3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2025-04-24 01:25:33 +00:00
This commit is contained in:
Alain Dargelas 2025-02-26 16:17:09 -08:00
parent 9d3b7f7474
commit 6a26b2db55

View file

@ -6,28 +6,25 @@ USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
// Signal cell driver(s), precompute a cell output signal to a cell map
void sigCellDrivers(RTLIL::Design *design, dict<RTLIL::SigSpec, std::set<Cell *>> &sig2CellsInFanout,
void sigCellDrivers(RTLIL::Module *module, SigMap &sigmap, dict<RTLIL::SigSpec, std::set<Cell *>> &sig2CellsInFanout,
dict<RTLIL::SigSpec, std::set<Cell *>> &sig2CellsInFanin)
{
for (auto module : design->selected_modules()) {
SigMap sigmap(module);
for (auto cell : module->selected_cells()) {
for (auto &conn : cell->connections()) {
IdString portName = conn.first;
RTLIL::SigSpec actual = conn.second;
if (cell->output(portName)) {
sig2CellsInFanin[actual].insert(cell);
for (int i = 0; i < actual.size(); i++) {
SigSpec bit_sig = actual.extract(i, 1);
sig2CellsInFanin[sigmap(bit_sig)].insert(cell);
}
} else {
sig2CellsInFanout[sigmap(actual)].insert(cell);
for (int i = 0; i < actual.size(); i++) {
SigSpec bit_sig = actual.extract(i, 1);
if (!bit_sig.is_fully_const()) {
sig2CellsInFanout[sigmap(bit_sig)].insert(cell);
}
for (auto cell : module->selected_cells()) {
for (auto &conn : cell->connections()) {
IdString portName = conn.first;
RTLIL::SigSpec actual = conn.second;
if (cell->output(portName)) {
sig2CellsInFanin[sigmap(actual)].insert(cell);
for (int i = 0; i < actual.size(); i++) {
SigSpec bit_sig = actual.extract(i, 1);
sig2CellsInFanin[sigmap(bit_sig)].insert(cell);
}
} else {
sig2CellsInFanout[sigmap(actual)].insert(cell);
for (int i = 0; i < actual.size(); i++) {
SigSpec bit_sig = actual.extract(i, 1);
if (!bit_sig.is_fully_const()) {
sig2CellsInFanout[sigmap(bit_sig)].insert(cell);
}
}
}
@ -36,14 +33,13 @@ void sigCellDrivers(RTLIL::Design *design, dict<RTLIL::SigSpec, std::set<Cell *>
}
// Assign statements fanin, fanout, traces the lhs2rhs and rhs2lhs sigspecs and precompute maps
void lhs2rhs_rhs2lhs(RTLIL::Design *design, dict<RTLIL::SigSpec, std::set<RTLIL::SigSpec>> &rhsSig2LhsSig,
void lhs2rhs_rhs2lhs(RTLIL::Module *module, SigMap &sigmap, dict<RTLIL::SigSpec, std::set<RTLIL::SigSpec>> &rhsSig2LhsSig,
dict<RTLIL::SigSpec, RTLIL::SigSpec> &lhsSig2rhsSig)
{
for (auto module : design->selected_modules()) {
SigMap sigmap(module);
for (auto it = module->connections().begin(); it != module->connections().end(); ++it) {
RTLIL::SigSpec lhs = it->first;
RTLIL::SigSpec rhs = it->second;
for (auto it = module->connections().begin(); it != module->connections().end(); ++it) {
RTLIL::SigSpec lhs = it->first;
RTLIL::SigSpec rhs = it->second;
if (!lhs.is_chunk()) {
std::vector<SigSpec> lhsBits;
for (int i = 0; i < lhs.size(); i++) {
SigSpec bit_sig = lhs.extract(i, 1);
@ -52,96 +48,226 @@ void lhs2rhs_rhs2lhs(RTLIL::Design *design, dict<RTLIL::SigSpec, std::set<RTLIL:
std::vector<SigSpec> rhsBits;
