3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2025-04-12 20:18:20 +00:00

Various cleanups and improvements in opt_muxtree

This commit is contained in:
Clifford Wolf 2015-01-18 11:17:56 +01:00
parent 279a18c9a3
commit 61192514e3

View file

@ -37,39 +37,33 @@ struct OptMuxtreeWorker
SigMap assign_map; SigMap assign_map;
int removed_count; int removed_count;
struct bitDef_t : public std::pair<RTLIL::Wire*, int> {
bitDef_t() : std::pair<RTLIL::Wire*, int>(NULL, 0) { }
bitDef_t(const RTLIL::SigBit &bit) : std::pair<RTLIL::Wire*, int>(bit.wire, bit.offset) { }
};
struct bitinfo_t { struct bitinfo_t {
int num; int num;
bitDef_t bit; SigBit bit;
bool seen_non_mux; bool seen_non_mux;
std::vector<int> mux_users; vector<int> mux_users;
std::vector<int> mux_drivers; vector<int> mux_drivers;
}; };
std::map<bitDef_t, int> bit2num; dict<SigBit, int> bit2num;
std::vector<bitinfo_t> bit2info; vector<bitinfo_t> bit2info;
struct portinfo_t { struct portinfo_t {
std::vector<int> ctrl_sigs; int ctrl_sig;
std::vector<int> input_sigs; vector<int> input_sigs;
std::vector<int> input_muxes; vector<int> input_muxes;
bool const_activated; bool const_activated;
bool const_deactivated;
bool enabled; bool enabled;
}; };
struct muxinfo_t { struct muxinfo_t {
RTLIL::Cell *cell; RTLIL::Cell *cell;
std::vector<portinfo_t> ports; vector<portinfo_t> ports;
}; };
std::vector<muxinfo_t> mux2info; vector<muxinfo_t> mux2info;
vector<bool> root_muxes;
std::set<int> root_muxes;
OptMuxtreeWorker(RTLIL::Design *design, RTLIL::Module *module) : OptMuxtreeWorker(RTLIL::Design *design, RTLIL::Module *module) :
design(design), module(module), assign_map(module), removed_count(0) design(design), module(module), assign_map(module), removed_count(0)
@ -83,9 +77,10 @@ struct OptMuxtreeWorker
// .mux_users // .mux_users
// .mux_drivers // .mux_drivers
// Populate mux2info[].ports[]: // Populate mux2info[].ports[]:
// .ctrl_sigs // .ctrl_sig
// .input_sigs // .input_sigs
// .const_activated // .const_activated
// .const_deactivated
for (auto cell : module->cells()) for (auto cell : module->cells())
{ {
if (cell->type == "$mux" || cell->type == "$pmux") if (cell->type == "$mux" || cell->type == "$pmux")
@ -102,13 +97,13 @@ struct OptMuxtreeWorker
RTLIL::SigSpec sig = sig_b.extract(i*sig_a.size(), sig_a.size()); RTLIL::SigSpec sig = sig_b.extract(i*sig_a.size(), sig_a.size());
RTLIL::SigSpec ctrl_sig = assign_map(sig_s.extract(i, 1)); RTLIL::SigSpec ctrl_sig = assign_map(sig_s.extract(i, 1));
portinfo_t portinfo; portinfo_t portinfo;
portinfo.ctrl_sig = sig2bits(ctrl_sig, false).front();
for (int idx : sig2bits(sig)) { for (int idx : sig2bits(sig)) {
add_to_list(bit2info[idx].mux_users, mux2info.size()); add_to_list(bit2info[idx].mux_users, mux2info.size());
add_to_list(portinfo.input_sigs, idx); add_to_list(portinfo.input_sigs, idx);
} }
for (int idx : sig2bits(ctrl_sig))
add_to_list(portinfo.ctrl_sigs, idx);
portinfo.const_activated = ctrl_sig.is_fully_const() && ctrl_sig.as_bool(); portinfo.const_activated = ctrl_sig.is_fully_const() && ctrl_sig.as_bool();
portinfo.const_deactivated = ctrl_sig.is_fully_const() && !ctrl_sig.as_bool();
portinfo.enabled = false; portinfo.enabled = false;
muxinfo.ports.push_back(portinfo); muxinfo.ports.push_back(portinfo);
} }
@ -118,7 +113,9 @@ struct OptMuxtreeWorker
add_to_list(bit2info[idx].mux_users, mux2info.size()); add_to_list(bit2info[idx].mux_users, mux2info.size());
add_to_list(portinfo.input_sigs, idx); add_to_list(portinfo.input_sigs, idx);
} }
portinfo.ctrl_sig = -1;
portinfo.const_activated = false; portinfo.const_activated = false;
portinfo.const_deactivated = false;
portinfo.enabled = false; portinfo.enabled = false;
muxinfo.ports.push_back(portinfo); muxinfo.ports.push_back(portinfo);
@ -162,6 +159,7 @@ struct OptMuxtreeWorker
log(" Evaluating internal representation of mux trees.\n"); log(" Evaluating internal representation of mux trees.\n");
dict<int, pool<int>> mux_to_users; dict<int, pool<int>> mux_to_users;
root_muxes.resize(mux2info.size());
for (auto &bi : bit2info) { for (auto &bi : bit2info) {
for (int i : bi.mux_drivers) for (int i : bi.mux_drivers)
@ -170,23 +168,24 @@ struct OptMuxtreeWorker
if (!bi.seen_non_mux) if (!bi.seen_non_mux)
continue; continue;
for (int mux_idx : bi.mux_drivers) for (int mux_idx : bi.mux_drivers)
root_muxes.insert(mux_idx); root_muxes.at(mux_idx) = true;
} }
for (auto &it : mux_to_users) for (auto &it : mux_to_users)
if (GetSize(it.second) > 1) if (GetSize(it.second) > 1)
root_muxes.insert(it.first); root_muxes.at(it.first) = true;
for (int mux_idx : root_muxes) { for (int mux_idx = 0; mux_idx < GetSize(root_muxes); mux_idx++)
log(" Root of a mux tree: %s\n", log_id(mux2info[mux_idx].cell)); if (root_muxes.at(mux_idx)) {
eval_root_mux(mux_idx); log(" Root of a mux tree: %s\n", log_id(mux2info[mux_idx].cell));
} eval_root_mux(mux_idx);
}
log(" Analyzing evaluation results.\n"); log(" Analyzing evaluation results.\n");
for (auto &mi : mux2info) for (auto &mi : mux2info)
{ {
std::vector<int> live_ports; vector<int> live_ports;
for (int port_idx = 0; port_idx < GetSize(mi.ports); port_idx++) { for (int port_idx = 0; port_idx < GetSize(mi.ports); port_idx++) {
portinfo_t &pi = mi.ports[port_idx]; portinfo_t &pi = mi.ports[port_idx];
if (pi.enabled) { if (pi.enabled) {
@ -247,15 +246,7 @@ struct OptMuxtreeWorker
} }
} }
bool list_is_subset(const std::vector<int> &sub, const std::vector<int> &super) bool is_in_list(const vector<int> &list, int value)
{
for (int v : sub)
if (!is_in_list(super, v))
return false;
return true;
}
bool is_in_list(const std::vector<int> &list, int value)
{ {
for (int v : list) for (int v : list)
if (v == value) if (v == value)
@ -263,15 +254,15 @@ struct OptMuxtreeWorker
return false; return false;
} }
void add_to_list(std::vector<int> &list, int value) void add_to_list(vector<int> &list, int value)
{ {
if (!is_in_list(list, value)) if (!is_in_list(list, value))
list.push_back(value); list.push_back(value);
} }
std::vector<int> sig2bits(RTLIL::SigSpec sig, bool skip_non_wires = true) vector<int> sig2bits(RTLIL::SigSpec sig, bool skip_non_wires = true)
{ {
std::vector<int> results; vector<int> results;
assign_map.apply(sig); assign_map.apply(sig);
for (auto &bit : sig) for (auto &bit : sig)
if (bit.wire != NULL) { if (bit.wire != NULL) {
@ -292,57 +283,58 @@ struct OptMuxtreeWorker
struct knowledge_t struct knowledge_t
{ {
// database of known inactive signals // database of known inactive signals
// the 2nd integer is a reference counter used to manage the // the payload is a reference counter used to manage the
// list. when it is non-zero the signal in known to be inactive // list. when it is non-zero the signal in known to be inactive
std::map<int, int> known_inactive; vector<int> known_inactive;
// database of known active signals // database of known active signals
// the 2nd dimension is the list of or-ed signals. so we know that vector<int> known_active;
// for each i there is a j so that known_active[i][j] points to an
// active control signal.
std::vector<std::vector<int>> known_active;
// this is just used to keep track of visited muxes in order to prohibit // this is just used to keep track of visited muxes in order to prohibit
// endless recursion in mux loops // endless recursion in mux loops
std::set<int> visited_muxes; vector<bool> visited_muxes;
}; };
void eval_mux_port(knowledge_t &knowledge, int mux_idx, int port_idx) void eval_mux_port(knowledge_t &knowledge, int mux_idx, int port_idx)
{ {
muxinfo_t &muxinfo = mux2info[mux_idx]; muxinfo_t &muxinfo = mux2info[mux_idx];
if (muxinfo.ports[port_idx].const_deactivated)
return;
muxinfo.ports[port_idx].enabled = true; muxinfo.ports[port_idx].enabled = true;
for (size_t i = 0; i < muxinfo.ports.size(); i++) { for (int i = 0; i < GetSize(muxinfo.ports); i++) {
if (int(i) == port_idx) if (i == port_idx)
continue; continue;
for (int b : muxinfo.ports[i].ctrl_sigs) if (muxinfo.ports[i].ctrl_sig >= 0)
knowledge.known_inactive[b]++; knowledge.known_inactive.at(muxinfo.ports[i].ctrl_sig)++;
} }
if (port_idx < int(muxinfo.ports.size())-1 && !muxinfo.ports[port_idx].const_activated) if (port_idx < int(muxinfo.ports.size())-1 && !muxinfo.ports[port_idx].const_activated)
knowledge.known_active.push_back(muxinfo.ports[port_idx].ctrl_sigs); knowledge.known_active.at(muxinfo.ports[port_idx].ctrl_sig)++;
std::vector<int> parent_muxes; vector<int> parent_muxes;
for (int m : muxinfo.ports[port_idx].input_muxes) { for (int m : muxinfo.ports[port_idx].input_muxes) {
if (knowledge.visited_muxes.count(m) > 0) if (knowledge.visited_muxes[m])
continue; continue;
knowledge.visited_muxes.insert(m); knowledge.visited_muxes[m] = true;
parent_muxes.push_back(m); parent_muxes.push_back(m);
} }
for (int m : parent_muxes) for (int m : parent_muxes)
if (!root_muxes.count(m)) if (!root_muxes.at(m))
eval_mux(knowledge, m); eval_mux(knowledge, m);
for (int m : parent_muxes) for (int m : parent_muxes)
knowledge.visited_muxes.erase(m); knowledge.visited_muxes[m] = false;
if (port_idx < int(muxinfo.ports.size())-1 && !muxinfo.ports[port_idx].const_activated) if (port_idx < int(muxinfo.ports.size())-1 && !muxinfo.ports[port_idx].const_activated)
knowledge.known_active.pop_back(); knowledge.known_active.at(muxinfo.ports[port_idx].ctrl_sig)--;
for (size_t i = 0; i < muxinfo.ports.size(); i++) { for (size_t i = 0; i < muxinfo.ports.size(); i++) {
if (int(i) == port_idx) if (int(i) == port_idx)
continue; continue;
for (int b : muxinfo.ports[i].ctrl_sigs) if (muxinfo.ports[i].ctrl_sig >= 0)
knowledge.known_inactive[b]--; knowledge.known_inactive.at(muxinfo.ports[i].ctrl_sig)--;
} }
} }
@ -351,20 +343,17 @@ struct OptMuxtreeWorker
SigSpec sig = muxinfo.cell->getPort(portname); SigSpec sig = muxinfo.cell->getPort(portname);
bool did_something = false; bool did_something = false;
std::vector<int> bits = sig2bits(sig, false); vector<int> bits = sig2bits(sig, false);
for (int i = 0; i < GetSize(bits); i++) { for (int i = 0; i < GetSize(bits); i++) {
if (bits[i] < 0) if (bits[i] < 0)
continue; continue;
if (knowledge.known_inactive[bits[i]]) { if (knowledge.known_inactive.at(bits[i])) {
sig[i] = State::S0; sig[i] = State::S0;
did_something = true; did_something = true;
} else { } else
for (auto &it : knowledge.known_active) if (knowledge.known_active.at(bits[i])) {
if (GetSize(it) == 1 && it.front() == bits[i]) { sig[i] = State::S1;
sig[i] = State::S1; did_something = true;
did_something = true;
break;
}
} }
} }
@ -399,16 +388,14 @@ struct OptMuxtreeWorker
for (size_t port_idx = 0; port_idx < muxinfo.ports.size()-1; port_idx++) for (size_t port_idx = 0; port_idx < muxinfo.ports.size()-1; port_idx++)
{ {
portinfo_t &portinfo = muxinfo.ports[port_idx]; portinfo_t &portinfo = muxinfo.ports[port_idx];
for (size_t i = 0; i < knowledge.known_active.size(); i++) { if (knowledge.known_active.at(portinfo.ctrl_sig)) {
if (list_is_subset(knowledge.known_active[i], portinfo.ctrl_sigs)) { eval_mux_port(knowledge, mux_idx, port_idx);
eval_mux_port(knowledge, mux_idx, port_idx); return;
return;
}
} }
} }
// compare ports with known_inactive and known_active signals. If all control // compare ports with known_inactive and known_active signals. If the control
// signals of the port are known_inactive or if the control signals of all other // signal of the port is known_inactive or if the control signals of all other
// ports are known_active this port can't be activated. this loop includes the // ports are known_active this port can't be activated. this loop includes the
// default port but no known_inactive match is performed on the default port. // default port but no known_inactive match is performed on the default port.
for (size_t port_idx = 0; port_idx < muxinfo.ports.size(); port_idx++) for (size_t port_idx = 0; port_idx < muxinfo.ports.size(); port_idx++)
@ -417,23 +404,17 @@ struct OptMuxtreeWorker
if (port_idx < muxinfo.ports.size()-1) { if (port_idx < muxinfo.ports.size()-1) {
bool found_non_known_inactive = false; bool found_non_known_inactive = false;
for (int i : portinfo.ctrl_sigs) if (knowledge.known_inactive.at(portinfo.ctrl_sig) == 0)
if (knowledge.known_inactive[i] == 0) found_non_known_inactive = true;
found_non_known_inactive = true;
if (!found_non_known_inactive) if (!found_non_known_inactive)
continue; continue;
} }
bool port_active = true; bool port_active = true;
std::vector<int> other_ctrl_sig;
for (size_t i = 0; i < muxinfo.ports.size()-1; i++) { for (size_t i = 0; i < muxinfo.ports.size()-1; i++) {
if (i == port_idx) if (i == port_idx)
continue; continue;
other_ctrl_sig.insert(other_ctrl_sig.end(), if (knowledge.known_active.at(muxinfo.ports[i].ctrl_sig))
muxinfo.ports[i].ctrl_sigs.begin(), muxinfo.ports[i].ctrl_sigs.end());
}
for (size_t i = 0; i < knowledge.known_active.size(); i++) {
if (list_is_subset(knowledge.known_active[i], other_ctrl_sig))
port_active = false; port_active = false;
} }
if (port_active) if (port_active)
@ -444,7 +425,10 @@ struct OptMuxtreeWorker
void eval_root_mux(int mux_idx) void eval_root_mux(int mux_idx)
{ {
knowledge_t knowledge; knowledge_t knowledge;
knowledge.visited_muxes.insert(mux_idx); knowledge.known_inactive.resize(bit2info.size());
knowledge.known_active.resize(bit2info.size());
knowledge.visited_muxes.resize(mux2info.size());
knowledge.visited_muxes[mux_idx] = true;
eval_mux(knowledge, mux_idx); eval_mux(knowledge, mux_idx);
} }
}; };
@ -464,7 +448,7 @@ struct OptMuxtreePass : public Pass {
log("This pass only operates on completely selected modules without processes.\n"); log("This pass only operates on completely selected modules without processes.\n");
log("\n"); log("\n");
} }
virtual void execute(std::vector<std::string> args, RTLIL::Design *design) virtual void execute(vector<std::string> args, RTLIL::Design *design)
{ {
log_header("Executing OPT_MUXTREE pass (detect dead branches in mux trees).\n"); log_header("Executing OPT_MUXTREE pass (detect dead branches in mux trees).\n");
extra_args(args, 1, design); extra_args(args, 1, design);