION ( !!!! EXPERTS ONLY !!!! )
//----------------------------------------------------------------------------
// Fine grained clock gating
`ifdef CLOCK_GATING
`undef CLOCK_GATING
`endif
// LFXT clock domain
`ifdef LFXT_DOMAIN
`undef LFXT_DOMAIN
`endif
// MCLK: Clock Mux
`ifdef MCLK_MUX
`undef MCLK_MUX
`endif
// SMCLK: Clock Mux
`ifdef SMCLK_MUX
`undef SMCLK_MUX
`endif
// WATCHDOG: Clock Mux
`ifdef WATCHDOG_MUX
`undef WATCHDOG_MUX
`endif
// MCLK: Clock divider
`ifdef MCLK_DIVIDER
`undef MCLK_DIVIDER
`endif
// SMCLK: Clock divider (/1/2/4/8)
`ifdef SMCLK_DIVIDER
`undef SMCLK_DIVIDER
`endif
// ACLK: Clock divider (/1/2/4/8)
`ifdef ACLK_DIVIDER
`undef ACLK_DIVIDER
`endif
// LOW POWER MODE: CPUOFF
`ifdef CPUOFF_EN
`undef CPUOFF_EN
`endif
// LOW POWER MODE: OSCOFF
`ifdef OSCOFF_EN
`undef OSCOFF_EN
`endif
// LOW POWER MODE: SCG0
`ifdef SCG0_EN
`undef SCG0_EN
`endif
// LOW POWER MODE: SCG1
`ifdef SCG1_EN
`undef SCG1_EN
`endif
//==========================================================================//
//==========================================================================//
//==========================================================================//
//==========================================================================//
//===== SYSTEM CONSTANTS --- !!!!!!!! DO NOT EDIT !!!!!!!! =====//
//==========================================================================//
//==========================================================================//
//==========================================================================//
//==========================================================================//
// Program Memory Size
`ifdef PMEM_AWIDTH
`undef PMEM_AWIDTH
`endif
`ifdef PMEM_SIZE
`undef PMEM_SIZE
`endif
// Data Memory Size
`ifdef DMEM_AWIDTH
`undef DMEM_AWIDTH
`endif
`ifdef DMEM_SIZE
`undef DMEM_SIZE
`endif
// Peripheral Memory Size
`ifdef PER_AWIDTH
`undef PER_AWIDTH
`endif
`ifdef PER_SIZE
`undef PER_SIZE
`endif
// Data Memory Base Adresses
`ifdef DMEM_BASE
`undef DMEM_BASE
`endif
// Program & Data Memory most significant address bit (for 16 bit words)
`ifdef PMEM_MSB
`undef PMEM_MSB
`endif
`ifdef DMEM_MSB
`undef DMEM_MSB
`endif
`ifdef PER_MSB
`undef PER_MSB
`endif
// Instructions type
`ifdef INST_SO
`undef INST_SO
`endif
`ifdef INST_JMP
`undef INST_JMP
`endif
`ifdef INST_TO
`undef INST_TO
`endif
// Single-operand arithmetic
`ifdef RRC
`undef RRC
`endif
`ifdef SWPB
`undef SWPB
`endif
`ifdef RRA
`undef RRA
`endif
`ifdef SXT
`undef SXT
`endif
`ifdef PUSH
`undef PUSH
`endif
`ifdef CALL
`undef CALL
`endif
`ifdef RETI
`undef RETI
`endif
`ifdef IRQ
`undef IRQ
`endif
// Conditional jump
`ifdef JNE
`undef JNE
`endif
`ifdef JEQ
`undef JEQ
`endif
`ifdef JNC
`undef JNC
`endif
`ifdef JC
`undef JC
`endif
`ifdef JN
`undef JN
`endif
`ifdef JGE
`undef JGE
`endif
`ifdef JL
`undef JL
`endif
`ifdef JMP
`undef JMP
`endif
// Two-operand arithmetic
`ifdef MOV
`undef MOV
`endif
`ifdef ADD
`undef ADD
`endif
`ifdef ADDC
`undef ADDC
`endif
`ifdef SUBC
`undef SUBC
`endif
`ifdef SUB
`undef SUB
`endif
`ifdef CMP
`undef CMP
`endif
`ifdef DADD
`undef DADD
`endif
`ifdef BIT
`undef BIT
`endif
`ifdef BIC
`undef BIC
`endif
`ifdef BIS
`undef BIS
`endif
`ifdef XOR
`undef XOR
`endif
`ifdef AND
`undef AND
`endif
// Addressing modes
`ifdef DIR
`undef DIR
`endif
`ifdef IDX
`undef IDX
`endif
`ifdef INDIR
`undef INDIR
`endif
`ifdef INDIR_I
`undef INDIR_I
`endif
`ifdef SYMB
`undef SYMB
`endif
`ifdef IMM
`undef IMM
`endif
`ifdef ABS
`undef ABS
`endif
`ifdef CONST
`undef CONST
`endif
// Instruction state machine
`ifdef I_IRQ_FETCH
`undef I_IRQ_FETCH
`endif
`ifdef I_IRQ_DONE
`undef I_IRQ_DONE
`endif
`ifdef I_DEC
`undef I_DEC
`endif
`ifdef I_EXT1
`undef I_EXT1
`endif
`ifdef I_EXT2
`undef I_EXT2
`endif
`ifdef I_IDLE
`undef I_IDLE
`endif
// Execution state machine
`ifdef E_IRQ_0
`undef E_IRQ_0
`endif
`ifdef E_IRQ_1
`undef E_IRQ_1
`endif
`ifdef E_IRQ_2
`undef E_IRQ_2
`endif
`ifdef E_IRQ_3
`undef E_IRQ_3
`endif
`ifdef E_IRQ_4
`undef E_IRQ_4
`endif
`ifdef E_SRC_AD
`undef E_SRC_AD
`endif
`ifdef E_SRC_RD
`undef E_SRC_RD
`endif
`ifdef E_SRC_WR
`undef E_SRC_WR
`endif
`ifdef E_DST_AD
`undef E_DST_AD
`endif
`ifdef E_DST_RD
`undef E_DST_RD
`endif
`ifdef E_DST_WR
`undef E_DST_WR
`endif
`ifdef E_EXEC
`undef E_EXEC
`endif
`ifdef E_JUMP
`undef E_JUMP
`endif
`ifdef E_IDLE
`undef E_IDLE
`endif
// ALU control signals
`ifdef ALU_SRC_INV
`undef ALU_SRC_INV
`endif
`ifdef ALU_INC
`undef ALU_INC
`endif
`ifdef ALU_INC_C
`undef ALU_INC_C
`endif
`ifdef ALU_ADD
`undef ALU_ADD
`endif
`ifdef ALU_AND
`undef ALU_AND
`endif
`ifdef ALU_OR
`undef ALU_OR
`endif
`ifdef ALU_XOR
`undef ALU_XOR
`endif
`ifdef ALU_DADD
`undef ALU_DADD
`endif
`ifdef ALU_STAT_7
`undef ALU_STAT_7
`endif
`ifdef ALU_STAT_F
`undef ALU_STAT_F
`endif
`ifdef ALU_SHIFT
`undef ALU_SHIFT
`endif
`ifdef EXEC_NO_WR
`undef EXEC_NO_WR
`endif
// Debug interface
`ifdef DBG_UART_WR
`undef DBG_UART_WR
`endif
`ifdef DBG_UART_BW
`undef DBG_UART_BW
`endif
`ifdef DBG_UART_ADDR
`undef DBG_UART_ADDR
`endif
// Debug interface CPU_CTL register
`ifdef HALT
`undef HALT
`endif
`ifdef RUN
`undef RUN
`endif
`ifdef ISTEP
`undef ISTEP
`endif
`ifdef SW_BRK_EN
`undef SW_BRK_EN
`endif
`ifdef FRZ_BRK_EN
`undef FRZ_BRK_EN
`endif
`ifdef RST_BRK_EN
`undef RST_BRK_EN
`endif
`ifdef CPU_RST
`undef CPU_RST
`endif
// Debug interface CPU_STAT register
`ifdef HALT_RUN
`undef HALT_RUN
`endif
`ifdef PUC_PND
`undef PUC_PND
`endif
`ifdef SWBRK_PND
`undef SWBRK_PND
`endif
`ifdef HWBRK0_PND
`undef HWBRK0_PND
`endif
`ifdef HWBRK1_PND
`undef HWBRK1_PND
`endif
// Debug interface BRKx_CTL register
`ifdef BRK_MODE_RD
`undef BRK_MODE_RD
`endif
`ifdef BRK_MODE_WR
`undef BRK_MODE_WR
`endif
`ifdef BRK_MODE
`undef BRK_MODE
`endif
`ifdef BRK_EN
`undef BRK_EN
`endif
`ifdef BRK_I_EN
`undef BRK_I_EN
`endif
`ifdef BRK_RANGE
`undef BRK_RANGE
`endif
// Basic clock module: BCSCTL1 Control Register
`ifdef DIVAx
`undef DIVAx
`endif
// Basic clock module: BCSCTL2 Control Register
`ifdef SELMx
`undef SELMx
`endif
`ifdef DIVMx
`undef DIVMx
`endif
`ifdef SELS
`undef SELS
`endif
`ifdef DIVSx
`undef DIVSx
`endif
// MCLK Clock gate
`ifdef MCLK_CGATE
`undef MCLK_CGATE
`endif
// SMCLK Clock gate
`ifdef SMCLK_CGATE
`undef SMCLK_CGATE
`endif
//
// DEBUG INTERFACE EXTRA CONFIGURATION
//======================================
// Debug interface: CPU version
`ifdef CPU_VERSION
`undef CPU_VERSION
`endif
// Debug interface: Software breakpoint opcode
`ifdef DBG_SWBRK_OP
`undef DBG_SWBRK_OP
`endif
// Debug UART interface auto data synchronization
`ifdef DBG_UART_AUTO_SYNC
`undef DBG_UART_AUTO_SYNC
`endif
// Debug UART interface data rate
`ifdef DBG_UART_BAUD
`undef DBG_UART_BAUD
`endif
`ifdef DBG_DCO_FREQ
`undef DBG_DCO_FREQ
`endif
`ifdef DBG_UART_CNT
`undef DBG_UART_CNT
`endif
// Debug interface selection
`ifdef DBG_UART
`undef DBG_UART
`endif
`ifdef DBG_JTAG
`undef DBG_JTAG
`endif
// Enable/Disable the hardware breakpoint RANGE mode
`ifdef HWBRK_RANGE
`undef HWBRK_RANGE
`endif
// Counter width for the debug interface UART
`ifdef DBG_UART_XFER_CNT_W
`undef DBG_UART_XFER_CNT_W
`endif
//
// MULTIPLIER CONFIGURATION
//======================================
`ifdef MPY_16x16
`undef MPY_16x16
`endif