mirror of
https://github.com/YosysHQ/yosys
synced 2025-08-11 21:50:54 +00:00
Converting a number of inline commands to refs
Also reflowing text for line width. Maybe look into supporting commands with options?
This commit is contained in:
parent
f8333e52f7
commit
685da6a2e5
17 changed files with 398 additions and 384 deletions
|
@ -28,13 +28,13 @@ components, such as LUTs, gates, or half- and full-adders.
|
|||
The extract pass
|
||||
~~~~~~~~~~~~~~~~
|
||||
|
||||
- Like the ``techmap`` pass, the ``extract`` pass is called with a map file. It
|
||||
compares the circuits inside the modules of the map file with the design and
|
||||
looks for sub-circuits in the design that match any of the modules in the map
|
||||
file.
|
||||
- If a match is found, the ``extract`` pass will replace the matching subcircuit
|
||||
with an instance of the module from the map file.
|
||||
- In a way the ``extract`` pass is the inverse of the techmap pass.
|
||||
- Like the :cmd:ref:`techmap` pass, the :cmd:ref:`extract` pass is called with a
|
||||
map file. It compares the circuits inside the modules of the map file with the
|
||||
design and looks for sub-circuits in the design that match any of the modules
|
||||
in the map file.
|
||||
- If a match is found, the :cmd:ref:`extract` pass will replace the matching
|
||||
subcircuit with an instance of the module from the map file.
|
||||
- In a way the :cmd:ref:`extract` pass is the inverse of the techmap pass.
|
||||
|
||||
.. todo:: copypaste
|
||||
|
||||
|
@ -93,19 +93,19 @@ can also be used to implement 16x20-bit multiplication.
|
|||
A way of mapping such elements in coarse grain synthesis is the wrap-extract-unwrap method:
|
||||
|
||||
wrap
|
||||
Identify candidate-cells in the circuit and wrap them in a cell with a constant
|
||||
wider bit-width using ``techmap``. The wrappers use the same parameters as the original cell, so
|
||||
the information about the original width of the ports is preserved.
|
||||
Then use the ``connwrappers`` command to connect up the bit-extended in- and
|
||||
outputs of the wrapper cells.
|
||||
Identify candidate-cells in the circuit and wrap them in a cell with a
|
||||
constant wider bit-width using :cmd:ref:`techmap`. The wrappers use the same
|
||||
parameters as the original cell, so the information about the original width
|
||||
of the ports is preserved. Then use the ``connwrappers`` command to connect up
|
||||
the bit-extended in- and outputs of the wrapper cells.
|
||||
|
||||
extract
|
||||
Now all operations are encoded using the same bit-width as the coarse grain
|
||||
element. The ``extract`` command can be used to replace circuits with cells
|
||||
of the target architecture.
|
||||
element. The :cmd:ref:`extract` command can be used to replace circuits with
|
||||
cells of the target architecture.
|
||||
|
||||
unwrap
|
||||
The remaining wrapper cell can be unwrapped using ``techmap``.
|
||||
The remaining wrapper cell can be unwrapped using :cmd:ref:`techmap`.
|
||||
|
||||
Example: DSP48_MACC
|
||||
~~~~~~~~~~~~~~~~~~~
|
||||
|
@ -144,7 +144,8 @@ Extract: ``macc_xilinx_xmap.v``
|
|||
:language: verilog
|
||||
:caption: ``docs/resources/PRESENTATION_ExAdv/macc_xilinx_xmap.v``
|
||||
|
||||
... simply use the same wrapping commands on this module as on the design to create a template for the ``extract`` command.
|
||||
... simply use the same wrapping commands on this module as on the design to
|
||||
create a template for the :cmd:ref:`extract` command.
|
||||
|
||||
Unwrapping multipliers: ``macc_xilinx_unwrap_map.v``
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue