3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2025-04-24 01:25:33 +00:00

Revert $__SHREG_ to orig; use $__XILINX_SHREG for variable length

This commit is contained in:
Eddie Hung 2019-03-19 21:58:05 -07:00
parent 5445cd4d00
commit 505e4c2d59
2 changed files with 84 additions and 108 deletions

View file

@ -17,101 +17,13 @@
*
*/
module \$__SHREG_ (input C, input D, input [31:0] L, input E, output Q);
module \$__SHREG_ (input C, input D, input E, output Q);
parameter DEPTH = 0;
parameter [DEPTH-1:0] INIT = 0;
parameter CLKPOL = 1;
parameter ENPOL = 2;
wire CE;
// shregmap's INIT parameter shifts out LSB first;
// however Xilinx expects MSB first
function [DEPTH-1:0] brev;
input [DEPTH-1:0] din;
integer i;
begin
for (i = 0; i < DEPTH; i=i+1)
brev[i] = din[DEPTH-1-i];
end
endfunction
localparam [DEPTH-1:0] INIT_R = brev(INIT);
parameter _TECHMAP_CONSTMSK_L_ = 0;
parameter _TECHMAP_CONSTVAL_L_ = 0;
generate
if (ENPOL == 0)
assign CE = ~E;
else if (ENPOL == 1)
assign CE = E;
else
assign CE = 1'b1;
if (DEPTH == 1) begin
wire _TECHMAP_FAIL_ = ~&_TECHMAP_CONSTMSK_L_ || _TECHMAP_CONSTVAL_L_ != 0;
if (CLKPOL)
FDRE #(.INIT(INIT_R)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(CE), .R(1'b0));
else
FDRE_1 #(.INIT(INIT_R)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(CE), .R(1'b0));
end else
if (DEPTH <= 16) begin
SRL16E #(.INIT(INIT_R), .IS_CLK_INVERTED(~CLKPOL[0])) _TECHMAP_REPLACE_ (.A0(L[0]), .A1(L[1]), .A2(L[2]), .A3(L[3]), .CE(CE), .CLK(C), .D(D), .Q(Q));
end else
if (DEPTH > 17 && DEPTH <= 32) begin
SRLC32E #(.INIT(INIT_R), .IS_CLK_INVERTED(~CLKPOL[0])) _TECHMAP_REPLACE_ (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(Q));
end else
if (DEPTH > 33 && DEPTH <= 64) begin
wire T0, T1, T2;
SRLC32E #(.INIT(INIT_R[32-1:0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(T0), .Q31(T1));
\$__SHREG_ #(.DEPTH(DEPTH-32), .INIT(INIT[DEPTH-32-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_1 (.C(C), .D(T1), .L(L), .E(E), .Q(T2));
if (&_TECHMAP_CONSTMSK_L_)
assign Q = T2;
else
MUXF7 fpga_mux_0 (.O(Q), .I0(T0), .I1(T2), .S(L[5]));
end else
if (DEPTH > 65 && DEPTH <= 96) begin
wire T0, T1, T2, T3, T4, T5, T6;
SRLC32E #(.INIT(INIT_R[32-1:0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(T0), .Q31(T1));
SRLC32E #(.INIT(INIT_R[64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3));
\$__SHREG_ #(.DEPTH(DEPTH-64), .INIT(INIT[DEPTH-64-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_2 (.C(C), .D(T3), .L(L[4:0]), .E(E), .Q(T4));
if (&_TECHMAP_CONSTMSK_L_)
assign Q = T4;
else begin
MUXF7 fpga_mux_0 (.O(T5), .I0(T0), .I1(T2), .S(L[5]));
MUXF7 fpga_mux_1 (.O(T6), .I0(T4), .I1(1'b0 /* unused */), .S(L[5]));
MUXF8 fpga_mux_2 (.O(Q), .I0(T5), .I1(T6), .S(L[6]));
end
end else
if (DEPTH > 97 && DEPTH <= 128) begin
wire T0, T1, T2, T3, T4, T5, T6, T7, T8;
SRLC32E #(.INIT(INIT_R[32-1:0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(T0), .Q31(T1));
SRLC32E #(.INIT(INIT_R[64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3));
SRLC32E #(.INIT(INIT_R[96-1:64]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_2 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T3), .Q(T4), .Q31(T5));
\$__SHREG_ #(.DEPTH(DEPTH-96), .INIT(INIT[DEPTH-96-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_3 (.C(C), .D(T5), .L(L[4:0]), .E(E), .Q(T6));
if (&_TECHMAP_CONSTMSK_L_)
assign Q = T6;
else begin
MUXF7 fpga_mux_0 (.O(T7), .I0(T0), .I1(T2), .S(L[5]));
MUXF7 fpga_mux_1 (.O(T8), .I0(T4), .I1(T6), .S(L[5]));
MUXF8 fpga_mux_2 (.O(Q), .I0(T7), .I1(T8), .S(L[6]));
end
end
else if (DEPTH <= 128 || (DEPTH == 129 && &_TECHMAP_CONSTMSK_L_)) begin
// Handle cases where depth is just 1 over a convenient value,
if (&_TECHMAP_CONSTMSK_L_) begin
// For constant length, use the flop
wire T0;
\$__SHREG_ #(.DEPTH(DEPTH-1), .INIT(INIT[DEPTH-1:1]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_0 (.C(C), .D(D), .L(DEPTH-1-1), .E(E), .Q(T0));
\$__SHREG_ #(.DEPTH(1), .INIT(INIT[0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_1 (.C(C), .D(T0), .L(0), .E(E), .Q(Q));
end
else begin
// For variable length, bump up to the next length
\$__SHREG_ #(.DEPTH(DEPTH+1), .INIT({INIT,1'b0}), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) _TECHMAP_REPLACE_ (.C(C), .D(D), .L(L), .E(E), .Q(Q));
end
end
else begin
\$__XILINX_SHREG_ #(.DEPTH(DEPTH), .INIT(INIT), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) _TECHMAP_REPLACE_ (.C(C), .D(D), .L(L), .E(E), .Q(Q));
end
endgenerate
\$__XILINX_SHREG_ #(.DEPTH(DEPTH), .INIT(INIT), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) _TECHMAP_REPLACE_ (.C(C), .D(D), .L(DEPTH-1), .E(E), .Q(Q));
endmodule
module \$__XILINX_SHREG_ (input C, input D, input [31:0] L, input E, output Q, output SO);
@ -135,22 +47,77 @@ module \$__XILINX_SHREG_ (input C, input D, input [31:0] L, input E, output Q, o
parameter _TECHMAP_CONSTMSK_L_ = 0;
parameter _TECHMAP_CONSTVAL_L_ = 0;
wire CE;
generate
if (ENPOL == 0)
assign CE = ~E;
else if (ENPOL == 1)
assign CE = E;
else
assign CE = 1'b1;
if (DEPTH == 1) begin
\$__SHREG_ #(.DEPTH(DEPTH), .INIT(INIT), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) _TECHMAP_REPLACE_ (.C(C), .D(D), .L(0), .E(E), .Q(Q));
end
else if (DEPTH < 128) begin
\$__SHREG_ #(.DEPTH(DEPTH), .INIT(INIT), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) _TECHMAP_REPLACE_ (.C(C), .D(D), .L(L), .E(E), .Q(Q));
end
else if (DEPTH == 128) begin
wire CE;
if (ENPOL == 0)
assign CE = ~E;
else if (ENPOL == 1)
assign CE = E;
//wire _TECHMAP_FAIL_ = ~&_TECHMAP_CONSTMSK_L_ || _TECHMAP_CONSTVAL_L_ != 0;
if (CLKPOL)
FDRE #(.INIT(INIT_R)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(CE), .R(1'b0));
else
assign CE = 1'b1;
FDRE_1 #(.INIT(INIT_R)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(CE), .R(1'b0));
end else
if (DEPTH <= 16) begin
SRL16E #(.INIT(INIT_R), .IS_CLK_INVERTED(~CLKPOL[0])) _TECHMAP_REPLACE_ (.A0(L[0]), .A1(L[1]), .A2(L[2]), .A3(L[3]), .CE(CE), .CLK(C), .D(D), .Q(Q));
end else
if (DEPTH > 17 && DEPTH <= 32) begin
SRLC32E #(.INIT(INIT_R), .IS_CLK_INVERTED(~CLKPOL[0])) _TECHMAP_REPLACE_ (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(Q));
end else
if (DEPTH > 33 && DEPTH <= 64) begin
wire T0, T1, T2;
SRLC32E #(.INIT(INIT_R[32-1:0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(T0), .Q31(T1));
\$__XILINX_SHREG_ #(.DEPTH(DEPTH-32), .INIT(INIT[DEPTH-32-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_1 (.C(C), .D(T1), .L(L), .E(E), .Q(T2));
if (&_TECHMAP_CONSTMSK_L_)
assign Q = T2;
else
MUXF7 fpga_mux_0 (.O(Q), .I0(T0), .I1(T2), .S(L[5]));
end else
if (DEPTH > 65 && DEPTH <= 96) begin
wire T0, T1, T2, T3, T4, T5, T6;
SRLC32E #(.INIT(INIT_R[32-1:0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(T0), .Q31(T1));
SRLC32E #(.INIT(INIT_R[64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3));
\$__XILINX_SHREG_ #(.DEPTH(DEPTH-64), .INIT(INIT[DEPTH-64-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_2 (.C(C), .D(T3), .L(L[4:0]), .E(E), .Q(T4));
if (&_TECHMAP_CONSTMSK_L_)
assign Q = T4;
else begin
MUXF7 fpga_mux_0 (.O(T5), .I0(T0), .I1(T2), .S(L[5]));
MUXF7 fpga_mux_1 (.O(T6), .I0(T4), .I1(1'b0 /* unused */), .S(L[5]));
MUXF8 fpga_mux_2 (.O(Q), .I0(T5), .I1(T6), .S(L[6]));
end
end else
if (DEPTH > 97 && DEPTH < 128) begin
wire T0, T1, T2, T3, T4, T5, T6, T7, T8;
SRLC32E #(.INIT(INIT_R[32-1:0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(T0), .Q31(T1));
SRLC32E #(.INIT(INIT_R[64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3));
SRLC32E #(.INIT(INIT_R[96-1:64]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_2 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T3), .Q(T4), .Q31(T5));
\$__XILINX_SHREG_ #(.DEPTH(DEPTH-96), .INIT(INIT[DEPTH-96-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_3 (.C(C), .D(T5), .L(L[4:0]), .E(E), .Q(T6));
if (&_TECHMAP_CONSTMSK_L_)
assign Q = T6;
else begin
MUXF7 fpga_mux_0 (.O(T7), .I0(T0), .I1(T2), .S(L[5]));
MUXF7 fpga_mux_1 (.O(T8), .I0(T4), .I1(T6), .S(L[5]));
MUXF8 fpga_mux_2 (.O(Q), .I0(T7), .I1(T8), .S(L[6]));
end
end
else if (DEPTH < 128 || (DEPTH == 129 && &_TECHMAP_CONSTMSK_L_)) begin
// Handle cases where depth is just 1 over a convenient value,
if (&_TECHMAP_CONSTMSK_L_) begin
// For constant length, use the flop
wire T0;
\$__XILINX_SHREG_ #(.DEPTH(DEPTH-1), .INIT(INIT[DEPTH-1:1]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_0 (.C(C), .D(D), .L(DEPTH-1-1), .E(E), .Q(T0));
\$__XILINX_SHREG_ #(.DEPTH(1), .INIT(INIT[0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_1 (.C(C), .D(T0), .L(0), .E(E), .Q(Q));
end
else begin
// For variable length, bump up to the next length
\$__XILINX_SHREG_ #(.DEPTH(DEPTH+1), .INIT({INIT,1'b0}), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) _TECHMAP_REPLACE_ (.C(C), .D(D), .L(L), .E(E), .Q(Q));
end
end
else if (DEPTH == 128) begin
wire T0, T1, T2, T3, T4, T5, T6;
SRLC32E #(.INIT(INIT_R[32-1:0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(T0), .Q31(T1));
SRLC32E #(.INIT(INIT_R[64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3));