mirror of
https://github.com/YosysHQ/yosys
synced 2025-08-06 11:20:27 +00:00
xilinx_dsp: Initial DSP48A/DSP48A1 support.
This commit is contained in:
parent
aa1adb0f1e
commit
666c6128a9
10 changed files with 921 additions and 14 deletions
673
passes/pmgen/xilinx_dsp48a.pmg
Normal file
673
passes/pmgen/xilinx_dsp48a.pmg
Normal file
|
@ -0,0 +1,673 @@
|
|||
// This file describes the main pattern matcher setup (of three total) that
|
||||
// forms the `xilinx_dsp` pass described in xilinx_dsp.cc — version for
|
||||
// DSP48A/DSP48A1 (Spartan 3A DSP, Spartan 6).
|
||||
// At a high level, it works as follows:
|
||||
// ( 1) Starting from a DSP48A/DSP48A1 cell
|
||||
// ( 2) Match the driver of the 'B' input to a possible $dff cell (B1REG)
|
||||
// (attached to at most two $mux cells that implement clock-enable or
|
||||
// reset functionality, using a subpattern discussed below)
|
||||
// If B1REG matched, treat 'B' input as input of B1REG
|
||||
// ( 3) Match the driver of the 'B' and 'D' inputs for a possible $add cell
|
||||
// (pre-adder)
|
||||
// ( 4) Match 'B' input for B0REG
|
||||
// ( 5) Match 'A' input for A1REG
|
||||
// If A1REG, then match 'A' input for A0REG
|
||||
// ( 6) Match 'D' input for DREG
|
||||
// ( 7) Match 'P' output that exclusively drives an MREG
|
||||
// ( 8) Match 'P' output that exclusively drives one of two inputs to an $add
|
||||
// cell (post-adder).
|
||||
// The other input to the adder is assumed to come in from the 'C' input
|
||||
// (note: 'P' -> 'C' connections that exist for accumulators are
|
||||
// recognised in xilinx_dsp.cc).
|
||||
// ( 9) Match 'P' output that exclusively drives a PREG
|
||||
// (10) If post-adder and PREG both present, match for a $mux cell driving
|
||||
// the 'C' input, where one of the $mux's inputs is the PREG output.
|
||||
// This indicates an accumulator situation, and one where a $mux exists
|
||||
// to override the accumulated value:
|
||||
// +--------------------------------+
|
||||
// | ____ |
|
||||
// +--| \ |
|
||||
// |$mux|-+ |
|
||||
// 'C' ---|____/ | |
|
||||
// | /-------\ +----+ |
|
||||
// +----+ +-| post- |___|PREG|---+ 'P'
|
||||
// |MREG|------ | adder | +----+
|
||||
// +----+ \-------/
|
||||
// Notes: see the notes in xilinx_dsp.pmg
|
||||
|
||||
pattern xilinx_dsp48a_pack
|
||||
|
||||
state <SigBit> clock
|
||||
state <SigSpec> sigA sigB sigC sigD sigM sigP
|
||||
state <IdString> postAddAB postAddMuxAB
|
||||
state <bool> ffAcepol ffBcepol ffDcepol ffMcepol ffPcepol
|
||||
state <bool> ffArstpol ffBrstpol ffDrstpol ffMrstpol ffPrstpol
|
||||
state <Cell*> ffA0 ffA0cemux ffA0rstmux ffA1 ffA1cemux ffA1rstmux
|
||||
