mirror of
				https://github.com/YosysHQ/yosys
				synced 2025-10-31 11:42:30 +00:00 
			
		
		
		
	Add recover_names pass to recover names post-mapping
This commit is contained in:
		
							parent
							
								
									57c9eb70fe
								
							
						
					
					
						commit
						52c8c28d2c
					
				
					 3 changed files with 737 additions and 0 deletions
				
			
		|  | @ -84,6 +84,12 @@ template<> struct hash_ops<int64_t> : hash_int_ops | ||||||
| 		return mkhash((unsigned int)(a), (unsigned int)(a >> 32)); | 		return mkhash((unsigned int)(a), (unsigned int)(a >> 32)); | ||||||
| 	} | 	} | ||||||
| }; | }; | ||||||
|  | template<> struct hash_ops<uint32_t> : hash_int_ops | ||||||
|  | { | ||||||
|  | 	static inline unsigned int hash(uint32_t a) { | ||||||
|  | 		return a; | ||||||
|  | 	} | ||||||
|  | }; | ||||||
| 
 | 
 | ||||||
| template<> struct hash_ops<std::string> { | template<> struct hash_ops<std::string> { | ||||||
| 	static inline bool cmp(const std::string &a, const std::string &b) { | 	static inline bool cmp(const std::string &a, const std::string &b) { | ||||||
|  |  | ||||||
|  | @ -16,6 +16,7 @@ OBJS += passes/sat/fmcombine.o | ||||||
| OBJS += passes/sat/mutate.o | OBJS += passes/sat/mutate.o | ||||||
| OBJS += passes/sat/cutpoint.o | OBJS += passes/sat/cutpoint.o | ||||||
| OBJS += passes/sat/fminit.o | OBJS += passes/sat/fminit.o | ||||||
|  | OBJS += passes/sat/recover_names.o | ||||||
| ifeq ($(DISABLE_SPAWN),0) | ifeq ($(DISABLE_SPAWN),0) | ||||||
| OBJS += passes/sat/qbfsat.o | OBJS += passes/sat/qbfsat.o | ||||||
| endif | endif | ||||||
|  |  | ||||||
							
								
								
									
										730
									
								
								passes/sat/recover_names.cc
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										730
									
								
								passes/sat/recover_names.cc
									
										
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,730 @@ | ||||||
|  | /*
 | ||||||
|  |  *  yosys -- Yosys Open SYnthesis Suite | ||||||
|  |  * | ||||||
|  |  *  Copyright (C) 2021 gatecat <gatecat@ds0.me> | ||||||
|  |  * | ||||||
|  |  *  Permission to use, copy, modify, and/or distribute this software for any | ||||||
|  |  *  purpose with or without fee is hereby granted, provided that the above | ||||||
|  |  *  copyright notice and this permission notice appear in all copies. | ||||||
|  |  * | ||||||
|  |  *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||||||
|  |  *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||||||
|  |  *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||||||
|  |  *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||||||
|  |  *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||||||
|  |  *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||||||
|  |  *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||||||
|  |  * | ||||||
|  |  */ | ||||||
|  | 
 | ||||||
|  | #include "kernel/yosys.h" | ||||||
|  | #include "kernel/sigtools.h" | ||||||
|  | #include "kernel/consteval.h" | ||||||
|  | #include "kernel/celltypes.h" | ||||||
|  | #include "kernel/utils.h" | ||||||
|  | #include "kernel/satgen.h" | ||||||
|  | 
 | ||||||
|  | #include <algorithm> | ||||||
|  | #include <queue> | ||||||
|  | 
 | ||||||
|  | USING_YOSYS_NAMESPACE | ||||||
|  | 
 | ||||||
|  | template<> struct hashlib::hash_ops<uint64_t> : hashlib::hash_int_ops | ||||||
|  | { | ||||||
|  | 	static inline unsigned int hash(uint64_t a) { | ||||||
|  | 		return mkhash((unsigned int)(a), (unsigned int)(a >> 32)); | ||||||
|  | 	} | ||||||
|  | }; | ||||||
|  | 
 | ||||||
|  | PRIVATE_NAMESPACE_BEGIN | ||||||
|  | 
 | ||||||
|  | // xorshift128 params
 | ||||||
|  | #define INIT_X 123456789 | ||||||
|  | #define INIT_Y 362436069 | ||||||
|  | #define INIT_Z 521288629 | ||||||
|  | #define INIT_W  88675123 | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | // Similar to a SigBit; but module-independent
 | ||||||
|  | struct IdBit { | ||||||
|  |     IdBit() : name(), bit(0) {}; | ||||||
|  |     IdBit(IdString name, int bit = 0) : name(name), bit(bit) {}; | ||||||
|  | 
 | ||||||
|  |     bool operator==(const IdBit &other) const { return name == other.name && bit == other.bit; }; | ||||||
|  |     bool operator!=(const IdBit &other) const { return name != other.name || bit != other.bit; }; | ||||||
|  |     unsigned hash() const | ||||||
|  |     { | ||||||
|  |         return mkhash_add(name.hash(), bit); | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     IdString name; | ||||||
|  |     int bit; | ||||||
|  | }; | ||||||
|  | 
 | ||||||
|  | // As above; but can be inverted
 | ||||||
|  | struct InvBit { | ||||||
|  |     InvBit() : bit(), inverted(false) {}; | ||||||
|  |     explicit InvBit(IdBit bit, bool inverted = false) : bit(bit), inverted(inverted) {}; | ||||||
|  | 
 | ||||||
|  |     bool operator==(const InvBit &other) const { return bit == other.bit && inverted == other.inverted; }; | ||||||
|  |     bool operator!=(const InvBit &other) const { return bit != other.bit || inverted != other.inverted; }; | ||||||
|  |     unsigned hash() const | ||||||
|  |     { | ||||||
|  |         return mkhash(bit.hash(), inverted); | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     IdBit bit; | ||||||
|  |     bool inverted; | ||||||
|  | }; | ||||||
|  | 
 | ||||||
|  | typedef uint64_t equiv_cls_t; | ||||||
|  | static const int sim_length = sizeof(equiv_cls_t) * 8; | ||||||
|  | 
 | ||||||
|  | struct RecoverModuleWorker { | ||||||
|  |     Design *design = nullptr; | ||||||
|  |     Module *mod, *flat = nullptr; | ||||||
|  |     RecoverModuleWorker(Module *mod) : design(mod->design), mod(mod) {}; | ||||||
|  | 
 | ||||||
|  |     ConstEval *ce = nullptr; | ||||||
|  |     SigMap *sigmap = nullptr; | ||||||
|  | 
 | ||||||
|  |     dict<IdBit, SigBit> flat2orig; | ||||||
|  |     dict<IdBit, IdBit> bit2primary; | ||||||
|  |     dict<IdBit, Cell*> bit2driver; | ||||||
|  | 
 | ||||||
|  |     void prepare() | ||||||
|  |     { | ||||||
|  |         // Create a derivative of the module with whiteboxes flattened so we can
 | ||||||
|  |         // run eval and sat on it
 | ||||||
|  |         flat = design->addModule(NEW_ID); | ||||||
|  |         mod->cloneInto(flat); | ||||||
|  |         Pass::call_on_module(design, flat, "flatten -wb"); | ||||||
|  |         ce = new ConstEval(flat); | ||||||
|  |         sigmap = new SigMap(flat); | ||||||
|  |         // Create a mapping from primary name-bit in the box-flattened module to original sigbit
 | ||||||
|  |         SigMap orig_sigmap(mod); | ||||||
|  |         for (auto wire : mod->wires()) { | ||||||
|  |             Wire *flat_wire = flat->wire(wire->name); | ||||||
|  |             if (!flat_wire) | ||||||
|  |                 continue; | ||||||
|  |             for (int i = 0; i < wire->width; i++) { | ||||||
|  |                 SigBit orig_sigbit = orig_sigmap(SigBit(wire, i)); | ||||||
|  |                 SigBit flat_sigbit = (*sigmap)(SigBit(flat_wire, i)); | ||||||
|  |                 if (!orig_sigbit.wire || !flat_sigbit.wire) | ||||||
|  |                     continue; | ||||||
|  |                 flat2orig[IdBit(flat_sigbit.wire->name, flat_sigbit.offset)] = orig_sigbit; | ||||||
|  |             } | ||||||
|  |         } | ||||||
|  |         find_driven_bits(); | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     void find_driven_bits() | ||||||
|  |     { | ||||||
|  |         // Add primary inputs
 | ||||||
|  |         for (auto wire : flat->wires()) { | ||||||
|  |             if (!wire->port_input) | ||||||
|  |                 continue; | ||||||
|  |             for (int i = 0; i < wire->width; i++) { | ||||||
|  |                 SigBit bit(wire, i); | ||||||
|  |                 bit = (*sigmap)(bit); | ||||||
|  |                 if (bit.wire) | ||||||
|  |                     bit2driver[IdBit(bit.wire->name, bit.offset)] = nullptr; | ||||||
|  |             } | ||||||
|  |         } | ||||||
|  |         // Add cell outputs
 | ||||||
|  |         for (auto cell : flat->cells()) { | ||||||
|  |             for (auto conn : cell->connections()) { | ||||||
|  |                 if (!cell->output(conn.first)) | ||||||
|  |                     continue; | ||||||
|  |                 for (auto bit : conn.second) { | ||||||
|  |                     auto resolved = (*sigmap)(bit); | ||||||
|  |                     if (resolved.wire) | ||||||
|  |                         bit2driver[IdBit(resolved.wire->name, resolved.offset)] = cell; | ||||||
|  |                 } | ||||||
|  |             } | ||||||
|  |         } | ||||||
|  |         // Setup bit2primary
 | ||||||
|  |         for (auto wire : flat->wires()) { | ||||||
|  |             for (int i = 0; i < wire->width; i++) { | ||||||
|  |                 SigBit bit(wire, i); | ||||||
|  |                 bit = (*sigmap)(bit); | ||||||
|  |                 if (bit.wire) | ||||||
|  |                     bit2primary[IdBit(wire->name, i)] = IdBit(bit.wire->name, bit.offset); | ||||||
|  |             } | ||||||
|  |         } | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     // Mapping from bit to (candidate) equivalence classes
 | ||||||
|  |     dict<IdBit, equiv_cls_t> bit2cls; | ||||||
|  |     void sim_cycle(int t, const dict<IdBit, RTLIL::State> &anchors) | ||||||
|  |     { | ||||||
|  |         ce->clear(); | ||||||
|  |         for (auto anchor : anchors) { | ||||||
|  |             SigBit bit = (*sigmap)(SigBit(flat->wire(anchor.first.name), anchor.first.bit)); | ||||||
|  |             // Ignore in the rare case that it's already determined
 | ||||||
|  |             SigSpec res(bit); | ||||||
|  |             if (ce->eval(res)) | ||||||
|  |                 continue; | ||||||
|  |             ce->set(bit, anchor.second); | ||||||
