mirror of
https://github.com/YosysHQ/yosys
synced 2025-07-24 13:18:56 +00:00
Docs: Reflow line length
This commit is contained in:
parent
829e02ec5b
commit
40ba92e956
20 changed files with 782 additions and 785 deletions
|
@ -13,9 +13,9 @@ A look at the show command
|
|||
|
||||
.. TODO:: merge into :doc:`/getting_started/scripting_intro` show section
|
||||
|
||||
This section explores the `show` command and explains the symbols used
|
||||
in the circuit diagrams generated by it. The code used is included in the Yosys
|
||||
code base under |code_examples/show|_.
|
||||
This section explores the `show` command and explains the symbols used in the
|
||||
circuit diagrams generated by it. The code used is included in the Yosys code
|
||||
base under |code_examples/show|_.
|
||||
|
||||
.. |code_examples/show| replace:: :file:`docs/source/code_examples/show`
|
||||
.. _code_examples/show: https://github.com/YosysHQ/yosys/tree/main/docs/source/code_examples/show
|
||||
|
@ -32,11 +32,10 @@ will use to demonstrate the usage of `show` in a simple setting.
|
|||
:name: example_v
|
||||
|
||||
The Yosys synthesis script we will be running is included as
|
||||
:numref:`example_ys`. Note that `show` is called with the ``-pause``
|
||||
option, that halts execution of the Yosys script until the user presses the
|
||||
Enter key. Using :yoscrypt:`show -pause` also allows the user to enter an
|
||||
interactive shell to further investigate the circuit before continuing
|
||||
synthesis.
|
||||
:numref:`example_ys`. Note that `show` is called with the ``-pause`` option,
|
||||
that halts execution of the Yosys script until the user presses the Enter key.
|
||||
Using :yoscrypt:`show -pause` also allows the user to enter an interactive shell
|
||||
to further investigate the circuit before continuing synthesis.
|
||||
|
||||
.. literalinclude:: /code_examples/show/example_show.ys
|
||||
:language: yoscrypt
|
||||
|
@ -95,19 +94,19 @@ multiplexer and a d-type flip-flop, which brings us to the second diagram:
|
|||
The Rhombus shape to the right is a dangling wire. (Wire nodes are only shown if
|
||||
they are dangling or have "public" names, for example names assigned from the
|
||||
Verilog input.) Also note that the design now contains two instances of a
|
||||
``BUF``-node. These are artefacts left behind by the `proc` command. It
|
||||
is quite usual to see such artefacts after calling commands that perform changes
|
||||
in the design, as most commands only care about doing the transformation in the
|
||||
least complicated way, not about cleaning up after them. The next call to
|
||||
`clean` (or `opt`, which includes `clean` as one of
|
||||
its operations) will clean up these artefacts. This operation is so common in
|
||||
Yosys scripts that it can simply be abbreviated with the ``;;`` token, which
|
||||
doubles as separator for commands. Unless one wants to specifically analyze this
|
||||
artefacts left behind some operations, it is therefore recommended to always
|
||||
call `clean` before calling `show`.
|
||||
``BUF``-node. These are artefacts left behind by the `proc` command. It is quite
|
||||
usual to see such artefacts after calling commands that perform changes in the
|
||||
design, as most commands only care about doing the transformation in the least
|
||||
complicated way, not about cleaning up after them. The next call to `clean` (or
|
||||
`opt`, which includes `clean` as one of its operations) will clean up these
|
||||
artefacts. This operation is so common in Yosys scripts that it can simply be
|
||||
abbreviated with the ``;;`` token, which doubles as separator for commands.
|
||||
Unless one wants to specifically analyze this artefacts left behind some
|
||||
operations, it is therefore recommended to always call `clean` before calling
|
||||
`show`.
|
||||
|
||||
In this script we directly call `opt` as the next step, which finally
|
||||
leads us to the third diagram:
|
||||
In this script we directly call `opt` as the next step, which finally leads us
|
||||
to the third diagram:
|
||||
|
||||
.. figure:: /_images/code_examples/show/example_third.*
|
||||
:class: width-helper invert-helper
|
||||
|
@ -115,9 +114,9 @@ leads us to the third diagram:
|
|||
|
||||
Output of the third `show` command in :ref:`example_ys`
|
||||
|
||||
Here we see that the `opt` command not only has removed the artifacts
|
||||
left behind by `proc`, but also determined correctly that it can remove
|
||||
the first `$mux` cell without changing the behavior of the circuit.
|
||||
Here we see that the `opt` command not only has removed the artifacts left
|
||||
behind by `proc`, but also determined correctly that it can remove the first
|
||||
`$mux` cell without changing the behavior of the circuit.
|
||||
|
||||
Break-out boxes for signal vectors
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
@ -188,8 +187,8 @@ individual bits, resulting in an unnecessary complex diagram.
|
|||
:class: width-helper invert-helper
|
||||
:name: second_pitfall
|
||||
|
||||
Effects of `splitnets` command and of providing a cell library on
|
||||
design in :numref:`first_pitfall`
|
||||
Effects of `splitnets` command and of providing a cell library on design in
|
||||
:numref:`first_pitfall`
|
||||
|
||||
.. literalinclude:: /code_examples/show/cmos.ys
|
||||
:language: yoscrypt
|
||||
|
@ -201,8 +200,8 @@ individual bits, resulting in an unnecessary complex diagram.
|
|||
For :numref:`second_pitfall`, Yosys has been given a description of the cell
|
||||
library as Verilog file containing blackbox modules. There are two ways to load
|
||||
cell descriptions into Yosys: First the Verilog file for the cell library can be
|
||||
passed directly to the `show` command using the ``-lib <filename>``
|
||||
option. Secondly it is possible to load cell libraries into the design with the
|
||||
passed directly to the `show` command using the ``-lib <filename>`` option.
|
||||
Secondly it is possible to load cell libraries into the design with the
|
||||
:yoscrypt:`read_verilog -lib <filename>` command. The second method has the
|
||||
great advantage that the library only needs to be loaded once and can then be
|
||||
used in all subsequent calls to the `show` command.
|
||||
|
@ -216,19 +215,19 @@ module ports. Per default the command only operates on interior signals.
|
|||
Miscellaneous notes
|
||||
^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Per default the `show` command outputs a temporary dot file and
|
||||
launches ``xdot`` to display it. The options ``-format``, ``-viewer`` and
|
||||
``-prefix`` can be used to change format, viewer and filename prefix. Note that
|
||||
the ``pdf`` and ``ps`` format are the only formats that support plotting
|
||||
multiple modules in one run. The ``dot`` format can be used to output multiple
|
||||
modules, however ``xdot`` will raise an error when trying to read them.
|
||||
Per default the `show` command outputs a temporary dot file and launches
|
||||
``xdot`` to display it. The options ``-format``, ``-viewer`` and ``-prefix`` can
|
||||
be used to change format, viewer and filename prefix. Note that the ``pdf`` and
|
||||
``ps`` format are the only formats that support plotting multiple modules in one
|
||||
run. The ``dot`` format can be used to output multiple modules, however
|
||||
``xdot`` will raise an error when trying to read them.
|
||||
|
||||
In densely connected circuits it is sometimes hard to keep track of the
|
||||
individual signal wires. For these cases it can be useful to call
|
||||
`show` with the ``-colors <integer>`` argument, which randomly assigns
|
||||
colors to the nets. The integer (> 0) is used as seed value for the random color
|
||||
assignments. Sometimes it is necessary it try some values to find an assignment
|
||||
of colors that looks good.
|
||||
individual signal wires. For these cases it can be useful to call `show` with
|
||||
the ``-colors <integer>`` argument, which randomly assigns colors to the nets.
|
||||
The integer (> 0) is used as seed value for the random color assignments.
|
||||
Sometimes it is necessary it try some values to find an assignment of colors
|
||||
that looks good.
|
||||
|
||||
The command :yoscrypt:`help show` prints a complete listing of all options
|
||||
supported by the `show` command.
|
||||
|
@ -244,10 +243,10 @@ relevant portions of the circuit.
|
|||
In addition to *what* to display one also needs to carefully decide *when* to
|
||||
display it, with respect to the synthesis flow. In general it is a good idea to
|
||||
troubleshoot a circuit in the earliest state in which a problem can be
|
||||
reproduced. So if, for example, the internal state before calling the
|
||||
`techmap` command already fails to verify, it is better to troubleshoot
|
||||
the coarse-grain version of the circuit before `techmap` than the
|
||||
gate-level circuit after `techmap`.
|
||||
reproduced. So if, for example, the internal state before calling the `techmap`
|
||||
command already fails to verify, it is better to troubleshoot the coarse-grain
|
||||
version of the circuit before `techmap` than the gate-level circuit after
|
||||
`techmap`.
|
||||
|
||||
.. Note::
|
||||
|
||||
|
@ -260,18 +259,17 @@ Interactive navigation
|
|||
^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Once the right state within the synthesis flow for debugging the circuit has
|
||||
been identified, it is recommended to simply add the `shell` command to
|
||||
the matching place in the synthesis script. This command will stop the synthesis
|
||||
at the specified moment and go to shell mode, where the user can interactively
|
||||
been identified, it is recommended to simply add the `shell` command to the
|
||||
matching place in the synthesis script. This command will stop the synthesis at
|
||||
the specified moment and go to shell mode, where the user can interactively
|
||||
enter commands.
