3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2025-06-30 09:58:47 +00:00

Merge pull request #284 from azonenberg/master

greenpak4: Support for many new cell types
This commit is contained in:
Clifford Wolf 2016-12-24 14:28:39 +01:00 committed by GitHub
commit 4cf3170194
6 changed files with 328 additions and 65 deletions

View file

@ -3,6 +3,7 @@ OBJS += techlibs/greenpak4/synth_greenpak4.o
OBJS += techlibs/greenpak4/greenpak4_counters.o OBJS += techlibs/greenpak4/greenpak4_counters.o
OBJS += techlibs/greenpak4/greenpak4_dffinv.o OBJS += techlibs/greenpak4/greenpak4_dffinv.o
$(eval $(call add_share_file,share/greenpak4,techlibs/greenpak4/cells_latch.v))
$(eval $(call add_share_file,share/greenpak4,techlibs/greenpak4/cells_map.v)) $(eval $(call add_share_file,share/greenpak4,techlibs/greenpak4/cells_map.v))
$(eval $(call add_share_file,share/greenpak4,techlibs/greenpak4/cells_sim.v)) $(eval $(call add_share_file,share/greenpak4,techlibs/greenpak4/cells_sim.v))
$(eval $(call add_share_file,share/greenpak4,techlibs/greenpak4/gp_dff.lib)) $(eval $(call add_share_file,share/greenpak4,techlibs/greenpak4/gp_dff.lib))

View file

@ -0,0 +1,15 @@
module $_DLATCH_P_(input E, input D, output Q);
GP_DLATCH _TECHMAP_REPLACE_ (
.D(D),
.nCLK(!E),
.Q(Q)
);
endmodule
module $_DLATCH_N_(input E, input D, output Q);
GP_DLATCH _TECHMAP_REPLACE_ (
.D(D),
.nCLK(E),
.Q(Q)
);
endmodule

View file

@ -50,6 +50,58 @@ module GP_DFFRI(input D, CLK, nRST, output reg nQ);
); );
endmodule endmodule
module GP_DLATCHS(input D, nCLK, nSET, output reg Q);
parameter [0:0] INIT = 1'bx;
GP_DLATCHSR #(
.INIT(INIT),
.SRMODE(1'b1),
) _TECHMAP_REPLACE_ (
.D(D),
.nCLK(nCLK),
.nSR(nSET),
.Q(Q)
);
endmodule
module GP_DLATCHR(input D, nCLK, nRST, output reg Q);
parameter [0:0] INIT = 1'bx;
GP_DLATCHSR #(
.INIT(INIT),
.SRMODE(1'b0),
) _TECHMAP_REPLACE_ (
.D(D),
.nCLK(nCLK),
.nSR(nRST),
.Q(Q)
);
endmodule
module GP_DLATCHSI(input D, nCLK, nSET, output reg nQ);
parameter [0:0] INIT = 1'bx;
GP_DLATCHSRI #(
.INIT(INIT),
.SRMODE(1'b1),
) _TECHMAP_REPLACE_ (
.D(D),
.nCLK(nCLK),
.nSR(nSET),
.nQ(nQ)
);
endmodule
module GP_DLATCHRI(input D, nCLK, nRST, output reg nQ);
parameter [0:0] INIT = 1'bx;
GP_DLATCHSRI #(
.INIT(INIT),
.SRMODE(1'b0),
) _TECHMAP_REPLACE_ (
.D(D),
.nCLK(nCLK),
.nSR(nRST),
.nQ(nQ)
);
endmodule
module GP_OBUFT(input IN, input OE, output OUT); module GP_OBUFT(input IN, input OE, output OUT);
GP_IOBUF _TECHMAP_REPLACE_ ( GP_IOBUF _TECHMAP_REPLACE_ (
.IN(IN), .IN(IN),