for (int i = 0; i < rhs.size(); i++) {
SigSpec bit_sig = rhs.extract(i, 1);
if (bit_sig.is_fully_const()) {
continue;
}
rhsBits.push_back(bit_sig);
}
for (uint32_t i = 0; i < lhsBits.size(); i++) {
if (i < rhsBits.size()) {
rhsSig2LhsSig[sigmap(rhsBits[i])].insert(sigmap(lhsBits[i]));
lhsSig2rhsSig[sigmap(lhsBits[i])] = sigmap(rhsBits[i]);
lhsSig2rhsSig[lhsBits[i]] = sigmap(rhsBits[i]);
}
}
} else {
rhsSig2LhsSig[sigmap(rhs)].insert(sigmap(lhs));
lhsSig2rhsSig[lhs] = sigmap(rhs);
}
}
}
void fixfanout(RTLIL::Module *module, SigMap &sigmap, dict<RTLIL::SigSpec, std::set<Cell *>> &sig2CellsInFanout, RTLIL::Cell *cell, int fanout,
int limit)
{
if (fanout <= limit) {
std::cout << "Nothing to do for: " << cell->name.c_str() << std::endl;
std::cout << "Fanout: " << fanout << std::endl;
return; // No need to insert buffers
} else {
std::cout << "Something to do for: " << cell->name.c_str() << std::endl;
std::cout << "Fanout: " << fanout << std::endl;
}
int num_buffers = std::min((int)std::ceil(static_cast<double>(fanout) / limit), limit);
int max_output_per_buffer = std::ceil((float)fanout / (float)num_buffers);
std::cout << "fanout: " << fanout << "\n";
std::cout << "limit: " << limit << "\n";
std::cout << "num_buffers: " << num_buffers << "\n";
std::cout << "max_output_per_buffer: " << max_output_per_buffer << "\n";
std::vector<RTLIL::SigSpec> buffer_outputs;
std::vector<RTLIL::Cell*> buffers;
std::cout << "HERE1\n" << std::flush;
std::cout << "CELL: " << cell->name.c_str() << "\n" << std::flush;
RTLIL::SigSpec cellOutSig;
for (auto &conn : cell->connections()) {
IdString portName = conn.first;
RTLIL::SigSpec actual = conn.second;
if (cell->output(portName)) {
cellOutSig = sigmap(actual);
break;
}
}
std::cout << "HERE2\n" << std::flush;
for (int i = 0; i < num_buffers; ++i) {
RTLIL::Cell *buffer = module->addCell(NEW_ID2_SUFFIX("fbuf"), ID($buf)); // Assuming BUF is defined
RTLIL::SigSpec buffer_output = module->addWire(NEW_ID2_SUFFIX("fbuf"));
buffer->setPort(ID(A), cellOutSig);
buffer->setPort(ID(Y), sigmap(buffer_output));
buffer_outputs.push_back(buffer_output);
buffers.push_back(buffer);
}
std::cout << "Lookup\n" << std::flush;
std::set<Cell *> cells = sig2CellsInFanout[cellOutSig];
std::cout << "Lookup OK\n" << std::flush;
int indexCurrentBuffer = 0;
int indexFanout = 0;
std::map<Cell*, int> bufferActualFanout;
for (Cell *c : cells) {
for (auto &conn : c->connections()) {
IdString portName = conn.first;
RTLIL::SigSpec actual = conn.second;
if (c->input(portName)) {
if (sigmap(actual) == cellOutSig) {
c->setPort(portName, buffer_outputs[indexCurrentBuffer]);
sig2CellsInFanout[sigmap(buffer_outputs[indexCurrentBuffer])].insert(c);
indexFanout++;
bufferActualFanout[buffers[indexCurrentBuffer]] = indexFanout;
if (indexFanout >= max_output_per_buffer) {
indexFanout = 0;
indexCurrentBuffer++;
}
}
}
}
}
// Recursively fix the fanout of the newly created buffers
for (std::map<Cell*, int>::iterator itr = bufferActualFanout.begin(); itr != bufferActualFanout.end(); itr++) {
if (itr->second == 1) {
std::cout << "Buffer of 1" << std::endl;
for (Cell *c : cells) {
for (auto &conn : c->connections()) {
IdString portName = conn.first;
RTLIL::SigSpec actual = conn.second;
if (c->input(portName)) {
if (sigmap(buffer_outputs[indexCurrentBuffer]) == sigmap(actual)) {
c->setPort(portName, cellOutSig);
std::cout << "Remove buffer of 1" << std::endl;
module->remove(buffers[indexCurrentBuffer]);
//module->remove({buffer_outputs[indexCurrentBuffer].as_wire()});
break;
}
}
}
}
} else {
fixfanout(module, sigmap, sig2CellsInFanout, itr->first, itr->second, limit);
}
}
}
void calculateFanout(RTLIL::Module *module, SigMap &sigmap, dict<RTLIL::SigSpec, std::set<Cell *>>& sig2CellsInFanout, dict<Cell *, int> &cellFanout)
{
// Precompute cell output sigspec to cell map
dict<RTLIL::SigSpec, std::set<Cell *>> sig2CellsInFanin;
sigCellDrivers(module, sigmap, sig2CellsInFanout, sig2CellsInFanin);
// Precompute lhs2rhs and rhs2lhs sigspec map
dict<RTLIL::SigSpec, RTLIL::SigSpec> lhsSig2RhsSig;
dict<RTLIL::SigSpec, std::set<RTLIL::SigSpec>> rhsSig2LhsSig;
lhs2rhs_rhs2lhs(module, sigmap, rhsSig2LhsSig, lhsSig2RhsSig);
// Accumulate fanout from cell connections
dict<RTLIL::SigSpec, int> sigFanout;
for (auto itrSig : sig2CellsInFanout) {
SigSpec sigspec = itrSig.first;
std::set<Cell *> &cells = itrSig.second;
sigFanout[sigspec] = cells.size();
}
// Accumulate fanout from assign stmts connections
for (auto itrSig : rhsSig2LhsSig) {
SigSpec sigspec = itrSig.first;
std::set<RTLIL::SigSpec> &fanout = itrSig.second;
if (sigFanout.count(sigspec)) {
sigFanout[sigspec] += fanout.size();
} else {
sigFanout[sigspec] = fanout.size();
}
}
// Collect max fanout from all the output bits of a cell
for (auto itrSig : sigFanout) {
SigSpec sigspec = itrSig.first;
int fanout = itrSig.second;
std::set<Cell *> &cells = sig2CellsInFanin[sigspec];
for (Cell *cell : cells) {
if (cellFanout.count(cell)) {
cellFanout[cell] = std::max(fanout, cellFanout[cell]);
} else {
cellFanout[cell] = fanout;
}
}
}
// Find cells with no fanout info (connected to output ports, or not connected)
std::set<Cell *> noFanoutInfo;
for (auto cell : module->selected_cells()) {
if (!cellFanout.count(cell)) {
noFanoutInfo.insert(cell);
}
}
// Set those cells to fanout 1
for (auto cell : noFanoutInfo) {
cellFanout[cell] = 1;
}
}
struct AnnotateCellFanout : public ScriptPass {
AnnotateCellFanout() : ScriptPass("annotate_cell_fanout", "Annotate the cell fanout on the cell") {}
void script() override {}
void execute(std::vector<std::string>, RTLIL::Design *design) override
void execute(std::vector<std::string> args, RTLIL::Design *design) override
{
int limit = -1;
if (design == nullptr) {
log_error("No design object");
log_error("No design object\n");
return;
}
log("Running annotate_cell_fanout pass\n");
log_flush();
// Precompute cell output sigspec to cell map
dict<RTLIL::SigSpec, std::set<Cell *>> sig2CellsInFanin;
dict<RTLIL::SigSpec, std::set<Cell *>> sig2CellsInFanout;
sigCellDrivers(design, sig2CellsInFanout, sig2CellsInFanin);
// Precompute lhs2rhs and rhs2lhs sigspec map
dict<RTLIL::SigSpec, RTLIL::SigSpec> lhsSig2RhsSig;
dict<RTLIL::SigSpec, std::set<RTLIL::SigSpec>> rhsSig2LhsSig;
lhs2rhs_rhs2lhs(design, rhsSig2LhsSig, lhsSig2RhsSig);
// Accumulate fanout from cell connections
dict<RTLIL::SigSpec, int> sigFanout;
for (auto itrSig : sig2CellsInFanout) {
SigSpec sigspec = itrSig.first;
std::set<Cell *> &cells = itrSig.second;
sigFanout[sigspec] = cells.size();
}
// Accumulate fanout from assign stmts connections
for (auto itrSig : rhsSig2LhsSig) {
SigSpec sigspec = itrSig.first;
std::set<RTLIL::SigSpec> &fanout = itrSig.second;
if (sigFanout.count(sigspec)) {
sigFanout[sigspec] += fanout.size();
} else {
sigFanout[sigspec] = fanout.size();
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
if (args[argidx] == "-limit") {
limit = std::atoi(args[++argidx].c_str());
continue;
}
break;
}
// Collect max fanout from all the output bits of a cell
dict<Cell *, int> cellFanout;
for (auto itrSig : sigFanout) {
SigSpec sigspec = itrSig.first;
int fanout = itrSig.second;
std::set<Cell *> &cells = sig2CellsInFanin[sigspec];
for (Cell *cell : cells) {
if (cellFanout.count(cell)) {
cellFanout[cell] = std::max(fanout, cellFanout[cell]);
} else {
cellFanout[cell] = fanout;
}
}
extra_args(args, argidx, design);
if (limit < 2) {
log_error("Fanout cannot be limited to less than 2\n");
return;
}
// Find cells with no fanout info (connected to output ports, or not connected)
std::set<Cell *> noFanoutInfo;
for (auto module : design->selected_modules()) {
for (auto cell : module->selected_cells()) {
if (!cellFanout.count(cell)) {
noFanoutInfo.insert(cell);
bool fixedFanout = false;
{
SigMap sigmap(module);
dict<Cell *, int> cellFanout;
dict<RTLIL::SigSpec, std::set<Cell *>> sig2CellsInFanout;
calculateFanout(module, sigmap, sig2CellsInFanout, cellFanout);
// Add attribute with fanout info to every cell
for (auto itrCell : cellFanout) {
Cell *cell = itrCell.first;
int fanout = itrCell.second;
if (limit > 0 && (fanout > limit)) {
fixfanout(module, sigmap, sig2CellsInFanout, cell, fanout, limit);
fixedFanout = true;
} else {
cell->set_string_attribute("$FANOUT", std::to_string(fanout));
}
}
}
if (fixedFanout) {
SigMap sigmap(module);
dict<Cell *, int> cellFanout;
dict<RTLIL::SigSpec, std::set<Cell *>> sig2CellsInFanout;
calculateFanout(module, sigmap, sig2CellsInFanout, cellFanout);
for (auto itrCell : cellFanout) {
Cell *cell = itrCell.first;
int fanout = itrCell.second;
cell->set_string_attribute("$FANOUT", std::to_string(fanout));
}
}
}
// Set those cells to fanout 1
for (auto cell : noFanoutInfo) {
cellFanout[cell] = 1;
}
// Add attribute with fanout info to every cell
for (auto itrCell : cellFanout) {
Cell *cell = itrCell.first;
int fanout = itrCell.second;
cell->set_string_attribute("$FANOUT", std::to_string(fanout));
}
log("End annotate_cell_fanout pass\n");