state <Cell*> ffB0 ffB0cemux ffB0rstmux ffB1 ffB1cemux ffB1rstmux
|
||||
state <Cell*> ffD ffDcemux ffDrstmux ffM ffMcemux ffMrstmux ffP ffPcemux ffPrstmux
|
||||
|
||||
// Variables used for subpatterns
|
||||
state <SigSpec> argQ argD
|
||||
state <bool> ffcepol ffrstpol
|
||||
state <int> ffoffset
|
||||
udata <SigSpec> dffD dffQ
|
||||
udata <SigBit> dffclock
|
||||
udata <Cell*> dff dffcemux dffrstmux
|
||||
udata <bool> dffcepol dffrstpol
|
||||
|
||||
// (1) Starting from a DSP48A/DSP48A1 cell
|
||||
match dsp
|
||||
select dsp->type.in(\DSP48A, \DSP48A1)
|
||||
endmatch
|
||||
|
||||
code sigA sigB sigC sigD sigM clock
|
||||
auto unextend = [](const SigSpec &sig) {
|
||||
int i;
|
||||
for (i = GetSize(sig)-1; i > 0; i--)
|
||||
if (sig[i] != sig[i-1])
|
||||
break;
|
||||
// Do not remove non-const sign bit
|
||||
if (sig[i].wire)
|
||||
++i;
|
||||
return sig.extract(0, i);
|
||||
};
|
||||
sigA = unextend(port(dsp, \A));
|
||||
sigB = unextend(port(dsp, \B));
|
||||
|
||||
sigC = port(dsp, \C, SigSpec());
|
||||
sigD = port(dsp, \D, SigSpec());
|
||||
|
||||
SigSpec P = port(dsp, \P);
|
||||
// Only care about those bits that are used
|
||||
int i;
|
||||
for (i = GetSize(P)-1; i >= 0; i--)
|
||||
if (nusers(P[i]) > 1)
|
||||
break;
|
||||
i++;
|
||||
log_assert(nusers(P.extract_end(i)) <= 1);
|
||||
// This sigM could have no users if downstream sinks (e.g. $add) is
|
||||
// narrower than $mul result, for example
|
||||
if (i == 0)
|
||||
reject;
|
||||
sigM = P.extract(0, i);
|
||||
|
||||
clock = port(dsp, \CLK, SigBit());
|
||||
endcode
|
||||
|
||||
// (2) Match the driver of the 'B' input to a possible $dff cell (B1REG)
|
||||
// (attached to at most two $mux cells that implement clock-enable or
|
||||
// reset functionality, using a subpattern discussed above)
|
||||
// If matched, treat 'B' input as input of B1REG
|
||||
code argQ ffB1 ffB1cemux ffB1rstmux ffBcepol ffBrstpol sigB clock
|
||||
if (param(dsp, \B1REG).as_int() == 0 && param(dsp, \B0REG).as_int() == 0 && port(dsp, \OPMODE, SigSpec()).extract(4, 1).is_fully_zero()) {
|
||||
argQ = sigB;
|
||||
subpattern(in_dffe);
|
||||
if (dff) {
|
||||
ffB1 = dff;
|
||||
clock = dffclock;
|
||||
if (dffrstmux) {
|
||||
ffB1rstmux = dffrstmux;
|
||||
ffBrstpol = dffrstpol;
|
||||
}
|
||||
if (dffcemux) {
|
||||
ffB1cemux = dffcemux;
|
||||
ffBcepol = dffcepol;
|
||||
}
|
||||
sigB = dffD;
|
||||
}
|
||||
}
|
||||
endcode
|
||||
|
||||
// (3) Match the driver of the 'B' and 'D' inputs for a possible $add cell
|
||||
// (pre-adder)
|
||||
match preAdd
|
||||
if sigD.empty() || sigD.is_fully_zero()
|
||||
if param(dsp, \B0REG).as_int() == 0
|
||||
// Ensure that preAdder not already used
|
||||