|
||||
|
||||
For most cases, the shell will start with the whole design selected (i.e. when
|
||||
the synthesis script does not already narrow the selection). The command
|
||||
`ls` can now be used to create a list of all modules. The command
|
||||
`cd` can be used to switch to one of the modules (type ``cd ..`` to
|
||||
switch back). Now the `ls` command lists the objects within that
|
||||
module. This is demonstrated below using :file:`example.v` from `A simple
|
||||
circuit`_:
|
||||
the synthesis script does not already narrow the selection). The command `ls`
|
||||
can now be used to create a list of all modules. The command `cd` can be used to
|
||||
switch to one of the modules (type ``cd ..`` to switch back). Now the `ls`
|
||||
command lists the objects within that module. This is demonstrated below using
|
||||
:file:`example.v` from `A simple circuit`_:
|
||||
|
||||
.. literalinclude:: /code_examples/show/example.out
|
||||
:language: doscon
|
||||
|
@ -280,11 +278,10 @@ circuit`_:
|
|||
:caption: Output of `ls` and `cd` after running :file:`yosys example.v`
|
||||
:name: lscd
|
||||
|
||||
When a module is selected using the `cd` command, all commands (with a
|
||||
few exceptions, such as the ``read_`` and ``write_`` commands) operate only on
|
||||
the selected module. This can also be useful for synthesis scripts where
|
||||
different synthesis strategies should be applied to different modules in the
|
||||
design.
|
||||
When a module is selected using the `cd` command, all commands (with a few
|
||||
exceptions, such as the ``read_`` and ``write_`` commands) operate only on the
|
||||
selected module. This can also be useful for synthesis scripts where different
|
||||
synthesis strategies should be applied to different modules in the design.
|
||||
|
||||
We can see that the cell names from :numref:`example_out` are just abbreviations
|
||||
of the actual cell names, namely the part after the last dollar-sign. Most
|
||||
|
@ -292,15 +289,14 @@ auto-generated names (the ones starting with a dollar sign) are rather long and
|
|||
contains some additional information on the origin of the named object. But in
|
||||
most cases those names can simply be abbreviated using the last part.
|
||||
|
||||
Usually all interactive work is done with one module selected using the
|
||||
`cd` command. But it is also possible to work from the design-context
|
||||
(``cd ..``). In this case all object names must be prefixed with
|
||||
``<module_name>/``. For example ``a*/b*`` would refer to all objects whose names
|
||||
start with ``b`` from all modules whose names start with ``a``.
|
||||
Usually all interactive work is done with one module selected using the `cd`
|
||||
command. But it is also possible to work from the design-context (``cd ..``). In
|
||||
this case all object names must be prefixed with ``<module_name>/``. For example
|
||||
``a*/b*`` would refer to all objects whose names start with ``b`` from all
|
||||
modules whose names start with ``a``.
|
||||
|
||||
The `dump` command can be used to print all information about an
|
||||
object. For example, calling :yoscrypt:`dump $2` after the :yoscrypt:`cd
|
||||
example` above:
|
||||
The `dump` command can be used to print all information about an object. For
|
||||
example, calling :yoscrypt:`dump $2` after the :yoscrypt:`cd example` above:
|
||||
|
||||
.. literalinclude:: /code_examples/show/example.out
|
||||
:language: RTLIL
|
||||
|
@ -323,11 +319,10 @@ tools).
|
|||
|
||||
- The selection mechanism, especially patterns such as ``%ci`` and ``%co``, can
|
||||
be used to figure out how parts of the design are connected.
|
||||
- Commands such as `submod`, `expose`, and `splice`
|
||||
can be used to transform the design into an equivalent design that is easier
|
||||
to analyse.
|
||||
- Commands such as `eval` and `sat` can be used to investigate
|
||||
the behavior of the circuit.
|
||||
- Commands such as `submod`, `expose`, and `splice` can be used to transform the
|
||||
design into an equivalent design that is easier to analyse.
|
||||
- Commands such as `eval` and `sat` can be used to investigate the behavior of
|
||||
the circuit.
|
||||
- :doc:`/cmd/show`.
|
||||
- :doc:`/cmd/dump`.
|
||||
- :doc:`/cmd/add` and :doc:`/cmd/delete` can be used to modify and reorganize a
|
||||
|
@ -342,9 +337,9 @@ The code used is included in the Yosys code base under
|
|||
Changing design hierarchy
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Commands such as `flatten` and `submod` can be used to change
|
||||
the design hierarchy, i.e. flatten the hierarchy or moving parts of a module to
|
||||
a submodule. This has applications in synthesis scripts as well as in reverse
|
||||
Commands such as `flatten` and `submod` can be used to change the design
|
||||
hierarchy, i.e. flatten the hierarchy or moving parts of a module to a
|
||||
submodule. This has applications in synthesis scripts as well as in reverse
|
||||
engineering and analysis. An example using `submod` is shown below for
|
||||
reorganizing a module in Yosys and checking the resulting circuit.
|
||||
|
||||
|
@ -388,10 +383,10 @@ Analyzing the resulting circuit with :doc:`/cmd/eval`:
|
|||
Behavioral changes
|
||||
^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Commands such as `techmap` can be used to make behavioral changes to
|
||||
the design, for example changing asynchronous resets to synchronous resets. This
|
||||
has applications in design space exploration (evaluation of various
|
||||
architectures for one circuit).
|
||||
Commands such as `techmap` can be used to make behavioral changes to the design,
|
||||
for example changing asynchronous resets to synchronous resets. This has
|
||||
applications in design space exploration (evaluation of various architectures
|
||||
for one circuit).
|
||||
|
||||
The following techmap map file replaces all positive-edge async reset flip-flops
|
||||
with positive-edge sync reset flip-flops. The code is taken from the example
|
||||
|
@ -448,8 +443,8 @@ Recall the ``memdemo`` design from :ref:`advanced_logic_cones`:
|
|||
|
||||
Because this produces a rather large circuit, it can be useful to split it into
|
||||
smaller parts for viewing and working with. :numref:`submod` does exactly that,
|
||||
utilising the `submod` command to split the circuit into three
|
||||
sections: ``outstage``, ``selstage``, and ``scramble``.
|
||||
utilising the `submod` command to split the circuit into three sections:
|
||||
``outstage``, ``selstage``, and ``scramble``.
|
||||
|
||||
.. literalinclude:: /code_examples/selections/submod.ys
|
||||
:language: yoscrypt
|
||||
|
@ -481,9 +476,9 @@ below.
|
|||
Evaluation of combinatorial circuits
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
The `eval` command can be used to evaluate combinatorial circuits. As
|
||||
an example, we will use the ``selstage`` subnet of ``memdemo`` which we found
|
||||
above and is shown in :numref:`selstage`.
|
||||
The `eval` command can be used to evaluate combinatorial circuits. As an
|
||||
example, we will use the ``selstage`` subnet of ``memdemo`` which we found above
|
||||
and is shown in :numref:`selstage`.
|
||||
|
||||
.. todo:: replace inline code
|
||||
|
||||
|
@ -526,21 +521,21 @@ The ``-table`` option can be used to create a truth table. For example:
|
|||
|
||||
Assumed undef (x) value for the following signals: \s2
|
||||
|
||||
Note that the `eval` command (as well as the `sat` command
|
||||
discussed in the next sections) does only operate on flattened modules. It can
|
||||
not analyze signals that are passed through design hierarchy levels. So the
|
||||
`flatten` command must be used on modules that instantiate other
|
||||
modules before these commands can be applied.
|
||||
Note that the `eval` command (as well as the `sat` command discussed in the next
|
||||
sections) does only operate on flattened modules. It can not analyze signals
|
||||
that are passed through design hierarchy levels. So the `flatten` command must
|
||||
be used on modules that instantiate other modules before these commands can be
|
||||
applied.
|
||||
|
||||
Solving combinatorial SAT problems
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Often the opposite of the `eval` command is needed, i.e. the circuits
|
||||
output is given and we want to find the matching input signals. For small
|
||||
circuits with only a few input bits this can be accomplished by trying all
|
||||
possible input combinations, as it is done by the ``eval -table`` command. For
|
||||
larger circuits however, Yosys provides the `sat` command that uses a
|
||||
`SAT`_ solver, `MiniSAT`_, to solve this kind of problems.
|
||||
Often the opposite of the `eval` command is needed, i.e. the circuits output is
|
||||
given and we want to find the matching input signals. For small circuits with
|
||||
only a few input bits this can be accomplished by trying all possible input
|
||||
combinations, as it is done by the ``eval -table`` command. For larger circuits
|
||||
however, Yosys provides the `sat` command that uses a `SAT`_ solver, `MiniSAT`_,
|
||||
to solve this kind of problems.