View file

@ -16,11 +16,15 @@ module GP_4LUT(input IN0, IN1, IN2, IN3, output OUT);
endmodule endmodule
module GP_ABUF(input wire IN, output wire OUT); module GP_ABUF(input wire IN, output wire OUT);
assign OUT = IN; assign OUT = IN;
//must be 1, 5, 20, 50
//values >1 only available with Vdd > 2.7V
parameter BANDWIDTH_KHZ = 1;
//cannot simulate mixed signal IP //cannot simulate mixed signal IP
endmodule endmodule
module GP_ACMP(input wire PWREN, input wire VIN, input wire VREF, output reg OUT); module GP_ACMP(input wire PWREN, input wire VIN, input wire VREF, output reg OUT);
@ -29,9 +33,9 @@ module GP_ACMP(input wire PWREN, input wire VIN, input wire VREF, output reg OUT
parameter VIN_ATTEN = 1; parameter VIN_ATTEN = 1;
parameter VIN_ISRC_EN = 0; parameter VIN_ISRC_EN = 0;
parameter HYSTERESIS = 0; parameter HYSTERESIS = 0;
initial OUT = 0; initial OUT = 0;
//cannot simulate mixed signal IP //cannot simulate mixed signal IP
endmodule endmodule
@ -40,37 +44,41 @@ module GP_BANDGAP(output reg OK);
parameter AUTO_PWRDN = 1; parameter AUTO_PWRDN = 1;
parameter CHOPPER_EN = 1; parameter CHOPPER_EN = 1;
parameter OUT_DELAY = 100; parameter OUT_DELAY = 100;
//cannot simulate mixed signal IP //cannot simulate mixed signal IP
endmodule
module GP_CLKBUF(input wire IN, output wire OUT);
assign OUT = IN;
endmodule endmodule
module GP_COUNT8(input CLK, input wire RST, output reg OUT); module GP_COUNT8(input CLK, input wire RST, output reg OUT);
parameter RESET_MODE = "RISING"; parameter RESET_MODE = "RISING";
parameter COUNT_TO = 8'h1; parameter COUNT_TO = 8'h1;
parameter CLKIN_DIVIDE = 1; parameter CLKIN_DIVIDE = 1;
//more complex hard IP blocks are not supported for simulation yet //more complex hard IP blocks are not supported for simulation yet
reg[7:0] count = COUNT_TO; reg[7:0] count = COUNT_TO;
//Combinatorially output whenever we wrap low //Combinatorially output whenever we wrap low
always @(*) begin always @(*) begin
OUT <= (count == 8'h0); OUT <= (count == 8'h0);
end end
//POR or SYSRST reset value is COUNT_TO. Datasheet is unclear but conversations w/ Silego confirm. //POR or SYSRST reset value is COUNT_TO. Datasheet is unclear but conversations w/ Silego confirm.
//Runtime reset value is clearly 0 except in count/FSM cells where it's configurable but we leave at 0 for now. //Runtime reset value is clearly 0 except in count/FSM cells where it's configurable but we leave at 0 for now.
//Datasheet seems to indicate that reset is asynchronous, but for now we model as sync due to Yosys issues... //Datasheet seems to indicate that reset is asynchronous, but for now we model as sync due to Yosys issues...
always @(posedge CLK) begin always @(posedge CLK) begin
count <= count - 1'd1; count <= count - 1'd1;
if(count == 0) if(count == 0)
count <= COUNT_TO; count <= COUNT_TO;
/* /*
if((RESET_MODE == "RISING") && RST) if((RESET_MODE == "RISING") && RST)
count <= 0; count <= 0;
@ -78,18 +86,18 @@ module GP_COUNT8(input CLK, input wire RST, output reg OUT);
count <= 0; count <= 0;
if((RESET_MODE == "BOTH") && RST) if((RESET_MODE == "BOTH") && RST)
count <= 0; count <= 0;
*/ */
end end
endmodule endmodule
module GP_COUNT14(input CLK, input wire RST, output reg OUT); module GP_COUNT14(input CLK, input wire RST, output reg OUT);
parameter RESET_MODE = "RISING"; parameter RESET_MODE = "RISING";
parameter COUNT_TO = 14'h1; parameter COUNT_TO = 14'h1;
parameter CLKIN_DIVIDE = 1; parameter CLKIN_DIVIDE = 1;
//more complex hard IP blocks are not supported for simulation yet //more complex hard IP blocks are not supported for simulation yet
endmodule endmodule
@ -128,15 +136,70 @@ module GP_DAC(input[7:0] DIN, input wire VREF, output reg VOUT);
endmodule endmodule
module GP_DCMP(input[7:0] INP, input[7:0] INN, input CLK, input PWRDN, output reg GREATER, output reg EQUAL);
parameter PWRDN_SYNC = 1'b0;
parameter CLK_EDGE = "RISING";
parameter GREATER_OR_EQUAL = 1'b0;
//TODO implement power-down mode
initial GREATER = 0;
initial EQUAL = 0;
wire clk_minv = (CLK_EDGE == "RISING") ? CLK : ~CLK;
always @(posedge clk_minv) begin
if(GREATER_OR_EQUAL)
GREATER <= (INP >= INN);
else
GREATER <= (INP > INN);
EQUAL <= (INP == INN);
end
endmodule
module GP_DCMPREF(output reg[7:0]OUT);
parameter[7:0] REF_VAL = 8'h00;
initial OUT = REF_VAL;
endmodule
module GP_DCMPMUX(input[1:0] SEL, input[7:0] IN0, input[7:0] IN1, input[7:0] IN2, input[7:0] IN3, output reg[7:0] OUTA, output reg[7:0] OUTB);
always @(*) begin
case(SEL)
2'd00: begin
OUTA <= IN0;
OUTB <= IN3;
end
2'd01: begin
OUTA <= IN1;
OUTB <= IN2;
end
2'd02: begin
OUTA <= IN2;
OUTB <= IN1;
end
2'd03: begin
OUTA <= IN3;
OUTB <= IN0;
end
endcase
end
endmodule
module GP_DELAY(input IN, output reg OUT); module GP_DELAY(input IN, output reg OUT);
parameter DELAY_STEPS = 1; parameter DELAY_STEPS = 1;
parameter GLITCH_FILTER = 0; parameter GLITCH_FILTER = 0;
initial OUT = 0; initial OUT = 0;
generate generate
//TODO: These delays are PTV dependent! For now, hard code 3v3 timing //TODO: These delays are PTV dependent! For now, hard code 3v3 timing
//Change simulation-mode delay depending on global Vdd range (how to specify this?) //Change simulation-mode delay depending on global Vdd range (how to specify this?)
always @(*) begin always @(*) begin
@ -151,9 +214,9 @@ module GP_DELAY(input IN, output reg OUT);
end end
endcase endcase
end end
endgenerate endgenerate
endmodule endmodule
module GP_DFF(input D, CLK, output reg Q); module GP_DFF(input D, CLK, output reg Q);
@ -240,14 +303,100 @@ module GP_DFFSRI(input D, CLK, nSR, output reg nQ);
end end
endmodule endmodule
module GP_DLATCH(input D, input nCLK, output reg Q);
parameter [0:0] INIT = 1'bx;
initial Q = INIT;
always @(*) begin
if(!nCLK)
Q <= D;
end
endmodule
module GP_DLATCHI(input D, input nCLK, output reg nQ);
parameter [0:0] INIT = 1'bx;
initial nQ = INIT;
always @(*) begin
if(!nCLK)
nQ <= ~D;
end
endmodule
module GP_DLATCHR(input D, input nCLK, input nRST, output reg Q);
parameter [0:0] INIT = 1'bx;
initial Q = INIT;
always @(*) begin
if(!nRST)
Q <= 1'b0;
else if(!nCLK)
Q <= D;
end
endmodule
module GP_DLATCHRI(input D, input nCLK, input nRST, output reg nQ);
parameter [0:0] INIT = 1'bx;
initial nQ = INIT;
always @(*) begin
if(!nRST)
nQ <= 1'b1;
else if(!nCLK)
nQ <= ~D;
end
endmodule
module GP_DLATCHS(input D, input nCLK, input nSET, output reg Q);
parameter [0:0] INIT = 1'bx;
initial Q = INIT;
always @(*) begin
if(!nSET)
Q <= 1'b1;
else if(!nCLK)
Q <= D;
end
endmodule
module GP_DLATCHSI(input D, input nCLK, input nSET, output reg nQ);
parameter [0:0] INIT = 1'bx;
initial nQ = INIT;
always @(*) begin
if(!nSET)
nQ <= 1'b0;
else if(!nCLK)
nQ <= ~D;
end
endmodule
module GP_DLATCHSR(input D, input nCLK, input nSR, output reg Q);
parameter [0:0] INIT = 1'bx;
parameter[0:0] SRMODE = 1'bx;
initial Q = INIT;
always @(*) begin
if(!nSR)
Q <= SRMODE;
else if(!nCLK)
Q <= D;
end
endmodule
module GP_DLATCHSRI(input D, input nCLK, input nSR, output reg nQ);
parameter [0:0] INIT = 1'bx;
parameter[0:0] SRMODE = 1'bx;
initial nQ = INIT;
always @(*) begin
if(!nSR)
nQ <= ~SRMODE;
else if(!nCLK)
nQ <= ~D;
end
endmodule
module GP_EDGEDET(input IN, output reg OUT); module GP_EDGEDET(input IN, output reg OUT);
parameter EDGE_DIRECTION = "RISING"; parameter EDGE_DIRECTION = "RISING";
parameter DELAY_STEPS = 1; parameter DELAY_STEPS = 1;
parameter GLITCH_FILTER = 0; parameter GLITCH_FILTER = 0;
//not implemented for simulation //not implemented for simulation
endmodule endmodule
module GP_IBUF(input IN, output OUT); module GP_IBUF(input IN, output OUT);
@ -264,16 +413,16 @@ module GP_INV(input IN, output OUT);
endmodule endmodule
module GP_LFOSC(input PWRDN, output reg CLKOUT); module GP_LFOSC(input PWRDN, output reg CLKOUT);
parameter PWRDN_EN = 0; parameter PWRDN_EN = 0;
parameter AUTO_PWRDN = 0; parameter AUTO_PWRDN = 0;
parameter OUT_DIV = 1; parameter OUT_DIV = 1;
initial CLKOUT = 0; initial CLKOUT = 0;
//auto powerdown not implemented for simulation //auto powerdown not implemented for simulation
//output dividers not implemented for simulation //output dividers not implemented for simulation
always begin always begin
if(PWRDN) if(PWRDN)
CLKOUT = 0; CLKOUT = 0;
@ -283,7 +432,7 @@ module GP_LFOSC(input PWRDN, output reg CLKOUT);
CLKOUT = ~CLKOUT; CLKOUT = ~CLKOUT;
end end
end end
endmodule endmodule
module GP_OBUF(input IN, output OUT); module GP_OBUF(input IN, output OUT);
@ -320,18 +469,22 @@ module GP_PGEN(input wire nRST, input wire CLK, output reg OUT);
OUT <= PATTERN_DATA[count]; OUT <= PATTERN_DATA[count];
if( (count + 1) == PATTERN_LEN) if( (count + 1) == PATTERN_LEN)
count <= 0; count <= 0;
end end
end end
endmodule
module GP_PWRDET(output reg VDD_LOW);
initial VDD_LOW = 0;
endmodule endmodule
module GP_POR(output reg RST_DONE); module GP_POR(output reg RST_DONE);
parameter POR_TIME = 500; parameter POR_TIME = 500;
initial begin initial begin
RST_DONE = 0; RST_DONE = 0;
if(POR_TIME == 4) if(POR_TIME == 4)
#4000; #4000;
else if(POR_TIME == 500) else if(POR_TIME == 500)
@ -340,64 +493,64 @@ module GP_POR(output reg RST_DONE);
$display("ERROR: bad POR_TIME for GP_POR cell"); $display("ERROR: bad POR_TIME for GP_POR cell");
$finish; $finish;
end end
RST_DONE = 1; RST_DONE = 1;
end end
endmodule endmodule
module GP_RCOSC(input PWRDN, output reg CLKOUT_HARDIP, output reg CLKOUT_FABRIC); module GP_RCOSC(input PWRDN, output reg CLKOUT_HARDIP, output reg CLKOUT_FABRIC);
parameter PWRDN_EN = 0; parameter PWRDN_EN = 0;
parameter AUTO_PWRDN = 0; parameter AUTO_PWRDN = 0;
parameter HARDIP_DIV = 1; parameter HARDIP_DIV = 1;
parameter FABRIC_DIV = 1; parameter FABRIC_DIV = 1;
parameter OSC_FREQ = "25k"; parameter OSC_FREQ = "25k";
initial CLKOUT_HARDIP = 0; initial CLKOUT_HARDIP = 0;
initial CLKOUT_FABRIC = 0; initial CLKOUT_FABRIC = 0;
//output dividers not implemented for simulation //output dividers not implemented for simulation
//auto powerdown not implemented for simulation //auto powerdown not implemented for simulation
always begin always begin
if(PWRDN) begin if(PWRDN) begin
CLKOUT_HARDIP = 0; CLKOUT_HARDIP = 0;
CLKOUT_FABRIC = 0; CLKOUT_FABRIC = 0;
end end
else begin else begin
if(OSC_FREQ == "25k") begin if(OSC_FREQ == "25k") begin
//half period of 25 kHz //half period of 25 kHz
#20000; #20000;
end end
else begin else begin
//half period of 2 MHz //half period of 2 MHz
#250; #250;
end end
CLKOUT_HARDIP = ~CLKOUT_HARDIP; CLKOUT_HARDIP = ~CLKOUT_HARDIP;
CLKOUT_FABRIC = ~CLKOUT_FABRIC; CLKOUT_FABRIC = ~CLKOUT_FABRIC;
end end
end end
endmodule endmodule
module GP_RINGOSC(input PWRDN, output reg CLKOUT_HARDIP, output reg CLKOUT_FABRIC); module GP_RINGOSC(input PWRDN, output reg CLKOUT_HARDIP, output reg CLKOUT_FABRIC);
parameter PWRDN_EN = 0; parameter PWRDN_EN = 0;
parameter AUTO_PWRDN = 0; parameter AUTO_PWRDN = 0;
parameter HARDIP_DIV = 1; parameter HARDIP_DIV = 1;
parameter FABRIC_DIV = 1; parameter FABRIC_DIV = 1;
initial CLKOUT_HARDIP = 0; initial CLKOUT_HARDIP = 0;
initial CLKOUT_FABRIC = 0; initial CLKOUT_FABRIC = 0;
//output dividers not implemented for simulation //output dividers not implemented for simulation
//auto powerdown not implemented for simulation //auto powerdown not implemented for simulation
always begin always begin
if(PWRDN) begin if(PWRDN) begin
CLKOUT_HARDIP = 0; CLKOUT_HARDIP = 0;
@ -410,7 +563,7 @@ module GP_RINGOSC(input PWRDN, output reg CLKOUT_HARDIP, output reg CLKOUT_FABRI
CLKOUT_FABRIC = ~CLKOUT_FABRIC; CLKOUT_FABRIC = ~CLKOUT_FABRIC;
end end
end end
endmodule endmodule
module GP_SHREG(input nRST, input CLK, input IN, output OUTA, output OUTB); module GP_SHREG(input nRST, input CLK, input IN, output OUTA, output OUTB);
@ -418,32 +571,58 @@ module GP_SHREG(input nRST, input CLK, input IN, output OUTA, output OUTB);
parameter OUTA_TAP = 1; parameter OUTA_TAP = 1;
parameter OUTA_INVERT = 0; parameter OUTA_INVERT = 0;
parameter OUTB_TAP = 1; parameter OUTB_TAP = 1;
reg[15:0] shreg = 0; reg[15:0] shreg = 0;
always @(posedge CLK, negedge nRST) begin always @(posedge CLK, negedge nRST) begin
if(!nRST) if(!nRST)
shreg = 0; shreg = 0;
else else
shreg <= {shreg[14:0], IN}; shreg <= {shreg[14:0], IN};
end end
assign OUTA = (OUTA_INVERT) ? ~shreg[OUTA_TAP - 1] : shreg[OUTA_TAP - 1]; assign OUTA = (OUTA_INVERT) ? ~shreg[OUTA_TAP - 1] : shreg[OUTA_TAP - 1];
assign OUTB = shreg[OUTB_TAP - 1]; assign OUTB = shreg[OUTB_TAP - 1];
endmodule endmodule
module GP_SPI(
input SCK,
inout SDAT,
input CSN,
input[7:0] TXD_HIGH,
input[7:0] TXD_LOW,
output reg[7:0] RXD_HIGH,
output reg[7:0] RXD_LOW,
output reg INT);
initial DOUT_HIGH = 0;
initial DOUT_LOW = 0;
initial INT = 0;
parameter DATA_WIDTH = 8; //byte or word width
parameter SPI_CPHA = 0; //SPI clock phase
parameter SPI_CPOL = 0; //SPI clock polarity
parameter DIRECTION = "INPUT"; //SPI data direction (either input to chip or output to host)
//parallel output to fabric not yet implemented
//TODO: write sim model
//TODO: SPI SDIO control... can we use ADC output while SPI is input??
//TODO: clock sync
endmodule
//keep constraint needed to prevent optimization since we have no outputs //keep constraint needed to prevent optimization since we have no outputs
(* keep *) (* keep *)
module GP_SYSRESET(input RST); module GP_SYSRESET(input RST);
parameter RESET_MODE = "EDGE"; parameter RESET_MODE = "EDGE";
parameter EDGE_SPEED = 4; parameter EDGE_SPEED = 4;
//cannot simulate whole system reset //cannot simulate whole system reset
endmodule endmodule
module GP_VDD(output OUT); module GP_VDD(output OUT);

View file

@ -26,6 +26,7 @@ PRIVATE_NAMESPACE_BEGIN
void invert_gp_dff(Cell *cell, bool invert_input) void invert_gp_dff(Cell *cell, bool invert_input)
{ {
string cell_type = cell->type.str(); string cell_type = cell->type.str();
bool cell_type_latch = cell_type.find("LATCH") != string::npos;
bool cell_type_i = cell_type.find('I') != string::npos; bool cell_type_i = cell_type.find('I') != string::npos;
bool cell_type_r = cell_type.find('R') != string::npos; bool cell_type_r = cell_type.find('R') != string::npos;
bool cell_type_s = cell_type.find('S') != string::npos; bool cell_type_s = cell_type.find('S') != string::npos;
@ -79,25 +80,28 @@ void invert_gp_dff(Cell *cell, bool invert_input)
cell_type_i = true; cell_type_i = true;
} }
cell->type = stringf("\\GP_DFF%s%s%s", cell_type_s ? "S" : "", cell_type_r ? "R" : "", cell_type_i ? "I" : ""); if(cell_type_latch)
cell->type = stringf("\\GP_DLATCH%s%s%s", cell_type_s ? "S" : "", cell_type_r ? "R" : "", cell_type_i ? "I" : "");
else
cell->type = stringf("\\GP_DFF%s%s%s", cell_type_s ? "S" : "", cell_type_r ? "R" : "", cell_type_i ? "I" : "");
log("Merged %s inverter into cell %s.%s: %s -> %s\n", invert_input ? "input" : "output", log("Merged %s inverter into cell %s.%s: %s -> %s\n", invert_input ? "input" : "output",
log_id(cell->module), log_id(cell), cell_type.c_str()+1, log_id(cell->type)); log_id(cell->module), log_id(cell), cell_type.c_str()+1, log_id(cell->type));
} }
struct Greenpak4DffInvPass : public Pass { struct Greenpak4DffInvPass : public Pass {
Greenpak4DffInvPass() : Pass("greenpak4_dffinv", "merge greenpak4 inverters and DFFs") { } Greenpak4DffInvPass() : Pass("greenpak4_dffinv", "merge greenpak4 inverters and DFF/latches") { }
virtual void help() virtual void help()
{ {
log("\n"); log("\n");
log(" greenpak4_dffinv [options] [selection]\n"); log(" greenpak4_dffinv [options] [selection]\n");
log("\n"); log("\n");
log("Merge GP_INV cells with GP_DFF* cells.\n"); log("Merge GP_INV cells with GP_DFF* and GP_DLATCH* cells.\n");
log("\n"); log("\n");
} }
virtual void execute(std::vector<std::string> args, RTLIL::Design *design) virtual void execute(std::vector<std::string> args, RTLIL::Design *design)
{ {
log_header(design, "Executing GREENPAK4_DFFINV pass (merge synchronous set/reset into FF cells).\n"); log_header(design, "Executing GREENPAK4_DFFINV pass (merge input/output inverters into FF/latch cells).\n");
size_t argidx; size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) for (argidx = 1; argidx < args.size(); argidx++)
@ -120,6 +124,15 @@ struct Greenpak4DffInvPass : public Pass {
gp_dff_types.insert("\\GP_DFFSR"); gp_dff_types.insert("\\GP_DFFSR");
gp_dff_types.insert("\\GP_DFFSRI"); gp_dff_types.insert("\\GP_DFFSRI");
gp_dff_types.insert("\\GP_DLATCH");
gp_dff_types.insert("\\GP_DLATCHI");
gp_dff_types.insert("\\GP_DLATCHR");
gp_dff_types.insert("\\GP_DLATCHRI");
gp_dff_types.insert("\\GP_DLATCHS");
gp_dff_types.insert("\\GP_DLATCHSI");
gp_dff_types.insert("\\GP_DLATCHSR");
gp_dff_types.insert("\\GP_DLATCHSRI");
for (auto module : design->selected_modules()) for (auto module : design->selected_modules())
{ {
SigMap sigmap(module); SigMap sigmap(module);

View file

@ -36,6 +36,8 @@ struct SynthGreenPAK4Pass : public ScriptPass
log(" synth_greenpak4 [options]\n"); log(" synth_greenpak4 [options]\n");
log("\n"); log("\n");
log("This command runs synthesis for GreenPAK4 FPGAs. This work is experimental.\n"); log("This command runs synthesis for GreenPAK4 FPGAs. This work is experimental.\n");
log("It is intended to be used with https://github.com/azonenberg/openfpga as the\n");
log("place-and-route.\n");
log("\n"); log("\n");
log(" -top <module>\n"); log(" -top <module>\n");
log(" use the specified module as top module (default='top')\n"); log(" use the specified module as top module (default='top')\n");
@ -159,6 +161,7 @@ struct SynthGreenPAK4Pass : public ScriptPass
run("memory_map"); run("memory_map");
run("opt -undriven -fine"); run("opt -undriven -fine");
run("techmap"); run("techmap");
run("techmap -map +/greenpak4/cells_latch.v");
run("dfflibmap -prepare -liberty +/greenpak4/gp_dff.lib"); run("dfflibmap -prepare -liberty +/greenpak4/gp_dff.lib");
run("opt -fast"); run("opt -fast");
if (retime || help_mode) if (retime || help_mode)