if port(dsp, \OPMODE, SigSpec()).extract(4, 1).is_fully_zero()
|
||||
|
||||
select preAdd->type.in($add, $sub)
|
||||
// Output has to be 18 bits or less
|
||||
select GetSize(port(preAdd, \Y)) <= 18
|
||||
select nusers(port(preAdd, \Y)) == 2
|
||||
// D port has to be 18 bits or less
|
||||
select GetSize(port(preAdd, \A)) <= 18
|
||||
// B port has to be 18 bits or less
|
||||
select GetSize(port(preAdd, \B)) <= 18
|
||||
index <SigSpec> port(preAdd, \Y) === sigB
|
||||
|
||||
optional
|
||||
endmatch
|
||||
|
||||
code sigB sigD
|
||||
if (preAdd) {
|
||||
sigD = port(preAdd, \A);
|
||||
sigB = port(preAdd, \B);
|
||||
}
|
||||
endcode
|
||||
|
||||
// (4) Match 'B' input for B0REG
|
||||
code argQ ffB0 ffB0cemux ffB0rstmux ffBcepol ffBrstpol sigB clock
|
||||
if (param(dsp, \B0REG).as_int() == 0) {
|
||||
argQ = sigB;
|
||||
subpattern(in_dffe);
|
||||
if (dff) {
|
||||
if (ffB1) {
|
||||
if ((ffB1rstmux != nullptr) ^ (dffrstmux != nullptr))
|
||||
goto ffB0_end;
|
||||
if ((ffB1cemux != nullptr) ^ (dffcemux != nullptr))
|
||||
goto ffB0_end;
|
||||
if (dffrstmux) {
|
||||
if (ffBrstpol != dffrstpol)
|
||||
goto ffB0_end;
|
||||
if (port(ffB1rstmux, \S) != port(dffrstmux, \S))
|
||||
goto ffB0_end;
|
||||
ffB0rstmux = dffrstmux;
|
||||
}
|
||||
if (dffcemux) {
|
||||
if (ffBcepol != dffcepol)
|
||||
goto ffB0_end;
|
||||
if (port(ffB1cemux, \S) != port(dffcemux, \S))
|
||||
goto ffB0_end;
|
||||
ffB0cemux = dffcemux;
|
||||
}
|
||||
}
|
||||
ffB0 = dff;
|
||||
clock = dffclock;
|
||||
if (dffrstmux) {
|
||||
ffB0rstmux = dffrstmux;
|
||||
ffBrstpol = dffrstpol;
|
||||
}
|
||||
if (dffcemux) {
|
||||
ffB0cemux = dffcemux;
|
||||
ffBcepol = dffcepol;
|
||||
}
|
||||
sigB = dffD;
|
||||
}
|
||||
}
|
||||
ffB0_end:
|
||||
endcode
|
||||
|
||||
// (5) Match 'A' input for A1REG
|
||||
// If A1REG, then match 'A' input for A0REG
|
||||
code argQ ffA1 ffA1cemux ffA1rstmux ffAcepol ffArstpol sigA clock ffA0 ffA0cemux ffA0rstmux
|
||||
if (param(dsp, \A0REG).as_int() == 0 && param(dsp, \A1REG).as_int() == 0) {
|
||||
argQ = sigA;
|
||||
subpattern(in_dffe);
|
||||
if (dff) {
|
||||
ffA1 = dff;
|
||||
clock = dffclock;
|
||||
if (dffrstmux) {
|
||||
ffA1rstmux = dffrstmux;
|
||||
ffArstpol = dffrstpol;
|
||||
}
|
||||
if (dffcemux) {
|
||||
ffA1cemux = dffcemux;
|
||||
ffAcepol = dffcepol;
|
||||
}
|
||||
sigA = dffD;
|
||||
|
||||
// Now attempt to match A0
|
||||
if (ffA1) {
|
||||
argQ = sigA;
|
||||
subpattern(in_dffe);
|
||||
if (dff) {
|
||||
if ((ffA1rstmux != nullptr) ^ (dffrstmux != nullptr))
|
||||
goto ffA0_end;
|
||||
if ((ffA1cemux != nullptr) ^ (dffcemux != nullptr))
|
||||
goto ffA0_end;
|
||||
if (dffrstmux) {
|
||||
if (ffArstpol != dffrstpol)
|
||||
goto ffA0_end;
|
||||
if (port(ffA1rstmux, \S) != port(dffrstmux, \S))
|
||||
goto ffA0_end;
|
||||
ffA0rstmux = dffrstmux;
|
||||
}
|
||||
if (dffcemux) {
|
||||
if (ffAcepol != dffcepol)
|
||||
goto ffA0_end;
|
||||
if (port(ffA1cemux, \S) != port(dffcemux, \S))
|
||||
goto ffA0_end;
|
||||
ffA0cemux = dffcemux;
|
||||
}
|
||||
|
||||
ffA0 = dff;
|
||||
clock = dffclock;
|
||||
|
||||
if (dffcemux) {
|
||||
ffA0cemux = dffcemux;
|
||||
ffAcepol = dffcepol;
|
||||
}
|
||||
sigA = dffD;
|
||||
|
||||
ffA0_end: ;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
endcode
|
||||
|
||||
// (6) Match 'D' input for DREG
|
||||
code argQ ffD ffDcemux ffDrstmux ffDcepol ffDrstpol sigD clock
|
||||
if (param(dsp, \DREG).as_int() == 0) {
|
||||
argQ = sigD;
|
||||
subpattern(in_dffe);
|
||||
if (dff) {
|
||||
ffD = dff;
|
||||
clock = dffclock;
|
||||
if (dffrstmux) {
|
||||
ffDrstmux = dffrstmux;
|
||||
ffDrstpol = dffrstpol;
|
||||
}
|
||||
if (dffcemux) {
|
||||
ffDcemux = dffcemux;
|
||||
ffDcepol = dffcepol;
|
||||
}
|
||||
sigD = dffD;
|
||||
}
|
||||
}
|
||||
endcode
|
||||
|
||||
// (7) Match 'P' output that exclusively drives an MREG
|
||||
code argD ffM ffMcemux ffMrstmux ffMcepol ffMrstpol sigM sigP clock
|
||||
if (param(dsp, \MREG).as_int() == 0 && nusers(sigM) == 2) {
|
||||
argD = sigM;
|
||||
subpattern(out_dffe);
|
||||
if (dff) {
|
||||
ffM = dff;
|
||||
clock = dffclock;
|
||||
if (dffrstmux) {
|
||||
ffMrstmux = dffrstmux;
|
||||
ffMrstpol = dffrstpol;
|
||||
}
|
||||
if (dffcemux) {
|
||||
ffMcemux = dffcemux;
|
||||
ffMcepol = dffcepol;
|
||||
}
|
||||
sigM = dffQ;
|
||||
}
|
||||
}
|
||||
sigP = sigM;
|
||||
endcode
|
||||
|
||||
// (8) Match 'P' output that exclusively drives one of two inputs to an $add
|
||||
// cell (post-adder).
|
||||
// The other input to the adder is assumed to come in from the 'C' input
|
||||
// (note: 'P' -> 'C' connections that exist for accumulators are
|
||||
// recognised in xilinx_dsp.cc).
|
||||
match postAdd
|
||||
// Ensure that Z mux is not already used
|
||||
if port(dsp, \OPMODE, SigSpec()).extract(2,2).is_fully_zero()
|
||||
|
||||
select postAdd->type.in($add)
|
||||
select GetSize(port(postAdd, \Y)) <= 48
|
||||
choice <IdString> AB {\A, \B}
|
||||
select nusers(port(postAdd, AB)) <= 3
|
||||
filter ffMcemux || nusers(port(postAdd, AB)) == 2
|
||||
filter !ffMcemux || nusers(port(postAdd, AB)) == 3
|
||||
|
||||
index <SigBit> port(postAdd, AB)[0] === sigP[0]
|
||||
filter GetSize(port(postAdd, AB)) >= GetSize(sigP)
|
||||
filter port(postAdd, AB).extract(0, GetSize(sigP)) == sigP
|
||||
// Check that remainder of AB is a sign- or zero-extension
|
||||
filter port(postAdd, AB).extract_end(GetSize(sigP)) == SigSpec(sigP[GetSize(sigP)-1], GetSize(port(postAdd, AB))-GetSize(sigP)) || port(postAdd, AB).extract_end(GetSize(sigP)) == SigSpec(State::S0, GetSize(port(postAdd, AB))-GetSize(sigP))
|
||||
|
||||
set postAddAB AB
|
||||
optional
|
||||
endmatch
|
||||
|
||||
code sigC sigP
|
||||
if (postAdd) {
|
||||
sigC = port(postAdd, postAddAB == \A ? \B : \A);
|
||||
sigP = port(postAdd, \Y);
|
||||
}
|
||||
endcode
|
||||
|
||||
// (9) Match 'P' output that exclusively drives a PREG
|
||||
code argD ffP ffPcemux ffPrstmux ffPcepol ffPrstpol sigP clock
|
||||
if (param(dsp, \PREG).as_int() == 0) {
|
||||
int users = 2;
|
||||
// If ffMcemux and no postAdd new-value net must have three users: ffMcemux, ffM and ffPcemux
|
||||
if (ffMcemux && !postAdd) users++;
|
||||
if (nusers(sigP) == users) {
|
||||
argD = sigP;
|
||||
subpattern(out_dffe);
|
||||
if (dff) {
|
||||
ffP = dff;
|
||||
clock = dffclock;
|
||||
if (dffrstmux) {
|
||||
ffPrstmux = dffrstmux;
|
||||
ffPrstpol = dffrstpol;
|
||||
}
|
||||
if (dffcemux) {
|
||||
ffPcemux = dffcemux;
|
||||
ffPcepol = dffcepol;
|
||||
}
|
||||
sigP = dffQ;
|
||||
}
|
||||
}
|
||||
}
|
||||
endcode
|
||||
|
||||
// (10) If post-adder and PREG both present, match for a $mux cell driving
|
||||
// the 'C' input, where one of the $mux's inputs is the PREG output.
|
||||
// This indicates an accumulator situation, and one where a $mux exists
|
||||
// to override the accumulated value:
|
||||
// +--------------------------------+
|
||||
// | ____ |
|
||||
// +--| \ |
|
||||
// |$mux|-+ |
|
||||
// 'C' ---|____/ | |
|
||||
// | /-------\ +----+ |
|
||||
// +----+ +-| post- |___|PREG|---+ 'P'
|
||||
// |MREG|------ | adder | +----+
|
||||
// +----+ \-------/
|
||||
match postAddMux
|
||||
if postAdd
|
||||
if ffP
|
||||
select postAddMux->type.in($mux)
|
||||
select nusers(port(postAddMux, \Y)) == 2
|
||||
choice <IdString> AB {\A, \B}
|
||||
index <SigSpec> port(postAddMux, AB) === sigP
|
||||
index <SigSpec> port(postAddMux, \Y) === sigC
|
||||
set postAddMuxAB AB
|
||||
optional
|
||||
endmatch
|
||||
|
||||
code sigC
|
||||
if (postAddMux)
|
||||
sigC = port(postAddMux, postAddMuxAB == \A ? \B : \A);
|
||||
endcode
|
||||
|
||||
code
|
||||
accept;
|
||||
endcode
|
||||
|
||||
// #######################
|
||||
|
||||
// Subpattern for matching against input registers, based on knowledge of the
|
||||
// 'Q' input. Typically, identifying registers with clock-enable and reset
|
||||
// capability would be a task would be handled by other Yosys passes such as
|
||||
// dff2dffe, but since DSP inference happens much before this, these patterns
|
||||
// have to be manually identified.
|
||||
// At a high level:
|
||||
// (1) Starting from a $dff cell that (partially or fully) drives the given
|
||||
// 'Q' argument
|
||||
// (2) Match for a $mux cell implementing synchronous reset semantics ---
|
||||
// one that exclusively drives the 'D' input of the $dff, with one of its
|
||||
// $mux inputs being fully zero
|
||||
// (3) Match for a $mux cell implement clock enable semantics --- one that
|
||||
// exclusively drives the 'D' input of the $dff (or the other input of
|
||||
// the reset $mux) and where one of this $mux's inputs is connected to
|
||||
// the 'Q' output of the $dff
|
||||
subpattern in_dffe
|
||||
arg argD argQ clock
|
||||
|
||||
code
|
||||
dff = nullptr;
|
||||
if (GetSize(argQ) == 0)
|
||||
reject;
|
||||
for (const auto &c : argQ.chunks()) {
|
||||
// Abandon matches when 'Q' is a constant
|
||||
if (!c.wire)
|
||||
reject;
|
||||
// Abandon matches when 'Q' has the keep attribute set
|
||||
if (c.wire->get_bool_attribute(\keep))
|
||||
reject;
|
||||
// Abandon matches when 'Q' has a non-zero init attribute set
|
||||
// (not supported by DSP48E1)
|
||||
Const init = c.wire->attributes.at(\init, Const());
|
||||
if (!init.empty())
|
||||
for (auto b : init.extract(c.offset, c.width))
|
||||
if (b != State::Sx && b != State::S0)
|
||||
reject;
|
||||
}
|
||||
endcode
|
||||
|
||||
// (1) Starting from a $dff cell that (partially or fully) drives the given
|
||||
// 'Q' argument
|
||||
match ff
|
||||
select ff->type.in($dff)
|
||||
// DSP48E1 does not support clock inversion
|
||||
select param(ff, \CLK_POLARITY).as_bool()
|
||||
|
||||
slice offset GetSize(port(ff, \D))
|
||||
index <SigBit> port(ff, \Q)[offset] === argQ[0]
|
||||
|
||||
// Check that the rest of argQ is present
|
||||
filter GetSize(port(ff, \Q)) >= offset + GetSize(argQ)
|
||||
filter port(ff, \Q).extract(offset, GetSize(argQ)) == argQ
|
||||
|
||||
filter clock == SigBit() || port(ff, \CLK) == clock
|
||||
|
||||
set ffoffset offset
|
||||
endmatch
|
||||
|
||||
code argQ argD
|
||||
SigSpec Q = port(ff, \Q);
|
||||
dff = ff;
|
||||
dffclock = port(ff, \CLK);
|
||||
dffD = argQ;
|
||||
argD = port(ff, \D);
|
||||
argQ = Q;
|
||||
dffD.replace(argQ, argD);
|
||||
// Only search for ffrstmux if dffD only
|
||||
// has two (ff, ffrstmux) users
|
||||
if (nusers(dffD) > 2)
|
||||
argD = SigSpec();
|
||||
endcode
|
||||
|
||||
// (2) Match for a $mux cell implementing synchronous reset semantics ---
|
||||
// exclusively drives the 'D' input of the $dff, with one of the $mux
|
||||
// inputs being fully zero
|
||||
match ffrstmux
|
||||
if !argD.empty()
|
||||
select ffrstmux->type.in($mux)
|
||||
index <SigSpec> port(ffrstmux, \Y) === argD
|
||||
|
||||
choice <IdString> BA {\B, \A}
|
||||
// DSP48E1 only supports reset to zero
|
||||
select port(ffrstmux, BA).is_fully_zero()
|
||||
|
||||
define <bool> pol (BA == \B)
|
||||
set ffrstpol pol
|
||||
semioptional
|
||||
endmatch
|
||||
|
||||
code argD
|
||||
if (ffrstmux) {
|
||||
dffrstmux = ffrstmux;
|
||||
dffrstpol = ffrstpol;
|
||||
argD = port(ffrstmux, ffrstpol ? \A : \B);
|
||||
dffD.replace(port(ffrstmux, \Y), argD);
|
||||
|
||||
// Only search for ffcemux if argQ has at
|
||||
// least 3 users (ff, <upstream>, ffrstmux) and
|
||||
// dffD only has two (ff, ffrstmux)
|
||||
if (!(nusers(argQ) >= 3 && nusers(dffD) == 2))
|
||||
argD = SigSpec();
|
||||
}
|
||||
else
|
||||
dffrstmux = nullptr;
|
||||
endcode
|
||||
|
||||
// (3) Match for a $mux cell implement clock enable semantics --- one that
|
||||
// exclusively drives the 'D' input of the $dff (or the other input of
|
||||
// the reset $mux) and where one of this $mux's inputs is connected to
|
||||
// the 'Q' output of the $dff
|
||||
match ffcemux
|
||||
if !argD.empty()
|
||||
select ffcemux->type.in($mux)
|
||||
index <SigSpec> port(ffcemux, \Y) === argD
|
||||
choice <IdString> AB {\A, \B}
|
||||
index <SigSpec> port(ffcemux, AB) === argQ
|
||||
define <bool> pol (AB == \A)
|
||||
set ffcepol pol
|
||||
semioptional
|
||||
endmatch
|
||||
|
||||
code argD
|
||||
if (ffcemux) {
|
||||
dffcemux = ffcemux;
|
||||
dffcepol = ffcepol;
|
||||
argD = port(ffcemux, ffcepol ? \B : \A);
|
||||
dffD.replace(port(ffcemux, \Y), argD);
|
||||
}
|
||||
else
|
||||
dffcemux = nullptr;
|
||||
endcode
|
||||
|
||||
// #######################
|
||||
|
||||
// Subpattern for matching against output registers, based on knowledge of the
|
||||
// 'D' input.
|
||||
// At a high level:
|
||||
// (1) Starting from an optional $mux cell that implements clock enable
|
||||
// semantics --- one where the given 'D' argument (partially or fully)
|
||||
// drives one of its two inputs
|
||||
// (2) Starting from, or continuing onto, another optional $mux cell that
|
||||
// implements synchronous reset semantics --- one where the given 'D'
|
||||
// argument (or the clock enable $mux output) drives one of its two inputs
|
||||
// and where the other input is fully zero
|
||||
// (3) Match for a $dff cell (whose 'D' input is the 'D' argument, or the
|
||||
// output of the previous clock enable or reset $mux cells)
|
||||
subpattern out_dffe
|
||||
arg argD argQ clock
|
||||
|
||||
code
|
||||
dff = nullptr;
|
||||
for (auto c : argD.chunks())
|
||||
// Abandon matches when 'D' has the keep attribute set
|
||||
if (c.wire->get_bool_attribute(\keep))
|
||||
reject;
|
||||
endcode
|
||||
|
||||
// (1) Starting from an optional $mux cell that implements clock enable
|
||||
// semantics --- one where the given 'D' argument (partially or fully)
|
||||
// drives one of its two inputs
|
||||
match ffcemux
|
||||
select ffcemux->type.in($mux)
|
||||
// ffcemux output must have two users: ffcemux and ff.D
|
||||
select nusers(port(ffcemux, \Y)) == 2
|
||||
|
||||
choice <IdString> AB {\A, \B}
|
||||
// keep-last-value net must have at least three users: ffcemux, ff, downstream sink(s)
|
||||
select nusers(port(ffcemux, AB)) >= 3
|
||||
|
||||
slice offset GetSize(port(ffcemux, \Y))
|
||||
define <IdString> BA (AB == \A ? \B : \A)
|
||||
index <SigBit> port(ffcemux, BA)[offset] === argD[0]
|
||||
|
||||
// Check that the rest of argD is present
|
||||
filter GetSize(port(ffcemux, BA)) >= offset + GetSize(argD)
|
||||
filter port(ffcemux, BA).extract(offset, GetSize(argD)) == argD
|
||||
|
||||
set ffoffset offset
|
||||
define <bool> pol (AB == \A)
|
||||
set ffcepol pol
|
||||
|
||||
semioptional
|
||||
endmatch
|
||||
|
||||
code argD argQ
|
||||
dffcemux = ffcemux;
|
||||
if (ffcemux) {
|
||||
SigSpec BA = port(ffcemux, ffcepol ? \B : \A);
|
||||
SigSpec Y = port(ffcemux, \Y);
|
||||
argQ = argD;
|
||||
argD.replace(BA, Y);
|
||||
argQ.replace(BA, port(ffcemux, ffcepol ? \A : \B));
|
||||
|
||||
dffcemux = ffcemux;
|
||||
dffcepol = ffcepol;
|
||||
}
|
||||
endcode
|
||||
|
||||
// (2) Starting from, or continuing onto, another optional $mux cell that
|
||||
// implements synchronous reset semantics --- one where the given 'D'
|
||||
// argument (or the clock enable $mux output) drives one of its two inputs
|
||||
// and where the other input is fully zero
|
||||
match ffrstmux
|
||||
select ffrstmux->type.in($mux)
|
||||
// ffrstmux output must have two users: ffrstmux and ff.D
|
||||
select nusers(port(ffrstmux, \Y)) == 2
|
||||
|
||||
choice <IdString> BA {\B, \A}
|
||||
// DSP48E1 only supports reset to zero
|
||||
select port(ffrstmux, BA).is_fully_zero()
|
||||
|
||||
slice offset GetSize(port(ffrstmux, \Y))
|
||||
define <IdString> AB (BA == \B ? \A : \B)
|
||||
index <SigBit> port(ffrstmux, AB)[offset] === argD[0]
|
||||
|
||||
// Check that offset is consistent
|
||||
filter !ffcemux || ffoffset == offset
|
||||
// Check that the rest of argD is present
|
||||
filter GetSize(port(ffrstmux, AB)) >= offset + GetSize(argD)
|
||||
filter port(ffrstmux, AB).extract(offset, GetSize(argD)) == argD
|
||||
|
||||
set ffoffset offset
|
||||
define <bool> pol (AB == \A)
|
||||
set ffrstpol pol
|
||||
|
||||
semioptional
|
||||
endmatch
|
||||
|
||||
code argD argQ
|
||||
dffrstmux = ffrstmux;
|
||||
if (ffrstmux) {
|
||||
SigSpec AB = port(ffrstmux, ffrstpol ? \A : \B);
|
||||
SigSpec Y = port(ffrstmux, \Y);
|
||||
argD.replace(AB, Y);
|
||||
|
||||
dffrstmux = ffrstmux;
|
||||
dffrstpol = ffrstpol;
|
||||
}
|
||||
endcode
|
||||
|
||||
// (3) Match for a $dff cell (whose 'D' input is the 'D' argument, or the
|
||||
// output of the previous clock enable or reset $mux cells)
|
||||
match ff
|
||||
select ff->type.in($dff)
|
||||
// DSP48E1 does not support clock inversion
|
||||
select param(ff, \CLK_POLARITY).as_bool()
|
||||
|
||||
slice offset GetSize(port(ff, \D))
|
||||
index <SigBit> port(ff, \D)[offset] === argD[0]
|
||||
|
||||
// Check that offset is consistent
|
||||
filter (!ffcemux && !ffrstmux) || ffoffset == offset
|
||||
// Check that the rest of argD is present
|
||||
filter GetSize(port(ff, \D)) >= offset + GetSize(argD)
|
||||
filter port(ff, \D).extract(offset, GetSize(argD)) == argD
|
||||
// Check that FF.Q is connected to CE-mux
|
||||
filter !ffcemux || port(ff, \Q).extract(offset, GetSize(argQ)) == argQ
|
||||
|
||||
filter clock == SigBit() || port(ff, \CLK) == clock
|
||||
|
||||
set ffoffset offset
|
||||
endmatch
|
||||
|
||||
code argQ
|
||||
SigSpec D = port(ff, \D);
|
||||
SigSpec Q = port(ff, \Q);
|
||||
if (!ffcemux) {
|
||||
argQ = argD;
|
||||
argQ.replace(D, Q);
|
||||
}
|
||||
|
||||
// Abandon matches when 'Q' has a non-zero init attribute set
|
||||
// (not supported by DSP48E1)
|
||||
for (auto c : argQ.chunks()) {
|
||||
Const init = c.wire->attributes.at(\init, Const());
|
||||
if (!init.empty())
|
||||
for (auto b : init.extract(c.offset, c.width))
|
||||
if (b != State::Sx && b != State::S0)
|
||||
reject;
|
||||
}
|
||||
|
||||
dff = ff;
|
||||
dffQ = argQ;
|
||||
dffclock = port(ff, \CLK);
|
||||
endcode
|
Loading…
Add table
Add a link
Reference in a new issue