|
||||
|
||||
.. _SAT: http://en.wikipedia.org/wiki/Circuit_satisfiability
|
||||
|
||||
|
@ -551,9 +546,9 @@ larger circuits however, Yosys provides the `sat` command that uses a
|
|||
While it is possible to perform model checking directly in Yosys, it
|
||||
is highly recommended to use SBY or EQY for formal hardware verification.
|
||||
|
||||
The `sat` command works very similar to the `eval` command.
|
||||
The main difference is that it is now also possible to set output values and
|
||||
find the corresponding input values. For Example:
|
||||
The `sat` command works very similar to the `eval` command. The main difference
|
||||
is that it is now also possible to set output values and find the corresponding
|
||||
input values. For Example:
|
||||
|
||||
.. todo:: replace inline code
|
||||
|
||||
|
@ -580,8 +575,8 @@ find the corresponding input values. For Example:
|
|||
\s1 0 0 00
|
||||
\s2 0 0 00
|
||||
|
||||
Note that the `sat` command supports signal names in both arguments to
|
||||
the ``-set`` option. In the above example we used ``-set s1 s2`` to constraint
|
||||
Note that the `sat` command supports signal names in both arguments to the
|
||||
``-set`` option. In the above example we used ``-set s1 s2`` to constraint
|
||||
``s1`` and ``s2`` to be equal. When more complex constraints are needed, a
|
||||
wrapper circuit must be constructed that checks the constraints and signals if
|
||||
the constraint was met using an extra output port, which then can be forced to a
|
||||
|
@ -642,8 +637,8 @@ of course be to perform the test in 32 bits, for example by replacing ``p !=
|
|||
a*b`` in the miter with ``p != {16'd0,a}b``, or by using a temporary variable
|
||||
for the 32 bit product ``a*b``. But as 31 fits well into 8 bits (and as the
|
||||
purpose of this document is to show off Yosys features) we can also simply force
|
||||
the upper 8 bits of ``a`` and ``b`` to zero for the `sat` call, as is
|
||||
done below.
|
||||
the upper 8 bits of ``a`` and ``b`` to zero for the `sat` call, as is done
|
||||
below.
|
||||
|
||||
.. todo:: replace inline code
|
||||
|
||||
|
@ -705,18 +700,18 @@ command:
|
|||
sat -seq 6 -show y -show d -set-init-undef \
|
||||
-max_undef -set-at 4 y 1 -set-at 5 y 2 -set-at 6 y 3
|
||||
|
||||
The ``-seq 6`` option instructs the `sat` command to solve a sequential
|
||||
problem in 6 time steps. (Experiments with lower number of steps have show that
|
||||
at least 3 cycles are necessary to bring the circuit in a state from which the
|
||||
sequence 1, 2, 3 can be produced.)
|
||||
The ``-seq 6`` option instructs the `sat` command to solve a sequential problem
|
||||
in 6 time steps. (Experiments with lower number of steps have show that at least
|
||||
3 cycles are necessary to bring the circuit in a state from which the sequence
|
||||
1, 2, 3 can be produced.)
|
||||
|
||||
The ``-set-init-undef`` option tells the `sat` command to initialize
|
||||
all registers to the undef (``x``) state. The way the ``x`` state is treated in
|
||||
The ``-set-init-undef`` option tells the `sat` command to initialize all
|
||||
registers to the undef (``x``) state. The way the ``x`` state is treated in
|
||||
Verilog will ensure that the solution will work for any initial state.
|
||||
|
||||
The ``-max_undef`` option instructs the `sat` command to find a
|
||||
solution with a maximum number of undefs. This way we can see clearly which
|
||||
inputs bits are relevant to the solution.
|
||||
The ``-max_undef`` option instructs the `sat` command to find a solution with a
|
||||
maximum number of undefs. This way we can see clearly which inputs bits are
|
||||
relevant to the solution.
|
||||
|
||||
Finally the three ``-set-at`` options add constraints for the ``y`` signal to
|
||||
play the 1, 2, 3 sequence, starting with time step 4.
|
||||
|
@ -807,7 +802,7 @@ is the only way of setting the ``s1`` and ``s2`` registers to a known value. The
|
|||
input values for the other steps are a bit harder to work out manually, but the
|
||||
SAT solver finds the correct solution in an instant.
|
||||
|
||||
There is much more to write about the `sat` command. For example, there
|
||||
is a set of options that can be used to performs sequential proofs using
|
||||
temporal induction :cite:p:`een2003temporal`. The command ``help sat`` can be
|
||||
used to print a list of all options with short descriptions of their functions.
|
||||
There is much more to write about the `sat` command. For example, there is a set
|
||||
of options that can be used to performs sequential proofs using temporal
|
||||
induction :cite:p:`een2003temporal`. The command ``help sat`` can be used to
|
||||
print a list of all options with short descriptions of their functions.
|
||||
|
|
|
@ -17,8 +17,7 @@ passes in Yosys.
|
|||
|
||||
Other applications include checking if a module conforms to interface standards.
|
||||
|
||||
The `sat` command in Yosys can be used to perform Symbolic Model
|
||||
Checking.
|
||||
The `sat` command in Yosys can be used to perform Symbolic Model Checking.
|
||||
|
||||
Checking techmap
|
||||
~~~~~~~~~~~~~~~~
|
||||
|
|
|
@ -9,31 +9,31 @@ The selection framework
|
|||
|
||||
.. todo:: reduce overlap with :doc:`/getting_started/scripting_intro` select section
|
||||
|
||||
The `select` command can be used to create a selection for subsequent
|
||||
commands. For example:
|
||||
The `select` command can be used to create a selection for subsequent commands.
|
||||
For example:
|
||||
|
||||
.. code:: yoscrypt
|
||||
|
||||
select foobar # select the module foobar
|
||||
delete # delete selected objects
|
||||
|
||||
Normally the `select` command overwrites a previous selection. The
|
||||
commands :yoscrypt:`select -add` and :yoscrypt:`select -del` can be used to add
|
||||
or remove objects from the current selection.
|
||||
Normally the `select` command overwrites a previous selection. The commands
|
||||
:yoscrypt:`select -add` and :yoscrypt:`select -del` can be used to add or remove
|
||||
objects from the current selection.
|
||||
|
||||
The command :yoscrypt:`select -clear` can be used to reset the selection to the
|
||||
default, which is a complete selection of everything in the current module.
|
||||
|
||||
This selection framework can also be used directly in many other commands.
|
||||
Whenever a command has ``[selection]`` as last argument in its usage help, this
|
||||
means that it will use the engine behind the `select` command to
|
||||
evaluate additional arguments and use the resulting selection instead of the
|
||||
selection created by the last `select` command.
|
||||
means that it will use the engine behind the `select` command to evaluate
|
||||
additional arguments and use the resulting selection instead of the selection
|
||||
created by the last `select` command.
|
||||
|
||||
For example, the command `delete` will delete everything in the current
|
||||
selection; while :yoscrypt:`delete foobar` will only delete the module foobar.
|
||||
If no `select` command has been made, then the "current selection" will
|
||||
be the whole design.
|
||||
If no `select` command has been made, then the "current selection" will be the
|
||||
whole design.
|
||||
|
||||
.. note:: Many of the examples on this page make use of the `show`
|
||||
command to visually demonstrate the effect of selections. For a more
|
||||
|
@ -59,8 +59,8 @@ Module and design context
|
|||
^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Commands can be executed in *module/* or *design/* context. Until now, all
|
||||
commands have been executed in design context. The `cd` command can be
|
||||
used to switch to module context.
|
||||
commands have been executed in design context. The `cd` command can be used to
|
||||
switch to module context.
|
||||
|
||||
In module context, all commands only effect the active module. Objects in the
|
||||
module are selected without the ``<module_name>/`` prefix. For example:
|
||||
|
@ -91,7 +91,7 @@ Special patterns can be used to select by object property or type. For example:
|
|||
a:foobar=42`
|
||||
- select all modules with the attribute ``blabla`` set: :yoscrypt:`select
|
||||
A:blabla`
|
||||
- select all $add cells from the module foo: :yoscrypt:`select foo/t:$add`
|
||||
- select all `$add` cells from the module foo: :yoscrypt:`select foo/t:$add`
|
||||
|
||||
A complete list of pattern expressions can be found in :doc:`/cmd/select`.
|
||||
|
||||
|
@ -101,12 +101,12 @@ Operations on selections
|
|||
Combining selections
|
||||
^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
The `select` command is actually much more powerful than it might seem
|
||||
at first glance. When it is called with multiple arguments, each argument is
|
||||
evaluated and pushed separately on a stack. After all arguments have been
|
||||
processed it simply creates the union of all elements on the stack. So
|
||||
:yoscrypt:`select t:$add a:foo` will select all `$add` cells and all objects
|
||||
with the ``foo`` attribute set:
|
||||
The `select` command is actually much more powerful than it might seem at first
|
||||
glance. When it is called with multiple arguments, each argument is evaluated
|
||||
and pushed separately on a stack. After all arguments have been processed it
|
||||
simply creates the union of all elements on the stack. So :yoscrypt:`select
|
||||
t:$add a:foo` will select all `$add` cells and all objects with the ``foo``
|
||||
attribute set:
|
||||
|
||||
.. literalinclude:: /code_examples/selections/foobaraddsub.v
|
||||
:caption: Test module for operations on selections
|
||||
|
@ -220,11 +220,11 @@ The following sequence of diagrams demonstrates this step-wise expansion:
|
|||
Output of :yoscrypt:`show prod %ci %ci %ci` on :numref:`sumprod`
|
||||
|
||||
Notice the subtle difference between :yoscrypt:`show prod %ci` and
|
||||
:yoscrypt:`show prod %ci %ci`. Both images show the `$mul` cell driven by
|
||||
some inputs ``$3_Y`` and ``c``. However it is not until the second image,
|
||||
having called ``%ci`` the second time, that `show` is able to
|
||||
distinguish between ``$3_Y`` being a wire and ``c`` being an input. We can see
|
||||
this better with the `dump` command instead:
|
||||
:yoscrypt:`show prod %ci %ci`. Both images show the `$mul` cell driven by some
|
||||
inputs ``$3_Y`` and ``c``. However it is not until the second image, having
|
||||
called ``%ci`` the second time, that `show` is able to distinguish between
|
||||
``$3_Y`` being a wire and ``c`` being an input. We can see this better with the
|
||||
`dump` command instead:
|
||||
|
||||
.. literalinclude:: /code_examples/selections/sumprod.out
|
||||
:language: RTLIL
|
||||
|
@ -241,8 +241,8 @@ be a bit dull. So there is a shortcut for that: the number of iterations can be
|
|||
appended to the action. So for example the action ``%ci3`` is identical to
|
||||
performing the ``%ci`` action three times.
|
||||
|
||||
The action ``%ci*`` performs the ``%ci`` action over and over again until it
|
||||
has no effect anymore.
|
||||
The action ``%ci*`` performs the ``%ci`` action over and over again until it has
|
||||
no effect anymore.
|
||||
|
||||
.. _advanced_logic_cones:
|
||||
|
||||
|
@ -264,8 +264,8 @@ source repository.
|
|||
:name: memdemo_src
|
||||
:language: verilog
|
||||
|
||||
The script :file:`memdemo.ys` is used to generate the images included here. Let's
|
||||
look at the first section:
|
||||
The script :file:`memdemo.ys` is used to generate the images included here.
|
||||
Let's look at the first section:
|
||||
|
||||
.. literalinclude:: /code_examples/selections/memdemo.ys
|
||||
:caption: Synthesizing :ref:`memdemo_src`
|
||||
|
@ -276,8 +276,8 @@ look at the first section:
|
|||
This loads :numref:`memdemo_src` and synthesizes the included module. Note that
|
||||
this code can be copied and run directly in a Yosys command line session,
|
||||
provided :file:`memdemo.v` is in the same directory. We can now change to the
|
||||
``memdemo`` module with ``cd memdemo``, and call `show` to see the
|
||||
diagram in :numref:`memdemo_00`.
|
||||
``memdemo`` module with ``cd memdemo``, and call `show` to see the diagram in
|
||||
:numref:`memdemo_00`.
|
||||
|
||||
.. figure:: /_images/code_examples/selections/memdemo_00.*
|
||||
:class: width-helper invert-helper
|
||||
|
@ -371,8 +371,8 @@ selection instead of overwriting it.
|
|||
select -del reg_42 # but not this one
|
||||
select -add state %ci # and add more stuff
|
||||
|
||||
Within a select expression the token ``%`` can be used to push the previous selection
|
||||
on the stack.
|
||||
Within a select expression the token ``%`` can be used to push the previous
|
||||
selection on the stack.
|
||||
|
||||
.. code:: yoscrypt
|
||||
|
||||
|
@ -387,16 +387,16 @@ Storing and recalling selections
|
|||
The current selection can be stored in memory with the command ``select -set
|
||||
<name>``. It can later be recalled using ``select @<name>``. In fact, the
|
||||
``@<name>`` expression pushes the stored selection on the stack maintained by
|
||||
the `select` command. So for example :yoscrypt:`select @foo @bar %i`
|
||||
will select the intersection between the stored selections ``foo`` and ``bar``.
|
||||
the `select` command. So for example :yoscrypt:`select @foo @bar %i` will select
|
||||
the intersection between the stored selections ``foo`` and ``bar``.
|
||||
|
||||
In larger investigation efforts it is highly recommended to maintain a script
|
||||
that sets up relevant selections, so they can easily be recalled, for example
|
||||
when Yosys needs to be re-run after a design or source code change.
|
||||
|
||||
The `history` command can be used to list all recent interactive
|
||||
commands. This feature can be useful for creating such a script from the
|
||||
commands used in an interactive session.
|
||||
The `history` command can be used to list all recent interactive commands. This
|
||||
feature can be useful for creating such a script from the commands used in an
|
||||
interactive session.
|
||||
|
||||
Remember that select expressions can also be used directly as arguments to most
|
||||
commands. Some commands also accept a single select argument to some options. In
|
||||
|
|
|
@ -10,13 +10,12 @@ fine-grained optimisation and LUT mapping.
|
|||
Yosys has two different commands, which both use this logic toolbox, but use it
|
||||
in different ways.
|
||||
|
||||
The `abc` pass can be used for both ASIC (e.g. :yoscrypt:`abc
|
||||
-liberty`) and FPGA (:yoscrypt:`abc -lut`) mapping, but this page will focus on
|
||||
FPGA mapping.
|
||||
The `abc` pass can be used for both ASIC (e.g. :yoscrypt:`abc -liberty`) and
|
||||
FPGA (:yoscrypt:`abc -lut`) mapping, but this page will focus on FPGA mapping.
|
||||
|
||||
The `abc9` pass generally provides superior mapping quality due to
|
||||
being aware of combination boxes and DFF and LUT timings, giving it a more
|
||||
global view of the mapping problem.
|
||||
The `abc9` pass generally provides superior mapping quality due to being aware
|
||||
of combination boxes and DFF and LUT timings, giving it a more global view of
|
||||
the mapping problem.
|
||||
|
||||
.. _ABC: https://github.com/berkeley-abc/abc
|
||||
|
||||
|
|
|
@ -98,8 +98,8 @@ our internal cell library will be mapped to:
|
|||
:name: mycells-lib
|
||||
:caption: :file:`mycells.lib`
|
||||
|
||||
Recall that the Yosys built-in logic gate types are `$_NOT_`, `$_AND_`,
|
||||
`$_OR_`, `$_XOR_`, and `$_MUX_` with an assortment of dff memory types.
|
||||
Recall that the Yosys built-in logic gate types are `$_NOT_`, `$_AND_`, `$_OR_`,
|
||||
`$_XOR_`, and `$_MUX_` with an assortment of dff memory types.
|
||||
:ref:`mycells-lib` defines our target cells as ``BUF``, ``NOT``, ``NAND``,
|
||||
``NOR``, and ``DFF``. Mapping between these is performed with the commands
|
||||
`dfflibmap` and `abc` as follows:
|
||||
|
@ -117,8 +117,8 @@ The final version of our ``counter`` module looks like this:
|
|||
|
||||
``counter`` after hardware cell mapping
|
||||
|
||||
Before finally being output as a verilog file with `write_verilog`,
|
||||
which can then be loaded into another tool:
|
||||
Before finally being output as a verilog file with `write_verilog`, which can
|
||||
then be loaded into another tool:
|
||||
|
||||
.. literalinclude:: /code_examples/intro/counter.ys
|
||||
:language: yoscrypt
|
||||
|
|
|
@ -1,12 +1,12 @@
|
|||
The extract pass
|
||||
----------------
|
||||
|
||||
- Like the `techmap` pass, the `extract` pass is called with a
|
||||
map file. It compares the circuits inside the modules of the map file with the
|
||||
design and looks for sub-circuits in the design that match any of the modules
|
||||
in the map file.
|
||||
- If a match is found, the `extract` pass will replace the matching
|
||||
subcircuit with an instance of the module from the map file.
|
||||
- Like the `techmap` pass, the `extract` pass is called with a map file. It
|
||||
compares the circuits inside the modules of the map file with the design and
|
||||
looks for sub-circuits in the design that match any of the modules in the map
|
||||
file.
|
||||
- If a match is found, the `extract` pass will replace the matching subcircuit
|
||||
with an instance of the module from the map file.
|
||||
- In a way the `extract` pass is the inverse of the techmap pass.
|
||||
|
||||
.. todo:: add/expand supporting text, also mention custom pattern matching and
|
||||
|
@ -68,23 +68,23 @@ The wrap-extract-unwrap method
|
|||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Often a coarse-grain element has a constant bit-width, but can be used to
|
||||
implement operations with a smaller bit-width. For example, a 18x25-bit multiplier
|
||||
can also be used to implement 16x20-bit multiplication.
|
||||
implement operations with a smaller bit-width. For example, a 18x25-bit
|
||||
multiplier can also be used to implement 16x20-bit multiplication.
|
||||
|
||||
A way of mapping such elements in coarse grain synthesis is the
|
||||
wrap-extract-unwrap method:
|
||||
|
||||
wrap
|
||||
Identify candidate-cells in the circuit and wrap them in a cell with a
|
||||
constant wider bit-width using `techmap`. The wrappers use the same
|
||||
parameters as the original cell, so the information about the original width
|
||||
of the ports is preserved. Then use the `connwrappers` command to
|
||||
connect up the bit-extended in- and outputs of the wrapper cells.
|
||||
constant wider bit-width using `techmap`. The wrappers use the same parameters
|
||||
as the original cell, so the information about the original width of the ports
|
||||
is preserved. Then use the `connwrappers` command to connect up the
|
||||
bit-extended in- and outputs of the wrapper cells.
|
||||
|
||||
extract
|
||||
Now all operations are encoded using the same bit-width as the coarse grain
|
||||
element. The `extract` command can be used to replace circuits with
|
||||
cells of the target architecture.
|
||||
element. The `extract` command can be used to replace circuits with cells of
|
||||
the target architecture.
|
||||
|
||||
unwrap
|
||||
The remaining wrapper cell can be unwrapped using `techmap`.
|
||||
|
|
|
@ -25,9 +25,8 @@ following description:
|
|||
- Does not already have the ``\fsm_encoding`` attribute.
|
||||
- Is not an output of the containing module.
|
||||
- Is driven by single `$dff` or `$adff` cell.
|
||||
- The ``\D``-Input of this `$dff` or `$adff` cell is driven by a
|
||||
multiplexer tree that only has constants or the old state value on its
|
||||
leaves.
|
||||
- The ``\D``-Input of this `$dff` or `$adff` cell is driven by a multiplexer
|
||||
tree that only has constants or the old state value on its leaves.
|
||||
- The state value is only used in the said multiplexer tree or by simple
|
||||
relational cells that compare the state value to a constant (usually `$eq`
|
||||
cells).
|
||||
|
@ -87,8 +86,8 @@ given set of result signals using a set of signal-value assignments. It can also
|
|||
be passed a list of stop-signals that abort the ConstEval algorithm if the value
|
||||
of a stop-signal is needed in order to calculate the result signals.
|
||||
|
||||
The `fsm_extract` pass uses the ConstEval class in the following way to
|
||||
create a transition table. For each state:
|
||||
The `fsm_extract` pass uses the ConstEval class in the following way to create a
|
||||
transition table. For each state:
|
||||
|
||||
1. Create a ConstEval object for the module containing the FSM
|
||||
2. Add all control inputs to the list of stop signals
|
||||
|
@ -108,13 +107,12 @@ drivers for the control outputs are disconnected.
|
|||
FSM optimization
|
||||
~~~~~~~~~~~~~~~~
|
||||
|
||||
The `fsm_opt` pass performs basic optimizations on `$fsm` cells (not
|
||||
including state recoding). The following optimizations are performed (in this
|
||||
order):
|
||||
The `fsm_opt` pass performs basic optimizations on `$fsm` cells (not including
|
||||
state recoding). The following optimizations are performed (in this order):
|
||||
|
||||
- Unused control outputs are removed from the `$fsm` cell. The attribute
|
||||
``\unused_bits`` (that is usually set by the `opt_clean` pass) is
|
||||
used to determine which control outputs are unused.
|
||||
``\unused_bits`` (that is usually set by the `opt_clean` pass) is used to
|
||||
determine which control outputs are unused.
|
||||
|
||||
- Control inputs that are connected to the same driver are merged.
|
||||
|
||||
|
@ -134,11 +132,10 @@ order):
|
|||
FSM recoding
|
||||
~~~~~~~~~~~~
|
||||
|
||||
The `fsm_recode` pass assigns new bit pattern to the states. Usually
|
||||
this also implies a change in the width of the state signal. At the moment of
|
||||
this writing only one-hot encoding with all-zero for the reset state is
|
||||
supported.
|
||||
The `fsm_recode` pass assigns new bit pattern to the states. Usually this also
|
||||
implies a change in the width of the state signal. At the moment of this writing
|
||||
only one-hot encoding with all-zero for the reset state is supported.
|
||||
|
||||
The `fsm_recode` pass can also write a text file with the changes
|
||||
performed by it that can be used when verifying designs synthesized by Yosys
|
||||
using Synopsys Formality.
|
||||
The `fsm_recode` pass can also write a text file with the changes performed by
|
||||
it that can be used when verifying designs synthesized by Yosys using Synopsys
|
||||
Formality.
|
||||
|
|
|
@ -8,17 +8,16 @@ coarse-grain optimizations before being mapped to hard blocks and fine-grain
|
|||
cells. Most commands in Yosys will target either coarse-grain representation or
|
||||
fine-grain representation, with only a select few compatible with both states.
|
||||
|
||||
Commands such as `proc`, `fsm`, and `memory` rely on
|
||||
the additional information in the coarse-grain representation, along with a
|
||||
number of optimizations such as `wreduce`, `share`, and
|
||||
`alumacc`. `opt` provides optimizations which are useful in
|
||||
both states, while `techmap` is used to convert coarse-grain cells
|
||||
to the corresponding fine-grain representation.
|
||||
Commands such as `proc`, `fsm`, and `memory` rely on the additional information
|
||||
in the coarse-grain representation, along with a number of optimizations such as
|
||||
`wreduce`, `share`, and `alumacc`. `opt` provides optimizations which are
|
||||
useful in both states, while `techmap` is used to convert coarse-grain cells to
|
||||
the corresponding fine-grain representation.
|
||||
|
||||
Single-bit cells (logic gates, FFs) as well as LUTs, half-adders, and
|
||||
full-adders make up the bulk of the fine-grain representation and are necessary
|
||||
for commands such as `abc`\ /`abc9`, `simplemap`,
|
||||
`dfflegalize`, and `memory_map`.
|
||||
for commands such as `abc`\ /`abc9`, `simplemap`, `dfflegalize`, and
|
||||
`memory_map`.
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 3
|
||||
|
|
|
@ -5,10 +5,10 @@ The `memory` command
|
|||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
In the RTL netlist, memory reads and writes are individual cells. This makes
|
||||
consolidating the number of ports for a memory easier. The `memory`
|
||||
pass transforms memories to an implementation. Per default that is logic for
|
||||
address decoders and registers. It also is a macro command that calls the other
|
||||
common ``memory_*`` passes in a sensible order:
|
||||
consolidating the number of ports for a memory easier. The `memory` pass
|
||||
transforms memories to an implementation. Per default that is logic for address
|
||||
decoders and registers. It also is a macro command that calls the other common
|
||||
``memory_*`` passes in a sensible order:
|
||||
|
||||
.. literalinclude:: /code_examples/macro_commands/memory.ys
|
||||
:language: yoscrypt
|
||||
|
@ -22,11 +22,11 @@ Some quick notes:
|
|||
- `memory_dff` merges registers into the memory read- and write cells.
|
||||
- `memory_collect` collects all read and write cells for a memory and
|
||||
transforms them into one multi-port memory cell.
|
||||
- `memory_map` takes the multi-port memory cell and transforms it to
|
||||
address decoder logic and registers.
|
||||
- `memory_map` takes the multi-port memory cell and transforms it to address
|
||||
decoder logic and registers.
|
||||
|
||||
For more information about `memory`, such as disabling certain sub
|
||||
commands, see :doc:`/cmd/memory`.
|
||||
For more information about `memory`, such as disabling certain sub commands, see
|
||||
:doc:`/cmd/memory`.
|
||||
|
||||
Example
|
||||
-------
|
||||
|
@ -75,20 +75,20 @@ For example:
|
|||
techmap -map my_memory_map.v
|
||||
memory_map
|
||||
|
||||
`memory_libmap` attempts to convert memory cells (`$mem_v2` etc) into
|
||||
hardware supported memory using a provided library (:file:`my_memory_map.txt` in the
|
||||
`memory_libmap` attempts to convert memory cells (`$mem_v2` etc) into hardware
|
||||
supported memory using a provided library (:file:`my_memory_map.txt` in the
|
||||
example above). Where necessary, emulation logic is added to ensure functional
|
||||
equivalence before and after this conversion. :yoscrypt:`techmap -map
|
||||
my_memory_map.v` then uses `techmap` to map to hardware primitives. Any
|
||||
leftover memory cells unable to be converted are then picked up by
|
||||
`memory_map` and mapped to DFFs and address decoders.
|
||||
my_memory_map.v` then uses `techmap` to map to hardware primitives. Any leftover
|
||||
memory cells unable to be converted are then picked up by `memory_map` and
|
||||
mapped to DFFs and address decoders.
|
||||
|
||||
.. note::
|
||||
|
||||
More information about what mapping options are available and associated
|
||||
costs of each can be found by enabling debug outputs. This can be done with
|
||||
the `debug` command, or by using the ``-g`` flag when calling Yosys
|
||||
to globally enable debug messages.
|
||||
the `debug` command, or by using the ``-g`` flag when calling Yosys to
|
||||
globally enable debug messages.
|
||||
|
||||
For more on the lib format for `memory_libmap`, see
|
||||
`passes/memory/memlib.md
|
||||
|
@ -110,13 +110,15 @@ Notes
|
|||
Memory kind selection
|
||||
~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
The memory inference code will automatically pick target memory primitive based on memory geometry
|
||||
and features used. Depending on the target, there can be up to four memory primitive classes
|
||||
available for selection:
|
||||
The memory inference code will automatically pick target memory primitive based
|
||||
on memory geometry and features used. Depending on the target, there can be up
|
||||
to four memory primitive classes available for selection:
|
||||
|
||||
- FF RAM (aka logic): no hardware primitive used, memory lowered to a bunch of FFs and multiplexers
|
||||
- FF RAM (aka logic): no hardware primitive used, memory lowered to a bunch of
|
||||
FFs and multiplexers
|
||||
|
||||
- Can handle arbitrary number of write ports, as long as all write ports are in the same clock domain
|
||||
- Can handle arbitrary number of write ports, as long as all write ports are
|
||||
in the same clock domain
|
||||
- Can handle arbitrary number and kind of read ports
|
||||
|
||||
- LUT RAM (aka distributed RAM): uses LUT storage as RAM
|
||||
|
@ -131,7 +133,8 @@ available for selection:
|
|||
- Supported on basically all FPGAs
|
||||
- Supports only synchronous reads
|
||||
- Two ports with separate clocks
|
||||
- Usually supports true dual port (with notable exception of ice40 that only supports SDP)
|
||||
- Usually supports true dual port (with notable exception of ice40 that only
|
||||
supports SDP)
|
||||
- Usually supports asymmetric memories and per-byte write enables
|
||||
- Several kilobits in size
|
||||
|
||||
|
@ -155,19 +158,22 @@ available for selection:
|
|||
- Two ports, both with mutually exclusive synchronous read and write
|
||||
- Single clock
|
||||
|
||||
- Will not be automatically selected by memory inference code, needs explicit opt-in via
|
||||
ram_style attribute
|
||||
- Will not be automatically selected by memory inference code, needs explicit
|
||||
opt-in via ram_style attribute
|
||||
|
||||
In general, you can expect the automatic selection process to work roughly like this:
|
||||
In general, you can expect the automatic selection process to work roughly like
|
||||
this:
|
||||
|
||||
- If any read port is asynchronous, only LUT RAM (or FF RAM) can be used.
|
||||
- If there is more than one write port, only block RAM can be used, and this needs to be a
|
||||
hardware-supported true dual port pattern
|
||||
- If there is more than one write port, only block RAM can be used, and this
|
||||
needs to be a hardware-supported true dual port pattern
|
||||
|
||||
- … unless all write ports are in the same clock domain, in which case FF RAM can also be used,
|
||||
but this is generally not what you want for anything but really small memories
|
||||
- … unless all write ports are in the same clock domain, in which case FF RAM
|
||||
can also be used, but this is generally not what you want for anything but
|
||||
really small memories
|
||||
|
||||
- Otherwise, either FF RAM, LUT RAM, or block RAM will be used, depending on memory size
|
||||
- Otherwise, either FF RAM, LUT RAM, or block RAM will be used, depending on
|
||||
memory size
|
||||
|
||||
This process can be overridden by attaching a ram_style attribute to the memory:
|
||||
|
||||
|
@ -178,15 +184,17 @@ This process can be overridden by attaching a ram_style attribute to the memory:
|
|||
|
||||
It is an error if this override cannot be realized for the given target.
|
||||
|
||||
Many alternate spellings of the attribute are also accepted, for compatibility with other software.
|
||||
Many alternate spellings of the attribute are also accepted, for compatibility
|
||||
with other software.
|
||||
|
||||
Initial data
|
||||
~~~~~~~~~~~~
|
||||
|
||||
Most FPGA targets support initializing all kinds of memory to user-provided values. If explicit
|
||||
initialization is not used the initial memory value is undefined. Initial data can be provided by
|
||||
either initial statements writing memory cells one by one of ``$readmemh`` or ``$readmemb`` system
|
||||
tasks. For an example pattern, see `sr_init`_.
|
||||
Most FPGA targets support initializing all kinds of memory to user-provided
|
||||
values. If explicit initialization is not used the initial memory value is
|
||||
undefined. Initial data can be provided by either initial statements writing
|
||||
memory cells one by one of ``$readmemh`` or ``$readmemb`` system tasks. For an
|
||||
example pattern, see `sr_init`_.
|
||||
|
||||
.. _wbe:
|
||||
|
||||
|
@ -194,12 +202,13 @@ Write port with byte enables
|
|||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
- Byte enables can be used with any supported pattern
|
||||
- To ensure that multiple writes will be merged into one port, they need to have disjoint bit
|
||||
ranges, have the same address, and the same clock
|
||||
- Any write enable granularity will be accepted (down to per-bit write enables), but using smaller
|
||||
granularity than natively supported by the target is very likely to be inefficient (eg. using
|
||||
4-bit bytes on ECP5 will result in either padding the bytes with 5 dummy bits to native 9-bit
|
||||
units or splitting the RAM into two block RAMs)
|
||||
- To ensure that multiple writes will be merged into one port, they need to have
|
||||
disjoint bit ranges, have the same address, and the same clock
|
||||
- Any write enable granularity will be accepted (down to per-bit write enables),
|
||||
but using smaller granularity than natively supported by the target is very
|
||||
likely to be inefficient (eg. using 4-bit bytes on ECP5 will result in either
|
||||
padding the bytes with 5 dummy bits to native 9-bit units or splitting the RAM
|
||||
into two block RAMs)
|
||||
|
||||
.. code:: verilog
|
||||
|
||||
|
@ -240,7 +249,8 @@ Synchronous SDP with clock domain crossing
|
|||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
- Will result in block RAM or LUT RAM depending on size
|
||||
- No behavior guarantees in case of simultaneous read and write to the same address
|
||||
- No behavior guarantees in case of simultaneous read and write to the same
|
||||
address
|
||||
|
||||
.. code:: verilog
|
||||
|
||||
|
@ -261,9 +271,9 @@ Synchronous SDP read first
|
|||
|
||||
- The read and write parts can be in the same or different processes.
|
||||
- Will result in block RAM or LUT RAM depending on size
|
||||
- As long as the same clock is used for both, yosys will ensure read-first behavior. This may
|
||||
require extra circuitry on some targets for block RAM. If this is not necessary, use one of the
|
||||
patterns below.
|
||||
- As long as the same clock is used for both, yosys will ensure read-first
|
||||
behavior. This may require extra circuitry on some targets for block RAM. If
|
||||
this is not necessary, use one of the patterns below.
|
||||
|
||||
.. code:: verilog
|
||||
|
||||
|
@ -281,8 +291,8 @@ Synchronous SDP read first
|
|||
Synchronous SDP with undefined collision behavior
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
- Like above, but the read value is undefined when read and write ports target the same address in
|
||||
the same cycle
|
||||
- Like above, but the read value is undefined when read and write ports target
|
||||
the same address in the same cycle
|
||||
|
||||
.. code:: verilog
|
||||
|
||||
|
@ -322,8 +332,8 @@ Synchronous SDP with write-first behavior
|
|||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
- Will result in block RAM or LUT RAM depending on size
|
||||
- May use additional circuitry for block RAM if write-first is not natively supported. Will always
|
||||
use additional circuitry for LUT RAM.
|
||||
- May use additional circuitry for block RAM if write-first is not natively
|
||||
supported. Will always use additional circuitry for LUT RAM.
|
||||
|
||||
.. code:: verilog
|
||||
|
||||
|
@ -343,7 +353,8 @@ Synchronous SDP with write-first behavior
|
|||
Synchronous SDP with write-first behavior (alternate pattern)
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
- This pattern is supported for compatibility, but is much less flexible than the above
|
||||
- This pattern is supported for compatibility, but is much less flexible than
|
||||
the above
|
||||
|
||||
.. code:: verilog
|
||||
|
||||
|
@ -378,8 +389,10 @@ Synchronous single-port RAM with mutually exclusive read/write
|
|||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
- Will result in single-port block RAM or LUT RAM depending on size
|
||||
- This is the correct pattern to infer ice40 SPRAM (with manual ram_style selection)
|
||||
- On targets that don't support read/write block RAM ports (eg. ice40), will result in SDP block RAM instead
|
||||
- This is the correct pattern to infer ice40 SPRAM (with manual ram_style
|
||||
selection)
|
||||
- On targets that don't support read/write block RAM ports (eg. ice40), will
|
||||
result in SDP block RAM instead
|
||||
- For block RAM, will use "NO_CHANGE" mode if available
|
||||
|
||||
.. code:: verilog
|
||||
|
@ -396,12 +409,14 @@ Synchronous single-port RAM with mutually exclusive read/write
|
|||
Synchronous single-port RAM with read-first behavior
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
- Will only result in single-port block RAM when read-first behavior is natively supported;
|
||||
otherwise, SDP RAM with additional circuitry will be used
|
||||
- Many targets (Xilinx, ECP5, …) can only natively support read-first/write-first single-port RAM
|
||||
(or TDP RAM) where the write_enable signal implies the read_enable signal (ie. can never write
|
||||
without reading). The memory inference code will run a simple SAT solver on the control signals to
|
||||
determine if this is the case, and insert emulation circuitry if it cannot be easily proven.
|
||||
- Will only result in single-port block RAM when read-first behavior is natively
|
||||
supported; otherwise, SDP RAM with additional circuitry will be used
|
||||
- Many targets (Xilinx, ECP5, …) can only natively support
|
||||
read-first/write-first single-port RAM (or TDP RAM) where the write_enable
|
||||
signal implies the read_enable signal (ie. can never write without reading).
|
||||
The memory inference code will run a simple SAT solver on the control signals
|
||||
to determine if this is the case, and insert emulation circuitry if it cannot
|
||||
be easily proven.
|
||||
|
||||
.. code:: verilog
|
||||
|
||||
|
@ -418,7 +433,8 @@ Synchronous single-port RAM with write-first behavior
|
|||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
- Will result in single-port block RAM or LUT RAM when supported
|
||||
- Block RAMs will require extra circuitry if write-first behavior not natively supported
|
||||
- Block RAMs will require extra circuitry if write-first behavior not natively
|
||||
supported
|
||||
|
||||
.. code:: verilog
|
||||
|
||||
|
@ -440,8 +456,8 @@ Synchronous read port with initial value
|
|||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
- Initial read port values can be combined with any other supported pattern
|
||||
- If block RAM is used and initial read port values are not natively supported by the target, small
|
||||
emulation circuit will be inserted
|
||||
- If block RAM is used and initial read port values are not natively supported
|
||||
by the target, small emulation circuit will be inserted
|
||||
|
||||
.. code:: verilog
|
||||
|
||||
|
@ -459,10 +475,11 @@ Synchronous read port with initial value
|
|||
Read register reset patterns
|
||||
----------------------------
|
||||
|
||||
Resets can be combined with any other supported pattern (except that synchronous reset and
|
||||
asynchronous reset cannot both be used on a single read port). If block RAM is used and the
|
||||
selected reset (synchronous or asynchronous) is used but not natively supported by the target, small
|
||||
emulation circuitry will be inserted.
|
||||
Resets can be combined with any other supported pattern (except that synchronous
|
||||
reset and asynchronous reset cannot both be used on a single read port). If
|
||||
block RAM is used and the selected reset (synchronous or asynchronous) is used
|
||||
but not natively supported by the target, small emulation circuitry will be
|
||||
inserted.
|
||||
|
||||
Synchronous reset, reset priority over enable
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
@ -520,22 +537,26 @@ Synchronous read port with asynchronous reset
|
|||
Asymmetric memory patterns
|
||||
--------------------------
|
||||
|
||||
To construct an asymmetric memory (memory with read/write ports of differing widths):
|
||||
To construct an asymmetric memory (memory with read/write ports of differing
|
||||
widths):
|
||||
|
||||
- Declare the memory with the width of the narrowest intended port
|
||||
- Split all wide ports into multiple narrow ports
|
||||
- To ensure the wide ports will be correctly merged:
|
||||
|
||||
- For the address, use a concatenation of actual address in the high bits and a constant in the
|
||||
low bits
|
||||
- Ensure the actual address is identical for all ports belonging to the wide port
|
||||
- For the address, use a concatenation of actual address in the high bits and
|
||||
a constant in the low bits
|
||||
- Ensure the actual address is identical for all ports belonging to the wide
|
||||
port
|
||||
- Ensure that clock is identical
|
||||
- For read ports, ensure that enable/reset signals are identical (for write ports, the enable
|
||||
signal may vary — this will result in using the byte enable functionality)
|
||||
- For read ports, ensure that enable/reset signals are identical (for write
|
||||
ports, the enable signal may vary — this will result in using the byte
|
||||
enable functionality)
|
||||
|
||||
Asymmetric memory is supported on all targets, but may require emulation circuitry where not
|
||||
natively supported. Note that when the memory is larger than the underlying block RAM primitive,
|
||||
hardware asymmetric memory support is likely not to be used even if present as it is more expensive.
|
||||
Asymmetric memory is supported on all targets, but may require emulation
|
||||
circuitry where not natively supported. Note that when the memory is larger
|
||||
than the underlying block RAM primitive, hardware asymmetric memory support is
|
||||
likely not to be used even if present as it is more expensive.
|
||||
|
||||
.. _wide_sr:
|
||||
|
||||
|
@ -615,20 +636,25 @@ Wide write port
|
|||
True dual port (TDP) patterns
|
||||
-----------------------------
|
||||
|
||||
- Many different variations of true dual port memory can be created by combining two single-port RAM
|
||||
patterns on the same memory
|
||||
- When TDP memory is used, memory inference code has much less maneuver room to create requested
|
||||
semantics compared to individual single-port patterns (which can end up lowered to SDP memory
|
||||
where necessary) — supported patterns depend strongly on the target
|
||||
- In particular, when both ports have the same clock, it's likely that "undefined collision" mode
|
||||
needs to be manually selected to enable TDP memory inference
|
||||
- The examples below are non-exhaustive — many more combinations of port types are possible
|
||||
- Note: if two write ports are in the same process, this defines a priority relation between them
|
||||
(if both ports are active in the same clock, the later one wins). On almost all targets, this will
|
||||
result in a bit of extra circuitry to ensure the priority semantics. If this is not what you want,
|
||||
put them in separate processes.
|
||||
- Many different variations of true dual port memory can be created by combining
|
||||
two single-port RAM patterns on the same memory
|
||||
- When TDP memory is used, memory inference code has much less maneuver room to
|
||||
create requested semantics compared to individual single-port patterns (which
|
||||
can end up lowered to SDP memory where necessary) — supported patterns depend
|
||||
strongly on the target
|
||||
- In particular, when both ports have the same clock, it's likely that
|
||||
"undefined collision" mode needs to be manually selected to enable TDP memory
|
||||
inference
|
||||
- The examples below are non-exhaustive — many more combinations of port types
|
||||
are possible
|
||||
- Note: if two write ports are in the same process, this defines a priority
|
||||
relation between them (if both ports are active in the same clock, the later
|
||||
one wins). On almost all targets, this will result in a bit of extra circuitry
|
||||
to ensure the priority semantics. If this is not what you want, put them in
|
||||
separate processes.
|
||||
|
||||
- Priority is not supported when using the verific front end and any priority semantics are ignored.
|
||||
- Priority is not supported when using the verific front end and any priority
|
||||
semantics are ignored.
|
||||
|
||||
TDP with different clocks, exclusive read/write
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
@ -654,7 +680,8 @@ TDP with different clocks, exclusive read/write
|
|||
TDP with same clock, read-first behavior
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
- This requires hardware inter-port read-first behavior, and will only work on some targets (Xilinx, Nexus)
|
||||
- This requires hardware inter-port read-first behavior, and will only work on
|
||||
some targets (Xilinx, Nexus)
|
||||
|
||||
.. code:: verilog
|
||||
|
||||
|
@ -677,9 +704,10 @@ TDP with same clock, read-first behavior
|
|||
TDP with multiple read ports
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
- The combination of a single write port with an arbitrary amount of read ports is supported on all
|
||||
targets — if a multi-read port primitive is available (like Xilinx RAM64M), it'll be used as
|
||||
appropriate. Otherwise, the memory will be automatically split into multiple primitives.
|
||||
- The combination of a single write port with an arbitrary amount of read ports
|
||||
is supported on all targets — if a multi-read port primitive is available
|
||||
(like Xilinx RAM64M), it'll be used as appropriate. Otherwise, the memory
|
||||
will be automatically split into multiple primitives.
|
||||
|
||||
.. code:: verilog
|
||||
|
||||
|
|
|
@ -9,9 +9,9 @@ This chapter outlines these optimizations.
|
|||
The `opt` macro command
|
||||
--------------------------------
|
||||
|
||||
The Yosys pass `opt` runs a number of simple optimizations. This
|
||||
includes removing unused signals and cells and const folding. It is recommended
|
||||
to run this pass after each major step in the synthesis script. As listed in
|
||||
The Yosys pass `opt` runs a number of simple optimizations. This includes
|
||||
removing unused signals and cells and const folding. It is recommended to run
|
||||
this pass after each major step in the synthesis script. As listed in
|
||||
:doc:`/cmd/opt`, this macro command calls the following ``opt_*`` commands:
|
||||
|
||||
.. literalinclude:: /code_examples/macro_commands/opt.ys
|
||||
|
@ -69,17 +69,17 @@ undef.
|
|||
The last two lines simply replace an `$_AND_` gate with one constant-1 input
|
||||
with a buffer.
|
||||
|
||||
Besides this basic const folding the `opt_expr` pass can replace 1-bit
|
||||
wide `$eq` and `$ne` cells with buffers or not-gates if one input is
|
||||
constant. Equality checks may also be reduced in size if there are redundant
|
||||
bits in the arguments (i.e. bits which are constant on both inputs). This can,
|
||||
for example, result in a 32-bit wide constant like ``255`` being reduced to the
|
||||
8-bit value of ``8'11111111`` if the signal being compared is only 8-bit as in
|
||||
Besides this basic const folding the `opt_expr` pass can replace 1-bit wide
|
||||
`$eq` and `$ne` cells with buffers or not-gates if one input is constant.
|
||||
Equality checks may also be reduced in size if there are redundant bits in the
|
||||
arguments (i.e. bits which are constant on both inputs). This can, for example,
|
||||
result in a 32-bit wide constant like ``255`` being reduced to the 8-bit value
|
||||
of ``8'11111111`` if the signal being compared is only 8-bit as in
|
||||
:ref:`addr_gen_clean` of :doc:`/getting_started/example_synth`.
|
||||
|
||||
The `opt_expr` pass is very conservative regarding optimizing `$mux`
|
||||
cells, as these cells are often used to model decision-trees and breaking these
|
||||
trees can interfere with other optimizations.
|
||||
The `opt_expr` pass is very conservative regarding optimizing `$mux` cells, as
|
||||
these cells are often used to model decision-trees and breaking these trees can
|
||||
interfere with other optimizations.
|
||||
|
||||
.. literalinclude:: /code_examples/opt/opt_expr.ys
|
||||
:language: Verilog
|
||||
|
@ -100,9 +100,9 @@ identifies cells with identical inputs and replaces them with a single instance
|
|||
of the cell.
|
||||
|
||||
The option ``-nomux`` can be used to disable resource sharing for multiplexer
|
||||
cells (`$mux` and `$pmux`.) This can be useful as it prevents multiplexer
|
||||
trees to be merged, which might prevent `opt_muxtree` to identify
|
||||
possible optimizations.
|
||||
cells (`$mux` and `$pmux`.) This can be useful as it prevents multiplexer trees
|
||||
to be merged, which might prevent `opt_muxtree` to identify possible
|
||||
optimizations.
|
||||
|
||||
.. literalinclude:: /code_examples/opt/opt_merge.ys
|
||||
:language: Verilog
|
||||
|
@ -128,9 +128,9 @@ Consider the following simple example:
|
|||
:caption: example verilog for demonstrating `opt_muxtree`
|
||||
|
||||
The output can never be ``c``, as this would require ``a`` to be 1 for the outer
|
||||
multiplexer and 0 for the inner multiplexer. The `opt_muxtree` pass
|
||||
detects this contradiction and replaces the inner multiplexer with a constant 1,
|
||||
yielding the logic for ``y = a ? b : d``.
|
||||
multiplexer and 0 for the inner multiplexer. The `opt_muxtree` pass detects this
|
||||
contradiction and replaces the inner multiplexer with a constant 1, yielding the
|
||||
logic for ``y = a ? b : d``.
|
||||
|
||||
.. figure:: /_images/code_examples/opt/opt_muxtree.*
|
||||
:class: width-helper invert-helper
|
||||
|
@ -141,9 +141,9 @@ Simplifying large MUXes and AND/OR gates - `opt_reduce`
|
|||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
This is a simple optimization pass that identifies and consolidates identical
|
||||
input bits to `$reduce_and` and `$reduce_or` cells. It also sorts the input
|
||||
bits to ease identification of shareable `$reduce_and` and `$reduce_or`
|
||||
cells in other passes.
|
||||
input bits to `$reduce_and` and `$reduce_or` cells. It also sorts the input bits
|
||||
to ease identification of shareable `$reduce_and` and `$reduce_or` cells in
|
||||
other passes.
|
||||
|
||||
This pass also identifies and consolidates identical inputs to multiplexer
|
||||
cells. In this case the new shared select bit is driven using a `$reduce_or`
|
||||
|
@ -162,8 +162,8 @@ This pass identifies mutually exclusive cells of the same type that:
|
|||
a. share an input signal, and
|
||||
b. drive the same `$mux`, `$_MUX_`, or `$pmux` multiplexing cell,
|
||||
|
||||
allowing the cell to be merged and the multiplexer to be moved from
|
||||
multiplexing its output to multiplexing the non-shared input signals.
|
||||
allowing the cell to be merged and the multiplexer to be moved from multiplexing
|
||||
its output to multiplexing the non-shared input signals.
|
||||
|
||||
.. literalinclude:: /code_examples/opt/opt_share.ys
|
||||
:language: Verilog
|
||||
|
@ -176,16 +176,16 @@ multiplexing its output to multiplexing the non-shared input signals.
|
|||
|
||||
Before and after `opt_share`
|
||||
|
||||
When running `opt` in full, the original `$mux` (labeled ``$3``) is
|
||||
optimized away by `opt_expr`.
|
||||
When running `opt` in full, the original `$mux` (labeled ``$3``) is optimized
|
||||
away by `opt_expr`.
|
||||
|
||||
Performing DFF optimizations - `opt_dff`
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
This pass identifies single-bit d-type flip-flops (`$_DFF_`, `$dff`, and
|
||||
`$adff` cells) with a constant data input and replaces them with a constant
|
||||
driver. It can also merge clock enables and synchronous reset multiplexers,
|
||||
removing unused control inputs.
|
||||
This pass identifies single-bit d-type flip-flops (`$_DFF_`, `$dff`, and `$adff`
|
||||
cells) with a constant data input and replaces them with a constant driver. It
|
||||
can also merge clock enables and synchronous reset multiplexers, removing unused
|
||||
control inputs.
|
||||
|
||||
Called with ``-nodffe`` and ``-nosdff``, this pass is used to prepare a design
|
||||
for :doc:`/using_yosys/synthesis/fsm`.
|
||||
|
@ -200,20 +200,20 @@ attribute can be used for debugging or by other optimization passes.
|
|||
When to use `opt` or `clean`
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Usually it does not hurt to call `opt` after each regular command in
|
||||
the synthesis script. But it increases the synthesis time, so it is favourable
|
||||
to only call `opt` when an improvement can be achieved.
|
||||
Usually it does not hurt to call `opt` after each regular command in the
|
||||
synthesis script. But it increases the synthesis time, so it is favourable to
|
||||
only call `opt` when an improvement can be achieved.
|
||||
|
||||
It is generally a good idea to call `opt` before inherently expensive
|
||||
commands such as `sat` or `freduce`, as the possible gain is
|
||||
much higher in these cases as the possible loss.
|
||||
It is generally a good idea to call `opt` before inherently expensive commands
|
||||
such as `sat` or `freduce`, as the possible gain is much higher in these cases
|
||||
as the possible loss.
|
||||
|
||||
The `clean` command, which is an alias for `opt_clean` with
|
||||
fewer outputs, on the other hand is very fast and many commands leave a mess
|
||||
(dangling signal wires, etc). For example, most commands do not remove any wires
|
||||
or cells. They just change the connections and depend on a later call to clean
|
||||
to get rid of the now unused objects. So the occasional ``;;``, which itself is
|
||||
an alias for `clean`, is a good idea in every synthesis script, e.g:
|
||||
The `clean` command, which is an alias for `opt_clean` with fewer outputs, on
|
||||
the other hand is very fast and many commands leave a mess (dangling signal
|
||||
wires, etc). For example, most commands do not remove any wires or cells. They
|
||||
just change the connections and depend on a later call to clean to get rid of
|
||||
the now unused objects. So the occasional ``;;``, which itself is an alias for
|
||||
`clean`, is a good idea in every synthesis script, e.g:
|
||||
|
||||
.. code-block:: yoscrypt
|
||||
|
||||
|
|
|
@ -5,23 +5,23 @@ Converting process blocks
|
|||
:language: yoscrypt
|
||||
|
||||
The Verilog frontend converts ``always``-blocks to RTL netlists for the
|
||||
expressions and "processess" for the control- and memory elements. The
|
||||
`proc` command then transforms these "processess" to netlists of RTL
|
||||
multiplexer and register cells. It also is a macro command that calls the other
|
||||
``proc_*`` commands in a sensible order:
|
||||
expressions and "processess" for the control- and memory elements. The `proc`
|
||||
command then transforms these "processess" to netlists of RTL multiplexer and
|
||||
register cells. It also is a macro command that calls the other ``proc_*``
|
||||
commands in a sensible order:
|
||||
|
||||
.. literalinclude:: /code_examples/macro_commands/proc.ys
|
||||
:language: yoscrypt
|
||||
:start-after: #end:
|
||||
:caption: Passes called by `proc`
|
||||
|
||||
After all the ``proc_*`` commands, `opt_expr` is called. This can be
|
||||
disabled by calling :yoscrypt:`proc -noopt`. For more information about
|
||||
`proc`, such as disabling certain sub commands, see :doc:`/cmd/proc`.
|
||||
After all the ``proc_*`` commands, `opt_expr` is called. This can be disabled by
|
||||
calling :yoscrypt:`proc -noopt`. For more information about `proc`, such as
|
||||
disabling certain sub commands, see :doc:`/cmd/proc`.
|
||||
|
||||
Many commands can not operate on modules with "processess" in them. Usually a
|
||||
call to `proc` is the first command in the actual synthesis procedure
|
||||
after design elaboration.
|
||||
call to `proc` is the first command in the actual synthesis procedure after
|
||||
design elaboration.
|
||||
|
||||
Example
|
||||
^^^^^^^
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue