3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2025-08-26 21:16:03 +00:00

opt_muxtree: refactor

This commit is contained in:
Emil J. Tywoniak 2025-08-18 17:22:47 +02:00
parent 025d7a5641
commit 4dea774171

View file

@ -30,7 +30,33 @@
USING_YOSYS_NAMESPACE USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN PRIVATE_NAMESPACE_BEGIN
using RTLIL::id2cstr; /**
* TERMINOLOGY
*
* A multiplexer tree (mux tree) is a tree composed exclusively of muxes.
* By mux, I mean $mux or $pmux. By port, I usually mean input port.
* The children of a node are all the muxes driving its input ports (A, B).
* It must be rooted in a "root mux", a mux which has multiple mux users
* or any number of non-mux users. Only the root and leaf nodes can be
* root muxes, not the internal nodes. Leaf nodes that are root muxes
* are roots of "input trees".
*
* OPERATING PRINCIPLE
*
* This pass traverses mux trees, learning port activations and making
* assumptions about them as it goes. When valid, ports are replaced
* with constants, or removed if they can never be activated.
* When valid, muxes are replaced with shorts from port to output,
* or removed if their outputs are found to be no longer observable.
*
* Input trees can be recursed into if limits_t::recursions_left allows.
* Otherwise, the input tree is queued for a re-run with a fresh knowledge_t.
* At any point, if glob_evals_left goes to 0, the pass terminates.
*
* Unlike share, this pass doesn't use SAT to learn things about logic
* driving the mux control signals, and traverses mux regions from users
* to drivers.
*/
struct OptMuxtreeWorker struct OptMuxtreeWorker
{ {
@ -38,9 +64,10 @@ struct OptMuxtreeWorker
RTLIL::Module *module; RTLIL::Module *module;
SigMap assign_map; SigMap assign_map;
int removed_count; int removed_count;
int glob_abort_cnt = 100000; int glob_evals_left = 100000;
struct bitinfo_t { struct bitinfo_t {
// Is bit directly used by non-mux cells or ports?
bool seen_non_mux; bool seen_non_mux;
pool<int> mux_users; pool<int> mux_users;
pool<int> mux_drivers; pool<int> mux_drivers;
@ -50,12 +77,13 @@ struct OptMuxtreeWorker
vector<bitinfo_t> bit2info; vector<bitinfo_t> bit2info;
struct portinfo_t { struct portinfo_t {
int ctrl_sig; int ctrl_sig = -1; // No associated control signal by default
pool<int> input_sigs; pool<int> input_sigs = {};
pool<int> input_muxes; pool<int> input_muxes = {};
bool const_activated; bool const_activated = false;
bool const_deactivated; bool const_deactivated = false;
bool enabled; // Is the port reachable from inputs of a mux tree?
bool observable = false;
}; };
struct muxinfo_t { struct muxinfo_t {
@ -68,13 +96,16 @@ struct OptMuxtreeWorker
vector<bool> root_enable_muxes; vector<bool> root_enable_muxes;
pool<int> root_mux_rerun; pool<int> root_mux_rerun;
OptMuxtreeWorker(RTLIL::Design *design, RTLIL::Module *module) : portinfo_t used_port_bit(RTLIL::SigSpec& sig, int mux_idx) {
design(design), module(module), assign_map(module), removed_count(0) portinfo_t portinfo = {};
{ for (int bit_idx : sig2bits(sig)) {
log("Running muxtree optimizer on module %s..\n", module->name.c_str()); bit2info[bit_idx].mux_users.insert(mux_idx);
portinfo.input_sigs.insert(bit_idx);
log(" Creating internal representation of mux trees.\n"); }
return portinfo;
}
void track_mux(Cell* cell) {
// Populate bit2info[]: // Populate bit2info[]:
// .seen_non_mux // .seen_non_mux
// .mux_users // .mux_users
@ -84,10 +115,6 @@ struct OptMuxtreeWorker
// .input_sigs // .input_sigs
// .const_activated // .const_activated
// .const_deactivated // .const_deactivated
for (auto cell : module->cells())
{
if (cell->type.in(ID($mux), ID($pmux)))
{
RTLIL::SigSpec sig_a = cell->getPort(ID::A); RTLIL::SigSpec sig_a = cell->getPort(ID::A);
RTLIL::SigSpec sig_b = cell->getPort(ID::B); RTLIL::SigSpec sig_b = cell->getPort(ID::B);
RTLIL::SigSpec sig_s = cell->getPort(ID::S); RTLIL::SigSpec sig_s = cell->getPort(ID::S);
@ -95,62 +122,52 @@ struct OptMuxtreeWorker
muxinfo_t muxinfo; muxinfo_t muxinfo;
muxinfo.cell = cell; muxinfo.cell = cell;
int this_mux_idx = GetSize(mux2info);
// Analyze port B
// In case of $pmux, port B is multiple slices, concatenated, one per bit of port S
for (int i = 0; i < GetSize(sig_s); i++) { for (int i = 0; i < GetSize(sig_s); i++) {
RTLIL::SigSpec sig = sig_b.extract(i*GetSize(sig_a), GetSize(sig_a)); RTLIL::SigSpec sig = sig_b.extract(i*GetSize(sig_a), GetSize(sig_a));
RTLIL::SigSpec ctrl_sig = assign_map(sig_s.extract(i, 1)); RTLIL::SigSpec ctrl_sig = assign_map(sig_s.extract(i, 1));
portinfo_t portinfo; portinfo_t portinfo = used_port_bit(sig, this_mux_idx);
portinfo.ctrl_sig = sig2bits(ctrl_sig, false).front(); portinfo.ctrl_sig = sig2bits(ctrl_sig, false).front();
for (int idx : sig2bits(sig)) {
bit2info[idx].mux_users.insert(GetSize(mux2info));
portinfo.input_sigs.insert(idx);
}
portinfo.const_activated = ctrl_sig.is_fully_const() && ctrl_sig.as_bool(); portinfo.const_activated = ctrl_sig.is_fully_const() && ctrl_sig.as_bool();
portinfo.const_deactivated = ctrl_sig.is_fully_const() && !ctrl_sig.as_bool(); portinfo.const_deactivated = ctrl_sig.is_fully_const() && !ctrl_sig.as_bool();
portinfo.enabled = false;
muxinfo.ports.push_back(portinfo); muxinfo.ports.push_back(portinfo);
} }
portinfo_t portinfo; // Analyze port A
for (int idx : sig2bits(sig_a)) { muxinfo.ports.push_back(used_port_bit(sig_a, this_mux_idx));
bit2info[idx].mux_users.insert(GetSize(mux2info));
portinfo.input_sigs.insert(idx);
}
portinfo.ctrl_sig = -1;
portinfo.const_activated = false;
portinfo.const_deactivated = false;
portinfo.enabled = false;
muxinfo.ports.push_back(portinfo);
for (int idx : sig2bits(sig_y)) for (int idx : sig2bits(sig_y))
bit2info[idx].mux_drivers.insert(GetSize(mux2info)); bit2info[idx].mux_drivers.insert(this_mux_idx);
for (int idx : sig2bits(sig_s)) for (int idx : sig2bits(sig_s))
bit2info[idx].seen_non_mux = true; bit2info[idx].seen_non_mux = true;
mux2info.push_back(muxinfo); mux2info.push_back(muxinfo);
} }
else
{ void see_non_mux_cell(Cell* cell) {
for (auto &it : cell->connections()) { for (auto &it : cell->connections()) {
for (int idx : sig2bits(it.second)) for (int idx : sig2bits(it.second))
bit2info[idx].seen_non_mux = true; bit2info[idx].seen_non_mux = true;
} }
} }
}
void see_non_mux_wires() {
for (auto wire : module->wires()) { for (auto wire : module->wires()) {
if (wire->port_output || wire->get_bool_attribute(ID::keep)) if (wire->port_output || wire->get_bool_attribute(ID::keep))
for (int idx : sig2bits(RTLIL::SigSpec(wire))) for (int idx : sig2bits(RTLIL::SigSpec(wire)))
bit2info[idx].seen_non_mux = true; bit2info[idx].seen_non_mux = true;
} }
if (mux2info.empty()) {
log(" No muxes found in this module.\n");
return;
} }
// Populate mux2info[].ports[]: // Populate mux2info[].ports[]:
// .input_muxes // .input_muxes
void fixup_input_muxes() {
// bit2info knows the mux users and mux drivers of bits
// use this to tell mux2info ports about what muxes are driven by it
for (int i = 0; i < GetSize(bit2info); i++) for (int i = 0; i < GetSize(bit2info); i++)
for (int j : bit2info[i].mux_users) for (int j : bit2info[i].mux_users)
for (auto &p : mux2info[j].ports) { for (auto &p : mux2info[j].ports) {
@ -158,12 +175,15 @@ struct OptMuxtreeWorker
for (int k : bit2info[i].mux_drivers) for (int k : bit2info[i].mux_drivers)
p.input_muxes.insert(k); p.input_muxes.insert(k);
} }
}
log(" Evaluating internal representation of mux trees.\n"); void populate_roots() {
// mux_to_users[i] means "set of muxes using output of mux i"
dict<int, pool<int>> mux_to_users; dict<int, pool<int>> mux_to_users;
root_muxes.resize(GetSize(mux2info)); // Pure root muxes (outputs seen by non-muxes)
root_enable_muxes.resize(GetSize(mux2info)); root_enable_muxes.resize(GetSize(mux2info));
// All root muxes (outputs seen by non-muxes or multiple muxes)
root_muxes.resize(GetSize(mux2info));
for (auto &bi : bit2info) { for (auto &bi : bit2info) {
for (int i : bi.mux_drivers) for (int i : bi.mux_drivers)
@ -177,16 +197,44 @@ struct OptMuxtreeWorker
} }
} }
for (auto &it : mux_to_users) for (auto &[driving_mux, user_muxes] : mux_to_users)
if (GetSize(it.second) > 1) if (GetSize(user_muxes) > 1)
root_muxes.at(it.first) = true; root_muxes.at(driving_mux) = true;
}
OptMuxtreeWorker(RTLIL::Design *design, RTLIL::Module *module) :
design(design), module(module), assign_map(module), removed_count(0)
{
log("Running muxtree optimizer on module %s..\n", module->name.c_str());
log(" Creating internal representation of mux trees.\n");
for (auto cell : module->cells())
{
if (cell->type.in(ID($mux), ID($pmux)))
track_mux(cell);
else
see_non_mux_cell(cell);
}
see_non_mux_wires();
if (mux2info.empty()) {
log(" No muxes found in this module.\n");
return;
}
fixup_input_muxes();
log(" Evaluating internal representation of mux trees.\n");
populate_roots();
for (int mux_idx = 0; mux_idx < GetSize(root_muxes); mux_idx++) for (int mux_idx = 0; mux_idx < GetSize(root_muxes); mux_idx++)
if (root_muxes.at(mux_idx)) { if (root_muxes.at(mux_idx)) {
log_debug(" Root of a mux tree: %s%s\n", log_id(mux2info[mux_idx].cell), root_enable_muxes.at(mux_idx) ? " (pure)" : ""); log_debug(" Root of a mux tree: %s%s\n", log_id(mux2info[mux_idx].cell), root_enable_muxes.at(mux_idx) ? " (pure)" : "");
root_mux_rerun.erase(mux_idx); root_mux_rerun.erase(mux_idx);
eval_root_mux(mux_idx); eval_root_mux(mux_idx);
if (glob_abort_cnt == 0) { if (glob_evals_left == 0) {
log(" Giving up (too many iterations)\n"); log(" Giving up (too many iterations)\n");
return; return;
} }
@ -198,21 +246,21 @@ struct OptMuxtreeWorker
log_assert(root_enable_muxes.at(mux_idx)); log_assert(root_enable_muxes.at(mux_idx));
root_mux_rerun.erase(mux_idx); root_mux_rerun.erase(mux_idx);
eval_root_mux(mux_idx); eval_root_mux(mux_idx);
if (glob_abort_cnt == 0) { if (glob_evals_left == 0) {
log(" Giving up (too many iterations)\n"); log(" Giving up (too many iterations)\n");
return; return;
} }
} }
log(" Analyzing evaluation results.\n"); log(" Analyzing evaluation results.\n");
log_assert(glob_abort_cnt > 0); log_assert(glob_evals_left > 0);
for (auto &mi : mux2info) for (auto &mi : mux2info)
{ {
vector<int> live_ports; vector<int> live_ports;
for (int port_idx = 0; port_idx < GetSize(mi.ports); port_idx++) { for (int port_idx = 0; port_idx < GetSize(mi.ports); port_idx++) {
portinfo_t &pi = mi.ports[port_idx]; portinfo_t &pi = mi.ports[port_idx];
if (pi.enabled) { if (pi.observable) {
live_ports.push_back(port_idx); live_ports.push_back(port_idx);
} else { } else {
log(" dead port %d/%d on %s %s.\n", port_idx+1, GetSize(mi.ports), log(" dead port %d/%d on %s %s.\n", port_idx+1, GetSize(mi.ports),
@ -290,9 +338,10 @@ struct OptMuxtreeWorker
struct knowledge_t struct knowledge_t
{ {
// database of known inactive signals // Known inactive signals
// the payload is a reference counter used to manage the // The payload is a reference counter used to manage the list
// list. when it is non-zero the signal in known to be inactive // When it is non-zero, the signal in known to be inactive
// When it reaches zero, the map element is removed
std::unordered_map<int, int> known_inactive; std::unordered_map<int, int> known_inactive;
// database of known active signals // database of known active signals
@ -303,69 +352,108 @@ struct OptMuxtreeWorker
std::unordered_set<int> visited_muxes; std::unordered_set<int> visited_muxes;
}; };
void eval_mux_port(knowledge_t &knowledge, int mux_idx, int port_idx, bool do_replace_known, bool do_enable_ports, int abort_count) static void activate_port(knowledge_t &knowledge, int port_idx, const muxinfo_t &muxinfo) {
{ // First, mark all other ports inactive
if (glob_abort_cnt == 0)
return;
muxinfo_t &muxinfo = mux2info[mux_idx];
if (do_enable_ports)
muxinfo.ports[port_idx].enabled = true;
for (int i = 0; i < GetSize(muxinfo.ports); i++) { for (int i = 0; i < GetSize(muxinfo.ports); i++) {
if (i == port_idx) if (i == port_idx)
continue; continue;
if (muxinfo.ports[i].ctrl_sig >= 0) if (muxinfo.ports[i].ctrl_sig >= 0)
++knowledge.known_inactive[muxinfo.ports[i].ctrl_sig]; ++knowledge.known_inactive[muxinfo.ports[i].ctrl_sig];
} }
// Mark port active unless it's the last one
if (port_idx < GetSize(muxinfo.ports)-1 && !muxinfo.ports[port_idx].const_activated) if (port_idx < GetSize(muxinfo.ports)-1 && !muxinfo.ports[port_idx].const_activated)
++knowledge.known_active[muxinfo.ports[port_idx].ctrl_sig]; ++knowledge.known_active[muxinfo.ports[port_idx].ctrl_sig];
vector<int> parent_muxes;
for (int m : muxinfo.ports[port_idx].input_muxes) {
auto it = knowledge.visited_muxes.find(m);
if (it != knowledge.visited_muxes.end())
continue;
knowledge.visited_muxes.insert(it, m);
parent_muxes.push_back(m);
} }
for (int m : parent_muxes) {
if (root_enable_muxes.at(m))
continue;
else if (root_muxes.at(m)) {
if (abort_count == 0) {
root_mux_rerun.insert(m);
root_enable_muxes.at(m) = true;
log_debug(" Removing pure flag from root mux %s.\n", log_id(mux2info[m].cell));
} else
eval_mux(knowledge, m, false, do_enable_ports, abort_count - 1);
} else
eval_mux(knowledge, m, do_replace_known, do_enable_ports, abort_count);
if (glob_abort_cnt == 0)
return;
}
for (int m : parent_muxes)
knowledge.visited_muxes.erase(m);
if (port_idx < GetSize(muxinfo.ports)-1 && !muxinfo.ports[port_idx].const_activated) { static void deactivate_port(knowledge_t &knowledge, int port_idx, const muxinfo_t &muxinfo) {
auto it = knowledge.known_active.find(muxinfo.ports[port_idx].ctrl_sig); auto unlearn = [](std::unordered_map<int, int>& knowns, int i) {
if (it != knowledge.known_active.end()) auto it = knowns.find(i);
if (it != knowns.end())
if (--it->second == 0) if (--it->second == 0)
knowledge.known_active.erase(it); knowns.erase(it);
} };
if (port_idx < GetSize(muxinfo.ports)-1 && !muxinfo.ports[port_idx].const_activated)
unlearn(knowledge.known_active, muxinfo.ports[port_idx].ctrl_sig);
// Undo inactivity assumptions for other ports
for (int i = 0; i < GetSize(muxinfo.ports); i++) { for (int i = 0; i < GetSize(muxinfo.ports); i++) {
if (i == port_idx) if (i == port_idx)
continue; continue;
if (muxinfo.ports[i].ctrl_sig >= 0) { if (muxinfo.ports[i].ctrl_sig >= 0)
auto it = knowledge.known_inactive.find(muxinfo.ports[i].ctrl_sig); unlearn(knowledge.known_inactive, muxinfo.ports[i].ctrl_sig);
if (it != knowledge.known_inactive.end())
if (--it->second == 0)
knowledge.known_inactive.erase(it);
} }
} }
struct limits_t {
// Are we allowed to replace inputs with constants?
// True if knowledge doesn't contain assumptions
bool do_replace_known = true;
// Are we allowed to mark ports as observable?
// True if we're recursing from a pure root mux
bool do_mark_ports_observable = true;
// How many more subtree recursions into input trees can we take?
// Then shalt thou count to three, no more, no less. Three shall be the number thou shalt count, and the number of the counting shall be three.
int recursions_left = 3;
limits_t subtree() const {
limits_t ret = *this;
log_assert(ret.recursions_left > 0);
ret.recursions_left--;
return ret;
}
};
void eval_mux_port(knowledge_t &knowledge, int mux_idx, int port_idx, limits_t limits)
{
if (glob_evals_left == 0)
return;
muxinfo_t &muxinfo = mux2info[mux_idx];
if (limits.do_mark_ports_observable)
muxinfo.ports[port_idx].observable = true;
// For the purposes of recursion, we assume the port is active,
// meaning all other ports are inactive
activate_port(knowledge, port_idx, muxinfo);
vector<int> input_mux_queue;
for (int m : muxinfo.ports[port_idx].input_muxes) {
if (knowledge.visited_muxes.count(m))
continue;
knowledge.visited_muxes.insert(m);
input_mux_queue.push_back(m);
}
for (int m : input_mux_queue) {
if (root_enable_muxes.at(m))
continue;
else if (root_muxes.at(m)) {
if (limits.recursions_left == 0) {
// Ran out of subtree depth, re-eval this subtree in the next re-run
root_mux_rerun.insert(m);
root_enable_muxes.at(m) = true;
log_debug(" Removing pure flag from root mux %s.\n", log_id(mux2info[m].cell));
} else {
auto new_limits = limits.subtree();
// Since our knowledge includes assumption, we can't generally allow replacing based on it
new_limits.do_replace_known = false;
eval_mux(knowledge, m, new_limits);
}
} else {
// This non-root input mux has only this mux as a user,
// so here we are allowed to pass along do_replace_known
eval_mux(knowledge, m, limits);
}
if (glob_evals_left == 0)
return;
}
// Allow revisiting input muxes, since evaluating other ports should
// revisit these input muxes with different activation assumptions
for (int m : input_mux_queue)
knowledge.visited_muxes.erase(m);
// Undo our assumptions that the port is active
deactivate_port(knowledge, port_idx, muxinfo);
} }
void replace_known(knowledge_t &knowledge, muxinfo_t &muxinfo, IdString portname) void replace_known(knowledge_t &knowledge, muxinfo_t &muxinfo, IdString portname)
@ -373,14 +461,14 @@ struct OptMuxtreeWorker
SigSpec sig = muxinfo.cell->getPort(portname); SigSpec sig = muxinfo.cell->getPort(portname);
bool did_something = false; bool did_something = false;
int width = 0; int width_if_b = 0;
idict<int> ctrl_bits; idict<int> ctrl_bits;
if (portname == ID::B) if (portname == ID::B)
width = GetSize(muxinfo.cell->getPort(ID::A)); width_if_b = GetSize(muxinfo.cell->getPort(ID::A));
for (int bit : sig2bits(muxinfo.cell->getPort(ID::S), false)) for (int bit : sig2bits(muxinfo.cell->getPort(ID::S), false))
ctrl_bits(bit); ctrl_bits(bit);
int port_idx = 0, port_off = 0; int slice_idx = 0, slice_off = 0;
vector<int> bits = sig2bits(sig, false); vector<int> bits = sig2bits(sig, false);
for (int i = 0; i < GetSize(bits); i++) { for (int i = 0; i < GetSize(bits); i++) {
if (bits[i] >= 0) { if (bits[i] >= 0) {
@ -393,17 +481,31 @@ struct OptMuxtreeWorker
did_something = true; did_something = true;
} }
if (ctrl_bits.count(bits[i])) { if (ctrl_bits.count(bits[i])) {
if (width) { if (!width_if_b) {
sig[i] = ctrl_bits.at(bits[i]) == port_idx ? State::S1 : State::S0; // Single-bit $mux example
} else { // mux: S ? B : A = Y
// A=S
// 0 ? B : 0 = 0
// 1 ? B : 1 = B
// rewrite to A=0
// 0 ? B : 0 = 0
// 1 ? B : 0 = B
// which is equivalent
sig[i] = State::S0; sig[i] = State::S0;
} else {
// "Sliced" $pmux example
// B[i]=S[j]
// i == j => B[i] activated only when B[i] is high, safe to rewrite to 1
// i != j => B[i] activated only when B[i] is low, safe to rewrite to 0
sig[i] = ctrl_bits.at(bits[i]) == slice_idx ? State::S1 : State::S0;
} }
did_something = true; did_something = true;
} }
} }
if (width) { if (width_if_b) {
if (++port_off == width) // Roll over into next slice
port_idx++, port_off=0; if (++slice_off == width_if_b)
slice_idx++, slice_off=0;
} }
} }
@ -414,16 +516,17 @@ struct OptMuxtreeWorker
} }
} }
void eval_mux(knowledge_t &knowledge, int mux_idx, bool do_replace_known, bool do_enable_ports, int abort_count) void eval_mux(knowledge_t &knowledge, int mux_idx, limits_t limits)
{ {
if (glob_abort_cnt == 0) if (glob_evals_left == 0)
return; return;
glob_abort_cnt--; glob_evals_left--;
muxinfo_t &muxinfo = mux2info[mux_idx]; muxinfo_t &muxinfo = mux2info[mux_idx];
log_debug("\t\teval %s (replace %d enable %d)\n", log_id(muxinfo.cell), limits.do_replace_known, limits.do_mark_ports_observable);
// set input ports to constants if we find known active or inactive signals // set input ports to constants if we find known active or inactive signals
if (do_replace_known) { if (limits.do_replace_known) {
replace_known(knowledge, muxinfo, ID::A); replace_known(knowledge, muxinfo, ID::A);
replace_known(knowledge, muxinfo, ID::B); replace_known(knowledge, muxinfo, ID::B);
} }
@ -433,21 +536,21 @@ struct OptMuxtreeWorker
{ {
portinfo_t &portinfo = muxinfo.ports[port_idx]; portinfo_t &portinfo = muxinfo.ports[port_idx];
if (portinfo.const_activated) { if (portinfo.const_activated) {
eval_mux_port(knowledge, mux_idx, port_idx, do_replace_known, do_enable_ports, abort_count); eval_mux_port(knowledge, mux_idx, port_idx, limits);
return; return;
} }
} }
// compare ports with known_active signals. if we find a match, only this // Compare ports with known active control signals. if we find a match,
// port can be active. do not include the last port (its the default port // only this port can be active. Do not include the last port,
// that has no control signals). // it's the default port without an associated control signal
for (int port_idx = 0; port_idx < GetSize(muxinfo.ports)-1; port_idx++) for (int port_idx = 0; port_idx < GetSize(muxinfo.ports)-1; port_idx++)
{ {
portinfo_t &portinfo = muxinfo.ports[port_idx]; portinfo_t &portinfo = muxinfo.ports[port_idx];
if (portinfo.const_deactivated) if (portinfo.const_deactivated)
continue; continue;
if (knowledge.known_active.count(portinfo.ctrl_sig) > 0) { if (knowledge.known_active.count(portinfo.ctrl_sig) > 0) {
eval_mux_port(knowledge, mux_idx, port_idx, do_replace_known, do_enable_ports, abort_count); eval_mux_port(knowledge, mux_idx, port_idx, limits);
return; return;
} }
} }
@ -462,19 +565,21 @@ struct OptMuxtreeWorker
if (port_idx < GetSize(muxinfo.ports)-1) if (port_idx < GetSize(muxinfo.ports)-1)
if (knowledge.known_inactive.count(portinfo.ctrl_sig) > 0) if (knowledge.known_inactive.count(portinfo.ctrl_sig) > 0)
continue; continue;
eval_mux_port(knowledge, mux_idx, port_idx, do_replace_known, do_enable_ports, abort_count); eval_mux_port(knowledge, mux_idx, port_idx, limits);
if (glob_abort_cnt == 0) if (glob_evals_left == 0)
return; return;
} }
} }
void eval_root_mux(int mux_idx) void eval_root_mux(int mux_idx)
{ {
log_assert(glob_abort_cnt > 0); log_assert(glob_evals_left > 0);
knowledge_t knowledge; knowledge_t knowledge;
knowledge.visited_muxes.insert(mux_idx); knowledge.visited_muxes.insert(mux_idx);
eval_mux(knowledge, mux_idx, true, root_enable_muxes.at(mux_idx), 3); limits_t limits = {};
limits.do_mark_ports_observable = root_enable_muxes.at(mux_idx);
eval_mux(knowledge, mux_idx, limits);
} }
}; };