|  |         } | ||||||
|  |         // Only evaluate IdBits that exist in the non-flat design; as they are all we care about
 | ||||||
|  |         for (auto idbit : flat2orig) { | ||||||
|  |             if (anchors.count(idbit.first)) | ||||||
|  |                 continue; | ||||||
|  |             SigBit bit = (*sigmap)(SigBit(flat->wire(idbit.first.name), idbit.first.bit)); | ||||||
|  |             SigSpec res(bit); | ||||||
|  |             if (!ce->eval(res)) | ||||||
|  |                 continue; | ||||||
|  |             if (res != State::S0 && res != State::S1) | ||||||
|  |                 continue; | ||||||
|  |             // Update equivalence classes
 | ||||||
|  |             if (res == State::S1) | ||||||
|  |                 bit2cls[idbit.first] = bit2cls[idbit.first] | (equiv_cls_t(1) << t); | ||||||
|  |         } | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     // Update the equivalence class groupings
 | ||||||
|  |     void group_classes(dict<equiv_cls_t, std::pair<pool<IdBit>, pool<InvBit>>> &cls2bits, bool is_gate) | ||||||
|  |     { | ||||||
|  |         equiv_cls_t all_ones = 0; | ||||||
|  |         for (int i = 0; i < sim_length; i++) all_ones |= (equiv_cls_t(1) << i); | ||||||
|  |         for (auto pair : bit2cls) { | ||||||
|  |             if (pair.second == 0 || pair.second == all_ones) | ||||||
|  |                 continue; // skip stuck-ats
 | ||||||
|  |             if (is_gate) { | ||||||
|  |                 // True doesn't exist in gold; but inverted does
 | ||||||
|  |                 if (!cls2bits.count(pair.second) && cls2bits.count(pair.second ^ all_ones)) | ||||||
|  |                     cls2bits[pair.second ^ all_ones].second.emplace(pair.first, true); | ||||||
|  |                 else | ||||||
|  |                     cls2bits[pair.second].second.emplace(pair.first, false); | ||||||
|  |             } else { | ||||||
|  |                 cls2bits[pair.second].first.insert(pair.first); | ||||||
|  |             } | ||||||
|  |         } | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     // Compute depths of IdBits
 | ||||||
|  |     dict<IdBit, int> bit2depth; | ||||||
|  |     void compute_depths(const dict<IdBit, IdBit> &anchor_bits) | ||||||
|  |     { | ||||||
|  |         dict<SigBit, pool<IdString>> bit_drivers, bit_users; | ||||||
|  |         TopoSort<IdString, RTLIL::sort_by_id_str> toposort; | ||||||
|  | 
 | ||||||
|  |         for (auto cell : flat->cells()) | ||||||
|  |         for (auto conn : cell->connections()) | ||||||
|  |         { | ||||||
|  |             for (auto bit : (*sigmap)(conn.second)) { | ||||||
|  |                 if (!bit.wire) | ||||||
|  |                     continue; | ||||||
|  |                 IdBit idbit(bit.wire->name, bit.offset); | ||||||
|  |                 if (anchor_bits.count(idbit)) | ||||||
|  |                     continue; | ||||||
|  |                 if (cell->input(conn.first)) | ||||||
|  |                     bit_users[bit].insert(cell->name); | ||||||
|  | 
 | ||||||
|  |                 if (cell->output(conn.first)) | ||||||
|  |                     bit_drivers[bit].insert(cell->name); | ||||||
|  |             } | ||||||
|  | 
 | ||||||
|  |             toposort.node(cell->name); | ||||||
|  |         } | ||||||
|  | 
 | ||||||
|  |         for (auto &it : bit_users) | ||||||
|  |             if (bit_drivers.count(it.first)) | ||||||
|  |                 for (auto driver_cell : bit_drivers.at(it.first)) | ||||||
|  |                 for (auto user_cell : it.second) | ||||||
|  |                     toposort.edge(driver_cell, user_cell); | ||||||
|  | 
 | ||||||
|  |         toposort.sort(); | ||||||
|  |         for (auto cell_name : toposort.sorted) { | ||||||
|  |             Cell *cell = flat->cell(cell_name); | ||||||
|  |             int cell_depth = 0; | ||||||
|  |             for (auto conn : cell->connections()) { | ||||||
|  |                 if (!cell->input(conn.first)) | ||||||
|  |                     continue; | ||||||
|  |                 for (auto bit : (*sigmap)(conn.second)) { | ||||||
|  |                     if (!bit.wire) | ||||||
|  |                         continue; | ||||||
|  |                     IdBit idbit(bit.wire->name, bit.offset); | ||||||
|  |                     if (!bit2depth.count(idbit)) | ||||||
|  |                         continue; | ||||||
|  |                     cell_depth = std::max(cell_depth, bit2depth.at(idbit)); | ||||||
|  |                 } | ||||||
|  |             } | ||||||
|  |             for (auto conn : cell->connections()) { | ||||||
|  |                 if (!cell->output(conn.first)) | ||||||
|  |                     continue; | ||||||
|  |                 for (auto bit : (*sigmap)(conn.second)) { | ||||||
|  |                     if (!bit.wire) | ||||||
|  |                         continue; | ||||||
|  |                     IdBit idbit(bit.wire->name, bit.offset); | ||||||
|  |                     bit2depth[idbit] = std::max(bit2depth[idbit], cell_depth + 1); | ||||||
|  |                 } | ||||||
|  |             } | ||||||
|  |         } | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     // SAT thresholds
 | ||||||
|  |     const int max_sat_cells = 50; | ||||||
|  | 
 | ||||||
|  |     SigBit id2bit(IdBit bit) { return SigBit(flat->wire(bit.name), bit.bit); } | ||||||
|  | 
 | ||||||
|  |     // Set up the SAT problem for an IdBit
 | ||||||
|  |     // the value side of 'anchors' will be populated with the SAT variable for anchor bits
 | ||||||
|  |     int setup_sat(SatGen *sat, const std::string &prefix, IdBit bit, const dict<IdBit, IdBit> &anchor_bits, dict<IdBit, int> &anchor2var) | ||||||
|  |     { | ||||||
|  |         sat->setContext(sigmap, prefix); | ||||||
|  |         pool<IdString> imported_cells; | ||||||
|  |         int result = sat->importSigBit(id2bit(bit)); | ||||||
|  |         // Recursively import driving cells
 | ||||||
|  |         std::queue<IdBit> to_import; | ||||||
|  |         to_import.push(bit); | ||||||
|  |         while (!to_import.empty()) { | ||||||
|  |             // Too many cells imported
 | ||||||
|  |             if (GetSize(imported_cells) > max_sat_cells) | ||||||
|  |                 return -1; | ||||||
|  |             IdBit cursor = to_import.front(); | ||||||
|  |             to_import.pop(); | ||||||
|  |             if (anchor_bits.count(cursor)) { | ||||||
|  |                 if (!anchor2var.count(cursor)) { | ||||||
|  |                     anchor2var[cursor] = sat->importSigBit(id2bit(cursor)); | ||||||
|  |                 } | ||||||
|  |                 continue; | ||||||
|  |             } | ||||||
|  |             // Import driver if it exists
 | ||||||
|  |             if (!bit2driver.count(cursor)) | ||||||
|  |                 continue; | ||||||
|  |             Cell *driver = bit2driver.at(cursor); | ||||||
|  |             if (!driver || imported_cells.count(driver->name)) | ||||||
|  |                 continue; | ||||||
|  |             if (!sat->importCell(driver)) | ||||||
|  |                 return -1; // cell can't be imported
 | ||||||
|  |             imported_cells.insert(driver->name); | ||||||
|  |             // Add cell inputs to queue
 | ||||||
|  |             for (auto conn : driver->connections()) { | ||||||
|  |                 if (!driver->input(conn.first)) | ||||||
|  |                     continue; | ||||||
|  |                 for (SigBit in_bit : (*sigmap)(conn.second)) { | ||||||
|  |                     if (!in_bit.wire) | ||||||
|  |                         continue; | ||||||
|  |                     IdBit in_idbit(in_bit.wire->name, in_bit.offset); | ||||||
|  |                     to_import.push(in_idbit); | ||||||
|  |                 } | ||||||
|  |             } | ||||||
|  |         } | ||||||
|  |         return result; | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     void find_buffers(const pool<IdString> &buffer_types, dict<SigBit, pool<SigBit>> &root2buffered) | ||||||
|  |     { | ||||||
|  |         SigMap orig_sigmap(mod); | ||||||
|  |         dict<SigBit, SigBit> buffer2root; | ||||||
|  |         for (auto cell : mod->cells()) { | ||||||
|  |             if (!buffer_types.count(cell->type)) | ||||||
|  |                 continue; | ||||||
|  |             SigBit in, out; | ||||||
|  |             for (auto conn : cell->connections()) { | ||||||
|  |                 if (cell->input(conn.first)) { | ||||||
|  |                     in = orig_sigmap(conn.second[0]); | ||||||
|  |                 } | ||||||
|  |                 if (cell->output(conn.first)) { | ||||||
|  |                     out = orig_sigmap(conn.second[0]); | ||||||
|  |                 } | ||||||
|  |             } | ||||||
|  |             if (!in.wire || !out.wire) | ||||||
|  |                 continue; | ||||||
|  |             SigBit root = in; | ||||||
|  |             if (buffer2root.count(root)) | ||||||
|  |                 root = buffer2root[root]; | ||||||
|  |             if (root2buffered.count(out)) { | ||||||
|  |                 for (auto out_sig : root2buffered.at(out)) | ||||||
|  |                     root2buffered[root].insert(out_sig); | ||||||
|  |                 root2buffered.erase(out); | ||||||
|  |             } | ||||||
|  |             root2buffered[root].insert(out); | ||||||
|  |             buffer2root[out] = root; | ||||||
|  |         } | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     void do_rename(Module *gold, const dict<IdBit, InvBit> &gate2gold, const pool<IdString> &buffer_types) | ||||||
|  |     { | ||||||
|  |         dict<SigBit, std::vector<std::tuple<Cell*, IdString, int>>> bit2port; | ||||||
|  |         pool<SigBit> unused_bits; | ||||||
|  |         SigMap orig_sigmap(mod); | ||||||
|  |         for (auto wire : mod->wires()) { | ||||||
|  |             if (wire->port_input || wire->port_output) | ||||||
|  |                 continue; | ||||||
|  |             for (int i = 0; i < wire->width; i++) | ||||||
|  |                 unused_bits.insert(orig_sigmap(SigBit(wire, i))); | ||||||
|  |         } | ||||||
|  |         for (auto cell : mod->cells()) { | ||||||
|  |             for (auto conn : cell->connections()) { | ||||||
|  |                 for (int i = 0; i < GetSize(conn.second); i++) { | ||||||
|  |                     SigBit bit = orig_sigmap(conn.second[i]); | ||||||
|  |                     if (!bit.wire) | ||||||
|  |                         continue; | ||||||
|  |                     bit2port[bit].emplace_back(cell, conn.first, i); | ||||||
|  |                     unused_bits.erase(bit); | ||||||
|  |                 } | ||||||
|  |             } | ||||||
|  |         } | ||||||
|  |         dict<SigBit, pool<SigBit>> root2buffered; | ||||||
|  |         find_buffers(buffer_types, root2buffered); | ||||||
|  | 
 | ||||||
|  |         // An extension of gate2gold that deals with buffers too
 | ||||||
|  |         // gate sigbit --> (new name, invert, gold wire)
 | ||||||
|  |         dict<SigBit, std::pair<InvBit, Wire*>> rename_map; | ||||||
|  |         for (auto pair : gate2gold) { | ||||||
|  |             SigBit gate_bit = flat2orig.at(pair.first); | ||||||
|  |             Wire *gold_wire = gold->wire(pair.second.bit.name); | ||||||
|  |             rename_map[gate_bit] = std::make_pair(pair.second, gold_wire); | ||||||
|  |             if (root2buffered.count(gate_bit)) { | ||||||
|  |                 int buf_idx = 0; | ||||||
|  |                 for (auto buf_bit : root2buffered.at(gate_bit)) { | ||||||
|  |                     std::string buf_name_str = stringf("%s_buf_%d", pair.second.bit.name.c_str(), ++buf_idx); | ||||||
|  |                     if (buf_name_str[0] == '\\') | ||||||
|  |                         buf_name_str[0] = '$'; | ||||||
|  |                     rename_map[buf_bit] = std::make_pair( | ||||||
|  |                         InvBit(IdBit(IdString(buf_name_str), pair.second.bit.bit), pair.second.inverted), gold_wire); | ||||||
|  |                 } | ||||||
|  |             } | ||||||
|  |         } | ||||||
|  | 
 | ||||||
|  |         for (auto rule : rename_map) { | ||||||
|  |             // Pick a uniq new name
 | ||||||
|  |             IdBit new_name = rule.second.first.bit; | ||||||
|  |             int dup_idx = 0; | ||||||
|  |             bool must_invert_name = rule.second.first.inverted; | ||||||
|  |             while (must_invert_name || | ||||||
|  |                     (mod->wire(new_name.name) && !unused_bits.count(SigBit(mod->wire(new_name.name), new_name.bit)))) { | ||||||
|  |                 std::string new_name_str = stringf("%s_%s_%d", rule.second.first.bit.name.c_str(), | ||||||
|  |                     rule.second.first.inverted ? "inv" : "dup", ++dup_idx); | ||||||
|  |                 if (new_name_str[0] == '\\') | ||||||
|  |                     new_name_str[0] = '$'; | ||||||
|  |                 new_name.name = IdString(new_name_str); | ||||||
|  |                 must_invert_name = false; | ||||||
|  |             } | ||||||
|  |             // Create the wire if needed
 | ||||||
|  |             Wire *new_wire = mod->wire(new_name.name); | ||||||
|  |             if (!new_wire) { | ||||||
|  |                 Wire *gold_wire = rule.second.second; | ||||||
|  |                 new_wire = mod->addWire(new_name.name, gold_wire->width); | ||||||
|  |                 new_wire->start_offset = gold_wire->start_offset; | ||||||
|  |                 new_wire->upto = gold_wire->upto; | ||||||
|  |                 for (const auto &attr : gold_wire->attributes) | ||||||
|  |                     new_wire->attributes[attr.first] = attr.second; | ||||||
|  |                 for (int i = 0; i < new_wire->width; i++) | ||||||
|  |                     unused_bits.insert(SigBit(new_wire, i)); | ||||||
|  |             } | ||||||
|  |             // Ensure it's wide enough
 | ||||||
|  |             if (new_wire->width <= new_name.bit) | ||||||
|  |                 new_wire->width = new_name.bit + 1; | ||||||
|  |             SigBit old_bit = rule.first; | ||||||
|  |             SigBit new_bit(new_wire, new_name.bit); | ||||||
|  |             unused_bits.erase(new_bit); | ||||||
|  |             // Replace all users
 | ||||||
|  |             if (bit2port.count(old_bit)) | ||||||
|  |                 for (auto port_ref : bit2port.at(old_bit)) { | ||||||
|  |                     Cell *cell = std::get<0>(port_ref); | ||||||
|  |                     IdString port_name = std::get<1>(port_ref); | ||||||
|  |                     int port_bit = std::get<2>(port_ref); | ||||||
|  |                     SigSpec port_sig = cell->getPort(port_name); | ||||||
|  |                     port_sig.replace(port_bit, new_bit); | ||||||
|  |                     cell->unsetPort(port_name); | ||||||
|  |                     cell->setPort(port_name, port_sig); | ||||||
|  |                 } | ||||||
|  |         } | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     ~RecoverModuleWorker() | ||||||
|  |     { | ||||||
|  |         delete ce; | ||||||
|  |         delete sigmap; | ||||||
|  |         if (flat) | ||||||
|  |             design->remove(flat); | ||||||
|  |     } | ||||||
|  | }; | ||||||
|  | 
 | ||||||
|  | struct RecoverNamesWorker { | ||||||
|  |     Design *design, *gold_design = nullptr; | ||||||
|  |     CellTypes ct_all; | ||||||
|  |     RecoverNamesWorker(Design *design) : design(design) {} | ||||||
|  | 
 | ||||||
|  |     pool<IdString> comb_whiteboxes, buffer_types; | ||||||
|  | 
 | ||||||
|  |     // class -> (gold, (gate, inverted))
 | ||||||
|  |     dict<equiv_cls_t, std::pair<pool<IdBit>, dict<IdBit, bool>>> cls2bits;  | ||||||
|  | 
 | ||||||
|  |     void analyse_boxes() | ||||||
|  |     { | ||||||
|  |         for (auto mod : design->modules()) { | ||||||
|  |             if (!mod->get_bool_attribute(ID::whitebox)) | ||||||
|  |                 continue; | ||||||
|  |             bool is_comb = true; | ||||||
|  |             for (auto cell : mod->cells()) { | ||||||
|  |                 if (ct_all.cell_evaluable(cell->type)) { | ||||||
|  |                     is_comb = false; | ||||||
|  |                     break; | ||||||
|  |                 } | ||||||
|  |             } | ||||||
|  |             if (!is_comb) | ||||||
|  |                 continue; | ||||||
|  |             comb_whiteboxes.insert(mod->name); | ||||||
|  |             // Buffers have one input and one output; exactly
 | ||||||
|  |             SigBit in{}, out{}; | ||||||
|  |             ConstEval eval(mod); | ||||||
|  |             for (auto wire : mod->wires()) { | ||||||
|  |                 if (wire->port_input) { | ||||||
|  |                     if (wire->width != 1 || in.wire) | ||||||
|  |                         goto not_buffer; | ||||||
|  |                     in = SigBit(wire, 0); | ||||||
|  |                 } | ||||||
|  |                 if (wire->port_output) { | ||||||
|  |                     if (wire->width != 1 || out.wire) | ||||||
|  |                         goto not_buffer; | ||||||
|  |                     out = SigBit(wire, 0); | ||||||
|  |                 } | ||||||
|  |             } | ||||||
|  |             if (!in.wire || !out.wire) | ||||||
|  |                 goto not_buffer; | ||||||
|  |             // Buffer input mirrors output
 | ||||||
|  |             for (auto bit : {State::S0, State::S1}) { | ||||||
|  |                 eval.clear(); | ||||||
|  |                 eval.set(in, bit); | ||||||
|  |                 SigSpec result(out); | ||||||
|  |                 if (!eval.eval(result)) | ||||||
|  |                     goto not_buffer; | ||||||
|  |                 if (result != bit) | ||||||
|  |                     goto not_buffer; | ||||||
|  |             } | ||||||
|  |             buffer_types.insert(mod->name); | ||||||
|  |             if (false) { | ||||||
|  |                 not_buffer: | ||||||
|  |                     continue; | ||||||
|  |             } | ||||||
|  |         } | ||||||
|  |         log_debug("Found %d combinational cells and %d buffer whiteboxes.\n", GetSize(comb_whiteboxes), GetSize(buffer_types)); | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     uint32_t x, y, z, w, rng_val; | ||||||
|  |     int rng_bit; | ||||||
|  |     void rng_init() | ||||||
|  |     { | ||||||
|  |         x = INIT_X; | ||||||
|  |         y = INIT_Y; | ||||||
|  |         z = INIT_Z; | ||||||
|  |         w = INIT_W; | ||||||
|  |         rng_bit = 32; | ||||||
|  |     } | ||||||
|  |     uint32_t xorshift128() | ||||||
|  |     { | ||||||
|  |         uint32_t t = x ^ (x << 11); | ||||||
|  |         x = y; y = z; z = w; | ||||||
|  |         w ^= (w >> 19) ^ t ^ (t >> 8); | ||||||
|  |         return w; | ||||||
|  |     } | ||||||
|  |     RTLIL::State next_randbit() | ||||||
|  |     { | ||||||
|  |         if (rng_bit >= 32) { | ||||||
|  |             rng_bit = 0; | ||||||
|  |             rng_val = xorshift128(); | ||||||
|  |         } | ||||||
|  |         return ((rng_val >> (rng_bit++)) & 0x1) ? RTLIL::State::S1 : RTLIL::State::S0; | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     int popcount(equiv_cls_t cls) { | ||||||
|  |     	int result = 0; | ||||||
|  |     	for (unsigned i = 0; i < 8*sizeof(equiv_cls_t); i++) | ||||||
|  |     		if ((cls >> i) & 0x1) | ||||||
|  |     			++result; | ||||||
|  |     	return result; | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     bool prove_equiv(RecoverModuleWorker &gold_worker, RecoverModuleWorker &gate_worker, | ||||||
|  |             const dict<IdBit, IdBit> &gold_anchors, const dict<IdBit, IdBit> &gate_anchors, | ||||||
|  |             IdBit gold_bit, IdBit gate_bit, bool invert) { | ||||||
|  |         ezSatPtr ez; | ||||||
|  |         SatGen satgen(ez.get(), nullptr); | ||||||
|  |         dict<IdBit, int> anchor2var_gold, anchor2var_gate; | ||||||
|  |         int gold_var = gold_worker.setup_sat(&satgen, "gold", gold_bit, gold_anchors, anchor2var_gold); | ||||||
|  |         if (gold_var == -1) | ||||||
|  |             return false; | ||||||
|  |         int gate_var = gate_worker.setup_sat(&satgen, "gate", gate_bit, gate_anchors, anchor2var_gate); | ||||||
|  |         if (gate_var == -1) | ||||||
|  |             return false; | ||||||
|  |         // Assume anchors are equal
 | ||||||
|  |         for (auto anchor : anchor2var_gate) { | ||||||
|  |             IdBit gold_anchor = gate_anchors.at(anchor.first); | ||||||
|  |             if (!anchor2var_gold.count(gold_anchor)) | ||||||
|  |                 continue; | ||||||
|  |             ez->assume(ez->IFF(anchor.second, anchor2var_gold.at(gold_anchor))); | ||||||
|  |         } | ||||||
|  |         // Prove equivalence
 | ||||||
|  |         return !ez->solve(ez->NOT(ez->IFF(gold_var, invert ? ez->NOT(gate_var) : gate_var))); | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     void analyse_mod(Module *gate_mod) | ||||||
|  |     { | ||||||
|  |         Module *gold_mod = gold_design->module(gate_mod->name); | ||||||
|  |         if (!gold_mod) | ||||||
|  |             return; | ||||||
|  | 
 | ||||||
|  |         RecoverModuleWorker gold_worker(gold_mod); | ||||||
|  |         RecoverModuleWorker gate_worker(gate_mod); | ||||||
|  | 
 | ||||||
|  |         gold_worker.prepare(); | ||||||
|  |         gate_worker.prepare(); | ||||||
|  | 
 | ||||||
|  |         // Find anchors (same-name wire-bits driven in both gold and gate)
 | ||||||
|  |         dict<IdBit, IdBit> gold_anchors, gate_anchors; | ||||||
|  | 
 | ||||||
|  |         for (auto gold_bit : gold_worker.bit2driver) { | ||||||
|  |             if (gate_worker.bit2primary.count(gold_bit.first)) { | ||||||
|  |                 IdBit gate_bit = gate_worker.bit2primary.at(gold_bit.first); | ||||||
|  |                 if (!gate_worker.bit2driver.count(gate_bit)) | ||||||
|  |                     continue; | ||||||
|  |                 gold_anchors[gold_bit.first] = gate_bit; | ||||||
|  |                 gate_anchors[gate_bit] = gold_bit.first; | ||||||
|  |             } | ||||||
|  |         } | ||||||
|  |         // Run a random-value combinational simulation to find candidate equivalence classes
 | ||||||
|  |         dict<IdBit, RTLIL::State> gold_anchor_vals, gate_anchor_vals; | ||||||
|  |         rng_init(); | ||||||
|  |         for (int t = 0; t < sim_length; t++) { | ||||||
|  |             for (auto anchor : gold_anchors) { | ||||||
|  |                 gold_anchor_vals[anchor.first] = next_randbit(); | ||||||
|  |                 gate_anchor_vals[anchor.second] = gold_anchor_vals[anchor.first]; | ||||||
|  |             } | ||||||
|  |             gold_worker.sim_cycle(t, gold_anchor_vals); | ||||||
|  |             gate_worker.sim_cycle(t, gate_anchor_vals); | ||||||
|  |         } | ||||||
|  |         log_debug("%d candidate equiv classes in gold; %d in gate\n", GetSize(gold_worker.bit2cls), GetSize(gate_worker.bit2cls)); | ||||||
|  |         // Group bits by equivalence classes together
 | ||||||
|  |         dict<equiv_cls_t, std::pair<pool<IdBit>, pool<InvBit>>> cls2bits; | ||||||
|  |         gold_worker.group_classes(cls2bits, false); | ||||||
|  |         gate_worker.group_classes(cls2bits, true); | ||||||
|  |         gate_worker.compute_depths(gate_anchors); | ||||||
|  |         // Sort equivalence classes by shallowest first (so we have as many anchors as possible when reaching deeper bits)
 | ||||||
|  |         std::vector<std::pair<equiv_cls_t, int>> cls_depth; | ||||||
|  |         for (auto &cls : cls2bits) { | ||||||
|  |             if (cls.second.second.empty()) | ||||||
|  |                 continue; | ||||||
|  |             int depth = 0; | ||||||
|  |             for (auto gate_bit : cls.second.second) { | ||||||
|  |                 if (!gate_worker.bit2depth.count(gate_bit.bit)) | ||||||
|  |                     continue; | ||||||
|  |                 depth = std::max(depth, gate_worker.bit2depth.at(gate_bit.bit)); | ||||||
|  |             } | ||||||
|  |             cls_depth.emplace_back(cls.first, depth); | ||||||
|  |         } | ||||||
|  |         std::stable_sort(cls_depth.begin(), cls_depth.end(), | ||||||
|  |             [](const std::pair<equiv_cls_t, int> &a, const std::pair<equiv_cls_t, int> &b) { | ||||||
|  |                 return a.second < b.second; | ||||||
|  |             }); | ||||||
|  |         // The magic result we've worked hard for....
 | ||||||
|  |         dict<IdBit, InvBit> gate2gold; | ||||||
|  |         // Solve starting from shallowest
 | ||||||
|  |         for (auto cls : cls_depth) { | ||||||
|  |         	int pop = popcount(cls.first); | ||||||
|  |         	// Equivalence classes with only one set bit are invariably a waste of SAT time
 | ||||||
|  |         	if (pop == 1 || pop == (8*sizeof(equiv_cls_t) - 1)) | ||||||
|  |         		continue; | ||||||
|  | 
 | ||||||
|  |         	log_debug("equivalence class: %016lx\n", cls.first); | ||||||
|  |             const pool<IdBit> &gold_bits = cls2bits.at(cls.first).first; | ||||||
|  |             const pool<InvBit> &gate_bits = cls2bits.at(cls.first).second; | ||||||
|  |             if (gold_bits.empty() || gate_bits.empty()) | ||||||
|  |                 continue; | ||||||
|  |             pool<IdBit> solved_gate; | ||||||
|  |             if (GetSize(gold_bits) > 10) | ||||||
|  |                 continue; // large equivalence classes are not very interesting; skip
 | ||||||
|  |             for (IdBit gold_bit : gold_bits) { | ||||||
|  |                 for (auto gate_bit : gate_bits) { | ||||||
|  |                     if (solved_gate.count(gate_bit.bit)) | ||||||
|  |                         continue; | ||||||
|  |                     log_debug("   attempting to prove %s[%d] == %s%s[%d]\n", log_id(gold_bit.name), gold_bit.bit, | ||||||
|  |                         gate_bit.inverted ? "" : "!", log_id(gate_bit.bit.name), gate_bit.bit.bit); | ||||||
|  |                     if (!prove_equiv(gold_worker, gate_worker, gold_anchors, gate_anchors, gold_bit, gate_bit.bit, gate_bit.inverted)) | ||||||
|  |                         continue; | ||||||
|  |                     log_debug("       success!\n"); | ||||||
|  |                     // Success!
 | ||||||
|  |                     gate2gold[gate_bit.bit] = InvBit(gold_bit, gate_bit.inverted); | ||||||
|  |                     if (!gate_bit.inverted) { | ||||||
|  |                         // Only add as anchor if not inverted
 | ||||||
|  |                         gold_anchors[gold_bit] = gate_bit.bit; | ||||||
|  |                         gate_anchors[gate_bit.bit] = gold_bit; | ||||||
|  |                     } | ||||||
|  |                     solved_gate.insert(gate_bit.bit); | ||||||
|  |                 } | ||||||
|  |                 // All solved...
 | ||||||
|  |                 if (GetSize(solved_gate) == GetSize(gate_bits)) | ||||||
|  |                     break; | ||||||
|  |             } | ||||||
|  |         } | ||||||
|  |         log("Recovered %d net name pairs in module `%s' out.\n", GetSize(gate2gold), log_id(gate_mod)); | ||||||
|  |         gate_worker.do_rename(gold_mod, gate2gold, buffer_types); | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     void operator()(string command) | ||||||
|  |     { | ||||||
|  |         // Make a backup copy of the pre-mapping design for later
 | ||||||
|  |         gold_design = new RTLIL::Design; | ||||||
|  | 
 | ||||||
|  |         for (auto mod : design->modules()) | ||||||
|  |             gold_design->add(mod->clone()); | ||||||
|  | 
 | ||||||
|  |         run_pass(command, design); | ||||||
|  | 
 | ||||||
|  |         analyse_boxes(); | ||||||
|  | 
 | ||||||
|  |         // keeping our own std::vector here avoids modify-while-iterating issues
 | ||||||
|  |         std::vector<Module *> to_analyse; | ||||||
|  |         for (auto mod : design->modules()) | ||||||
|  |             if (!mod->get_blackbox_attribute()) | ||||||
|  |                 to_analyse.push_back(mod); | ||||||
|  |         for (auto mod : to_analyse) | ||||||
|  |             analyse_mod(mod); | ||||||
|  |     } | ||||||
|  |     ~RecoverNamesWorker() { | ||||||
|  |         delete gold_design; | ||||||
|  |     } | ||||||
|  | }; | ||||||
|  | 
 | ||||||
|  | struct RecoverNamesPass : public Pass { | ||||||
|  |     RecoverNamesPass() : Pass("recover_names", "Execute a lossy mapping command and recover original netnames") { } | ||||||
|  |     void help() override | ||||||
|  |     { | ||||||
|  |         //   |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
 | ||||||
|  |         log("\n"); | ||||||
|  |         log("    recover_names [command]\n"); | ||||||
|  |         log("\n"); | ||||||
|  |         log("This pass executes a lossy mapping command and uses a combination of simulation\n"); | ||||||
|  |         log(" to find candidate equivalences and SAT to recover exact original net names.\n"); | ||||||
|  |         log("\n"); | ||||||
|  |     } | ||||||
|  |     void execute(std::vector<std::string> args, RTLIL::Design *design) override | ||||||
|  |     { | ||||||
|  |         log_header(design, "Executing RECOVER_NAMES pass (run mapping and recover original names).\n"); | ||||||
|  |         string command; | ||||||
|  | 
 | ||||||
|  |         size_t argidx = 1; | ||||||
|  |         for (; argidx < args.size(); argidx++) { | ||||||
|  |             if (command.empty()) { | ||||||
|  |                 if (args[argidx].compare(0, 1, "-") == 0) | ||||||
|  |                     cmd_error(args, argidx, "Unknown option."); | ||||||
|  |             } else { | ||||||
|  |                 command += " "; | ||||||
|  |             } | ||||||
|  |             command += args[argidx]; | ||||||
|  |         } | ||||||
|  | 
 | ||||||
|  |         if (command.empty()) | ||||||
|  |             log_cmd_error("No mapping pass specified!\n"); | ||||||
|  | 
 | ||||||
|  |         RecoverNamesWorker worker(design); | ||||||
|  |         worker(command); | ||||||
|  | 
 | ||||||
|  |     } | ||||||
|  | } RecoverNamesPass; | ||||||
|  | 
 | ||||||
|  | PRIVATE_NAMESPACE_END | ||||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue