3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2025-04-27 10:55:51 +00:00

start implementing support for intel le based logic devices

This commit is contained in:
Artur Swiderski 2020-10-10 19:08:54 +02:00
parent c403c984dd
commit 36bd075865
34 changed files with 3058 additions and 0 deletions

View file

@ -0,0 +1,27 @@
OBJS += techlibs/intel_le/synth_intel_le.o
# Techmap
$(eval $(call add_share_file,share/intel_le/common,techlibs/intel_le/common/abc9_map.v))
$(eval $(call add_share_file,share/intel_le/common,techlibs/intel_le/common/abc9_unmap.v))
$(eval $(call add_share_file,share/intel_le/common,techlibs/intel_le/common/abc9_model.v))
$(eval $(call add_share_file,share/intel_le/common,techlibs/intel_le/common/alm_map.v))
$(eval $(call add_share_file,share/intel_le/common,techlibs/intel_le/common/alm_sim.v))
$(eval $(call add_share_file,share/intel_le/common,techlibs/intel_le/common/arith_alm_map.v))
$(eval $(call add_share_file,share/intel_le/common,techlibs/intel_le/common/dff_map.v))
$(eval $(call add_share_file,share/intel_le/common,techlibs/intel_le/common/dff_sim.v))
$(eval $(call add_share_file,share/intel_le/common,techlibs/intel_le/common/dsp_sim.v))
$(eval $(call add_share_file,share/intel_le/common,techlibs/intel_le/common/dsp_map.v))
$(eval $(call add_share_file,share/intel_le/common,techlibs/intel_le/common/mem_sim.v))
$(eval $(call add_share_file,share/intel_le/cyclonev,techlibs/intel_le/cycloneiv/cells_sim.v))
# RAM
$(eval $(call add_share_file,share/intel_le/common,techlibs/intel_le/common/bram_m10k.txt))
$(eval $(call add_share_file,share/intel_le/common,techlibs/intel_le/common/bram_m20k.txt))
$(eval $(call add_share_file,share/intel_le/common,techlibs/intel_le/common/bram_m20k_map.v))
$(eval $(call add_share_file,share/intel_le/common,techlibs/intel_le/common/lutram_mlab.txt))
# Miscellaneous
$(eval $(call add_share_file,share/intel_le/common,techlibs/intel_le/common/megafunction_bb.v))
$(eval $(call add_share_file,share/intel_le/common,techlibs/intel_le/common/quartus_rename.v))

View file

@ -0,0 +1,18 @@
// This file exists to map purely-synchronous flops to ABC9 flops, while
// mapping flops with asynchronous-clear as boxes, this is because ABC9
// doesn't support asynchronous-clear flops in sequential synthesis.
module MISTRAL_FF(
input DATAIN, CLK, ACLR, ENA, SCLR, SLOAD, SDATA,
output reg Q
);
parameter _TECHMAP_CONSTMSK_ACLR_ = 1'b0;
// If the async-clear is constant, we assume it's disabled.
if (_TECHMAP_CONSTMSK_ACLR_ != 1'b0)
$__MISTRAL_FF_SYNCONLY _TECHMAP_REPLACE_ (.DATAIN(DATAIN), .CLK(CLK), .ENA(ENA), .SCLR(SCLR), .SLOAD(SLOAD), .SDATA(SDATA), .Q(Q));
else
wire _TECHMAP_FAIL_ = 1;
endmodule

View file

@ -0,0 +1,10 @@
// This is a purely-synchronous flop, that ABC9 can use for sequential synthesis.
(* abc9_flop, lib_whitebox *)
module $__MISTRAL_FF_SYNCONLY (
input DATAIN, CLK, ENA, SCLR, SLOAD, SDATA,
output reg Q
);
MISTRAL_FF ff (.DATAIN(DATAIN), .CLK(CLK), .ENA(ENA), .ACLR(1'b1), .SCLR(SCLR), .SLOAD(SLOAD), .SDATA(SDATA), .Q(Q));
endmodule

View file

@ -0,0 +1,11 @@
// After performing sequential synthesis, map the synchronous flops back to
// standard MISTRAL_FF flops.
module $__MISTRAL_FF_SYNCONLY (
input DATAIN, CLK, ENA, SCLR, SLOAD, SDATA,
output reg Q
);
MISTRAL_FF _TECHMAP_REPLACE_ (.DATAIN(DATAIN), .CLK(CLK), .ACLR(1'b1), .ENA(ENA), .SCLR(SCLR), .SLOAD(SLOAD), .SDATA(SDATA), .Q(Q));
endmodule

View file

@ -0,0 +1,71 @@
`default_nettype none
module \$alu (A, B, CI, BI, X, Y, CO);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
parameter _TECHMAP_CONSTMSK_CI_ = 0;
parameter _TECHMAP_CONSTVAL_CI_ = 0;
(* force_downto *)
input [A_WIDTH-1:0] A;
(* force_downto *)
input [B_WIDTH-1:0] B;
input CI, BI;
(* force_downto *)
output [Y_WIDTH-1:0] X, Y, CO;
(* force_downto *)
wire [Y_WIDTH-1:0] A_buf, B_buf;
\$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
\$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf));
(* force_downto *)
wire [Y_WIDTH-1:0] AA = A_buf;
(* force_downto *)
wire [Y_WIDTH-1:0] BB = BI ? ~B_buf : B_buf;
(* force_downto *)
wire [Y_WIDTH-1:0] BX = B_buf;
wire [Y_WIDTH:0] ALM_CARRY;
// Start of carry chain
generate
if (_TECHMAP_CONSTMSK_CI_ == 1) begin
assign ALM_CARRY[0] = _TECHMAP_CONSTVAL_CI_;
end else begin
MISTRAL_ALUT_ARITH #(
.LUT0(16'b1010_1010_1010_1010), // Q = A
.LUT1(16'b0000_0000_0000_0000), // Q = 0 (LUT1's input to the adder is inverted)
) alm_start (
.A(CI), .B(1'b1), .C(1'b1), .D0(1'b1), .D1(1'b1),
.CI(1'b0),
.CO(ALM_CARRY[0])
);
end
endgenerate
// Carry chain
genvar i;
generate for (i = 0; i < Y_WIDTH; i = i + 1) begin:slice
// TODO: mwk suggests that a pass could merge pre-adder logic into this.
MISTRAL_ALUT_ARITH #(
.LUT0(16'b1010_1010_1010_1010), // Q = A
.LUT1(16'b1100_0011_1100_0011), // Q = C ? B : ~B (LUT1's input to the adder is inverted)
) alm_i (
.A(AA[i]), .B(BX[i]), .C(BI), .D0(1'b1), .D1(1'b1),
.CI(ALM_CARRY[i]),
.SO(Y[i]),
.CO(ALM_CARRY[i+1])
);
// ALM carry chain is not directly accessible, so calculate the carry through soft logic if really needed.
assign CO[i] = (AA[i] && BB[i]) || ((Y[i] ^ AA[i] ^ BB[i]) && (AA[i] || BB[i]));
end endgenerate
assign X = AA ^ BB;
endmodule

View file

@ -0,0 +1,33 @@
bram MISTRAL_M10K
init 0 # TODO: Re-enable when I figure out how BRAM init works
abits 13 @D8192x1
dbits 1 @D8192x1
abits 12 @D4096x2
dbits 2 @D4096x2
abits 11 @D2048x4 @D2048x5
dbits 4 @D2048x4
dbits 5 @D2048x5
abits 10 @D1024x8 @D1024x10
dbits 8 @D1024x8
dbits 10 @D1024x10
abits 9 @D512x16 @D512x20
dbits 16 @D512x16
dbits 20 @D512x20
abits 8 @D256x32 @D256x40
dbits 32 @D256x32
dbits 40 @D256x40
groups 2
ports 1 1
wrmode 1 0
# read enable; write enable + byte enables (only for multiples of 8)
enable 1 1
transp 0 0
clocks 1 1
clkpol 1 1
endbram
match MISTRAL_M10K
min efficiency 5
make_transp
endmatch

View file

@ -0,0 +1,33 @@
bram __MISTRAL_M20K_SDP
init 1 # TODO: Re-enable when I figure out how BRAM init works
abits 14 @D16384x1
dbits 1 @D16384x1
abits 13 @D8192x2
dbits 2 @D8192x2
abits 12 @D4096x4 @D4096x5
dbits 4 @D4096x4
dbits 5 @D4096x5
abits 11 @D2048x8 @D2048x10
dbits 8 @D2048x8
dbits 10 @D2048x10
abits 10 @D1024x16 @D1024x20
dbits 16 @D1024x16
dbits 20 @D1024x20
abits 9 @D512x32 @D512x40
dbits 32 @D512x32
dbits 40 @D512x40
groups 2
ports 1 1
wrmode 1 0
# read enable; write enable + byte enables (only for multiples of 8)
enable 1 1
transp 0 0
clocks 1 1
clkpol 1 1
endbram
match __MISTRAL_M20K_SDP
min efficiency 5
make_transp
endmatch

View file

@ -0,0 +1,31 @@
module __MISTRAL_M20K_SDP(CLK1, A1ADDR, A1DATA, A1EN, B1ADDR, B1DATA, B1EN);
parameter CFG_ABITS = 10;
parameter CFG_DBITS = 20;
parameter CFG_ENABLE_A = 1;
parameter CFG_ENABLE_B = 1;
input CLK1;
input [CFG_ABITS-1:0] A1ADDR, B1ADDR;
input [CFG_DBITS-1:0] A1DATA;
output [CFG_DBITS-1:0] B1DATA;
input [CFG_ENABLE_A-1:0] A1EN, B1EN;
altsyncram #(
.operation_mode("dual_port"),
.ram_block_type("m20k"),
.widthad_a(CFG_ABITS),
.width_a(CFG_DBITS),
.widthad_b(CFG_ABITS),
.width_b(CFG_DBITS),
) _TECHMAP_REPLACE_ (
.address_a(A1ADDR),
.data_a(A1DATA),
.wren_a(A1EN),
.address_b(B1ADDR),
.q_b(B1DATA),
.clock0(CLK1),
.clock1(CLK1)
);
endmodule

View file

@ -0,0 +1,13 @@
`default_nettype none
// D flip-flop with async reset and enable
module \$_DFFE_PN0P_ (input D, C, R, E, output Q);
wire _TECHMAP_REMOVEINIT_Q_ = 1'b1;
MISTRAL_FF _TECHMAP_REPLACE_(.DATAIN(D), .CLK(C), .ACLR(R), .ENA(E), .SCLR(1'b0), .SLOAD(1'b0), .SDATA(1'b0), .Q(Q));
endmodule
// D flip-flop with sync reset and enable (enable has priority)
module \$_SDFFCE_PP0P_ (input D, C, R, E, output Q);
wire _TECHMAP_REMOVEINIT_Q_ = 1'b1;
MISTRAL_FF _TECHMAP_REPLACE_(.DATAIN(D), .CLK(C), .ACLR(1'b1), .ENA(E), .SCLR(R), .SLOAD(1'b0), .SDATA(1'b0), .Q(Q));
endmodule

View file

@ -0,0 +1,114 @@
// The four D flip-flops (DFFs) in a Cyclone V/10GX Adaptive Logic Module (ALM)
// act as one-bit memory cells that can be placed very flexibly (wherever there's
// an ALM); each flop is represented by a MISTRAL_FF cell.
//
// The flops in these chips are rather flexible in some ways, but in practice
// quite crippled by FPGA standards.
//
// What the flops can do
// ---------------------
// The core flop acts as a single-bit memory that initialises to zero at chip
// reset. It takes in data on the rising edge of CLK if ENA is high,
// and outputs it to Q. The ENA (clock enable) pin can therefore be used to
// capture the input only if a condition is true.
//
// The data itself is zero if SCLR (synchronous clear) is high, else it comes
// from SDATA (synchronous data) if SLOAD (synchronous load) is high, or DATAIN
// if SLOAD is low.
//
// If ACLR (asynchronous clear) is low then Q is forced to zero, regardless of
// the synchronous inputs or CLK edge. This is most often used for an FPGA-wide
// power-on reset.
//
// An asynchronous set that sets Q to one can be emulated by inverting the input
// and output of the flop, resulting in ACLR forcing Q to zero, which then gets
// inverted to produce one. Likewise, logic can operate on the falling edge of
// CLK if CLK is inverted before being passed as an input.
//
// What the flops *can't* do
// -------------------------
// The trickiest part of the above capabilities is the lack of configurable
// initialisation state. For example, it isn't possible to implement a flop with
// asynchronous clear that initialises to one, because the hardware initialises
// to zero. Likewise, you can't emulate a flop with asynchronous set that
// initialises to zero, because the inverters mean the flop initialises to one.
//
// If the input design requires one of these cells (which appears to be rare
// in practice) then synth_intel_alm will fail to synthesize the design where
// other Yosys synthesis scripts might succeed.
//
// This stands in notable contrast to e.g. Xilinx flip-flops, which have
// configurable initialisation state and native synchronous/asynchronous
// set/clear (although not at the same time), which means they can generally
// implement a much wider variety of logic.
// DATAIN: synchronous data input
// CLK: clock input (positive edge)
// ACLR: asynchronous clear (negative-true)
// ENA: clock-enable
// SCLR: synchronous clear
// SLOAD: synchronous load
// SDATA: synchronous load data
//
// Q: data output
//
// Note: the DFFEAS primitive is mostly emulated; it does not reflect what the hardware implements.
(* abc9_box, lib_whitebox *)
module MISTRAL_FF(
input DATAIN, CLK, ACLR, ENA, SCLR, SLOAD, SDATA,
output reg Q
);
`ifdef cyclonev
specify
if (ENA && ACLR !== 1'b0 && !SCLR && !SLOAD) (posedge CLK => (Q : DATAIN)) = 731;
if (ENA && SCLR) (posedge CLK => (Q : 1'b0)) = 890;
if (ENA && !SCLR && SLOAD) (posedge CLK => (Q : SDATA)) = 618;
$setup(DATAIN, posedge CLK, /* -196 */ 0);
$setup(ENA, posedge CLK, /* -196 */ 0);
$setup(SCLR, posedge CLK, /* -196 */ 0);
$setup(SLOAD, posedge CLK, /* -196 */ 0);
$setup(SDATA, posedge CLK, /* -196 */ 0);
if (ACLR === 1'b0) (ACLR => Q) = 282;
endspecify
`endif
`ifdef cyclone10gx
specify
// TODO (long-term): investigate these numbers.
// It seems relying on the Quartus Timing Analyzer was not the best idea; it's too fiddly.
if (ENA && ACLR !== 1'b0 && !SCLR && !SLOAD) (posedge CLK => (Q : DATAIN)) = 219;
if (ENA && SCLR) (posedge CLK => (Q : 1'b0)) = 219;
if (ENA && !SCLR && SLOAD) (posedge CLK => (Q : SDATA)) = 219;
$setup(DATAIN, posedge CLK, 268);
$setup(ENA, posedge CLK, 268);
$setup(SCLR, posedge CLK, 268);
$setup(SLOAD, posedge CLK, 268);
$setup(SDATA, posedge CLK, 268);
if (ACLR === 1'b0) (ACLR => Q) = 0;
endspecify
`endif
initial begin
// Altera flops initialise to zero.
Q = 0;
end
always @(posedge CLK, negedge ACLR) begin
// Asynchronous clear
if (!ACLR) Q <= 0;
// Clock-enable
else if (ENA) begin
// Synchronous clear
if (SCLR) Q <= 0;
// Synchronous load
else if (SLOAD) Q <= SDATA;
else Q <= DATAIN;
end
end
endmodule

View file

@ -0,0 +1,51 @@
`default_nettype none
module __MUL27X27(A, B, Y);
parameter A_SIGNED = 1;
parameter B_SIGNED = 1;
parameter A_WIDTH = 27;
parameter B_WIDTH = 27;
parameter Y_WIDTH = 54;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
MISTRAL_MUL27X27 _TECHMAP_REPLACE_ (.A(A), .B(B), .Y(Y));
endmodule
module __MUL18X18(A, B, Y);
parameter A_SIGNED = 1;
parameter B_SIGNED = 1;
parameter A_WIDTH = 18;
parameter B_WIDTH = 18;
parameter Y_WIDTH = 36;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
MISTRAL_MUL18X18 _TECHMAP_REPLACE_ (.A(A), .B(B), .Y(Y));
endmodule
module __MUL9X9(A, B, Y);
parameter A_SIGNED = 1;
parameter B_SIGNED = 1;
parameter A_WIDTH = 9;
parameter B_WIDTH = 9;
parameter Y_WIDTH = 18;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
MISTRAL_MUL9X9 _TECHMAP_REPLACE_ (.A(A), .B(B), .Y(Y));
endmodule

View file

@ -0,0 +1,83 @@
(* abc9_box *)
module MISTRAL_MUL27X27(input [26:0] A, input [26:0] B, output [53:0] Y);
parameter A_SIGNED = 1;
parameter B_SIGNED = 1;
// TODO: Cyclone 10 GX timings; the below are for Cyclone V
specify
(A *> Y) = 3732;
(B *> Y) = 3928;
endspecify
wire [53:0] A_, B_;
if (A_SIGNED)
assign A_ = $signed(A);
else
assign A_ = $unsigned(A);
if (B_SIGNED)
assign B_ = $signed(B);
else
assign B_ = $unsigned(B);
assign Y = A_ * B_;
endmodule
(* abc9_box *)
module MISTRAL_MUL18X18(input [17:0] A, input [17:0] B, output [35:0] Y);
parameter A_SIGNED = 1;
parameter B_SIGNED = 1;
// TODO: Cyclone 10 GX timings; the below are for Cyclone V
specify
(A *> Y) = 3180;
(B *> Y) = 3982;
endspecify
wire [35:0] A_, B_;
if (A_SIGNED)
assign A_ = $signed(A);
else
assign A_ = $unsigned(A);
if (B_SIGNED)
assign B_ = $signed(B);
else
assign B_ = $unsigned(B);
assign Y = A_ * B_;
endmodule
(* abc9_box *)
module MISTRAL_MUL9X9(input [8:0] A, input [8:0] B, output [17:0] Y);
parameter A_SIGNED = 1;
parameter B_SIGNED = 1;
// TODO: Cyclone 10 GX timings; the below are for Cyclone V
specify
(A *> Y) = 2818;
(B *> Y) = 3051;
endspecify
wire [17:0] A_, B_;
if (A_SIGNED)
assign A_ = $signed(A);
else
assign A_ = $unsigned(A);
if (B_SIGNED)
assign B_ = $signed(B);
else
assign B_ = $unsigned(B);
assign Y = A_ * B_;
endmodule

View file

@ -0,0 +1,57 @@
module \$lut (A, Y);
parameter WIDTH = 1;
parameter LUT = 0;
(* force_downto *)
input [WIDTH-1:0] A;
output Y;
generate
if (WIDTH == 1) begin
generate
if (LUT == 2'b00) begin
assign Y = 1'b0;
end
else if (LUT == 2'b01) begin
MISTRAL_NOT _TECHMAP_REPLACE_(
.A(A[0]), .Q(Y)
);
end
else if (LUT == 2'b10) begin
assign Y = A;
end
else if (LUT == 2'b11) begin
assign Y = 1'b1;
end
endgenerate
end else
if (WIDTH == 2) begin
MISTRAL_ALUT2 #(.LUT(LUT)) _TECHMAP_REPLACE_(
.A(A[0]), .B(A[1]), .Q(Y)
);
end else
if (WIDTH == 3) begin
MISTRAL_ALUT3 #(.LUT(LUT)) _TECHMAP_REPLACE_(
.A(A[0]), .B(A[1]), .C(A[2]), .Q(Y)
);
end else
if (WIDTH == 4) begin
MISTRAL_ALUT4 #(.LUT(LUT)) _TECHMAP_REPLACE_(
.A(A[0]), .B(A[1]), .C(A[2]), .D(A[3]), .Q(Y)
);
end else
if (WIDTH == 5) begin
MISTRAL_ALUT5 #(.LUT(LUT)) _TECHMAP_REPLACE_ (
.A(A[0]), .B(A[1]), .C(A[2]), .D(A[3]), .E(A[4]), .Q(Y)
);
end else
if (WIDTH == 6) begin
MISTRAL_ALUT6 #(.LUT(LUT)) _TECHMAP_REPLACE_ (
.A(A[0]), .B(A[1]), .C(A[2]), .D(A[3]), .E(A[4]), .F(A[5]), .Q(Y)
);
end else begin
wire _TECHMAP_FAIL_ = 1'b1;
end
endgenerate
endmodule

View file

@ -0,0 +1,561 @@
// The core logic primitive of the Cyclone V/10GX is the Adaptive Logic Module
// (ALM). Each ALM is made up of an 8-input, 2-output look-up table, covered
// in this file, connected to combinational outputs, a carry chain, and four
// D flip-flops (which are covered as MISTRAL_FF in dff_sim.v).
//
// The ALM is vertically symmetric, so I find it helps to think in terms of
// half-ALMs, as that's predominantly the unit that synth_intel_alm uses.
//
// ALMs are quite flexible, having multiple modes.
//
// Normal (combinational) mode
// ---------------------------
// The ALM can implement:
// - a single 6-input function (with the other inputs usable for flip-flop access)
// - two 5-input functions that share two inputs
// - a 5-input and a 4-input function that share one input
// - a 5-input and a 3-or-less-input function that share no inputs
// - two 4-or-less-input functions that share no inputs
//
// Normal-mode functions are represented as MISTRAL_ALUTN cells with N inputs.
// It would be possible to represent a normal mode function as a single cell -
// the vendor cyclone{v,10gx}_lcell_comb cell does exactly that - but I felt
// it was more user-friendly to print out the specific function sizes
// separately.
//
// With the exception of MISTRAL_ALUT6, you can think of two normal-mode cells
// fitting inside a single ALM.
//
// Extended (7-input) mode
// -----------------------
// The ALM can also fit a 7-input function made of two 5-input functions that
// share four inputs, multiplexed by another input.
//
// Because this can't accept arbitrary 7-input functions, Yosys can't handle
// it, so it doesn't have a cell, but I would likely call it MISTRAL_ALUT7(E?)
// if it did, and it would take up a full ALM.
//
// It might be possible to add an extraction pass to examine all ALUT5 cells
// that feed into ALUT3 cells to see if they can be combined into an extended
// ALM, but I don't think it will be worth it.
//
// Arithmetic mode
// ---------------
// In arithmetic mode, each half-ALM uses its carry chain to perform fast addition
// of two four-input functions that share three inputs. Oddly, the result of
// one of the functions is inverted before being added (you can see this as
// the dot on a full-adder input of Figure 1-8 in the Handbook).
//
// The cell for an arithmetic-mode half-ALM is MISTRAL_ALM_ARITH. One idea
// I've had (or rather was suggested by mwk) is that functions that feed into
// arithmetic-mode cells could be packed directly into the arithmetic-mode
// cell as a function, which reduces the number of ALMs needed.
//
// Shared arithmetic mode
// ----------------------
// Shared arithmetic mode looks a lot like arithmetic mode, but here the
// output of every other four-input function goes to the input of the adder
// the next bit along. What this means is that adding three bits together can
// be done in an ALM, because functions can be used to implement addition that
// then feeds into the carry chain. This means that three bits can be added per
// ALM, as opposed to two in the arithmetic mode.
//
// Shared arithmetic mode doesn't currently have a cell, but I intend to add
// it as MISTRAL_ALM_SHARED, and have it occupy a full ALM. Because it adds
// three bits per cell, it makes addition shorter and use less ALMs, but
// I don't know enough to tell whether it's more efficient to use shared
// arithmetic mode to shorten the carry chain, or plain arithmetic mode with
// the functions packed in.
`default_nettype none
// Cyclone V LUT output timings (picoseconds):
//
// CARRY A B C D E F G
// COMBOUT - 605 583 510 512 - 97 400 (LUT6)
// COMBOUT - 602 583 457 510 302 93 483 (LUT7)
// SUMOUT 368 1342 1323 887 927 - 785 -
// CARRYOUT 71 1082 1062 866 813 - 1198 -
(* abc9_lut=2, lib_whitebox *)
module MISTRAL_ALUT6(input A, B, C, D, E, F, output Q);
parameter [63:0] LUT = 64'h0000_0000_0000_0000;
`ifdef cyclonev
specify
(A => Q) = 605;
(B => Q) = 583;
(C => Q) = 510;
(D => Q) = 512;
(E => Q) = 400;
(F => Q) = 97;
endspecify
`endif
`ifdef cyclone10gx
specify
(A => Q) = 275;
(B => Q) = 272;
(C => Q) = 175;
(D => Q) = 165;
(E => Q) = 162;
(F => Q) = 53;
endspecify
`endif
assign Q = LUT >> {F, E, D, C, B, A};
endmodule
(* abc9_lut=1, lib_whitebox *)
module MISTRAL_ALUT5(input A, B, C, D, E, output Q);
parameter [31:0] LUT = 32'h0000_0000;
`ifdef cyclonev
specify
(A => Q) = 583;
(B => Q) = 510;
(C => Q) = 512;
(D => Q) = 400;
(E => Q) = 97;
endspecify
`endif
`ifdef cyclone10gx
specify
(A => Q) = 272;
(B => Q) = 175;
(C => Q) = 165;
(D => Q) = 162;
(E => Q) = 53;
endspecify
`endif
assign Q = LUT >> {E, D, C, B, A};
endmodule
(* abc9_lut=1, lib_whitebox *)
module MISTRAL_ALUT4(input A, B, C, D, output Q);
parameter [15:0] LUT = 16'h0000;
`ifdef cyclonev
specify
(A => Q) = 510;
(B => Q) = 512;
(C => Q) = 400;
(D => Q) = 97;
endspecify
`endif
`ifdef cyclone10gx
specify
(A => Q) = 175;
(B => Q) = 165;
(C => Q) = 162;
(D => Q) = 53;
endspecify
`endif
assign Q = LUT >> {D, C, B, A};
endmodule
(* abc9_lut=1, lib_whitebox *)
module MISTRAL_ALUT3(input A, B, C, output Q);
parameter [7:0] LUT = 8'h00;
`ifdef cyclonev
specify
(A => Q) = 510;
(B => Q) = 400;
(C => Q) = 97;
endspecify
`endif
`ifdef cyclone10gx
specify
(A => Q) = 165;
(B => Q) = 162;
(C => Q) = 53;
endspecify
`endif
assign Q = LUT >> {C, B, A};
endmodule
(* abc9_lut=1, lib_whitebox *)
module MISTRAL_ALUT2(input A, B, output Q);
parameter [3:0] LUT = 4'h0;
`ifdef cyclonev
specify
(A => Q) = 400;
(B => Q) = 97;
endspecify
`endif
`ifdef cyclone10gx
specify
(A => Q) = 162;
(B => Q) = 53;
endspecify
`endif
assign Q = LUT >> {B, A};
endmodule
(* abc9_lut=1, lib_whitebox *)
module MISTRAL_NOT(input A, output Q);
`ifdef cyclonev
specify
(A => Q) = 97;
endspecify
`endif
`ifdef cyclone10gx
specify
(A => Q) = 53;
endspecify
`endif
assign Q = ~A;
endmodule
(* abc9_box, lib_whitebox *)
module MISTRAL_ALUT_ARITH(input A, B, C, D0, D1, (* abc9_carry *) input CI, output SO, (* abc9_carry *) output CO);
parameter LUT0 = 16'h0000;
parameter LUT1 = 16'h0000;
`ifdef cyclonev
specify
(A => SO) = 1342;
(B => SO) = 1323;
(C => SO) = 927;
(D0 => SO) = 887;
(D1 => SO) = 785;
(CI => SO) = 368;
(A => CO) = 1082;
(B => CO) = 1062;
(C => CO) = 813;
(D0 => CO) = 866;
(D1 => CO) = 1198;
(CI => CO) = 36; // Divided by 2 to account for there being two ALUT_ARITHs in an ALM)
endspecify
`endif
`ifdef cyclone10gx
specify
(A => SO) = 644;
(B => SO) = 477;
(C => SO) = 416;
(D0 => SO) = 380;
(D1 => SO) = 431;
(CI => SO) = 276;
(A => CO) = 525;
(B => CO) = 433;
(C => CO) = 712;
(D0 => CO) = 653;
(D1 => CO) = 593;
(CI => CO) = 16;
endspecify
`endif
wire q0, q1;
assign q0 = LUT0 >> {D0, C, B, A};
assign q1 = LUT1 >> {D1, C, B, A};
assign {CO, SO} = q0 + !q1 + CI;
endmodule
/*
// A, B, C0, C1, E0, E1, F0, F1: data inputs
// CARRYIN: carry input
// SHAREIN: shared-arithmetic input
// CLK0, CLK1, CLK2: clock inputs
//
// COMB0, COMB1: combinational outputs
// FF0, FF1, FF2, FF3: DFF outputs
// SUM0, SUM1: adder outputs
// CARRYOUT: carry output
// SHAREOUT: shared-arithmetic output
module MISTRAL_ALM(
input A, B, C0, C1, E0, E1, F0, F1, CARRYIN, SHAREIN, // LUT path
input CLK0, CLK1, CLK2, AC0, AC1, // FF path
output COMB0, COMB1, SUM0, SUM1, CARRYOUT, SHAREOUT,
output FF0, FF1, FF2, FF3
);
parameter LUT0 = 16'b0000;
parameter LUT1 = 16'b0000;
parameter LUT2 = 16'b0000;
parameter LUT3 = 16'b0000;
parameter INIT0 = 1'b0;
parameter INIT1 = 1'b0;
parameter INIT2 = 1'b0;
parameter INIT3 = 1'b0;
parameter C0_MUX = "C0";
parameter C1_MUX = "C1";
parameter F0_MUX = "VCC";
parameter F1_MUX = "GND";
parameter FEEDBACK0 = "FF0";
parameter FEEDBACK1 = "FF2";
parameter ADD_MUX = "LUT";
parameter DFF01_DATA_MUX = "COMB";
parameter DFF23_DATA_MUX = "COMB";
parameter DFF0_CLK = "CLK0";
parameter DFF1_CLK = "CLK0";
parameter DFF2_CLK = "CLK0";
parameter DFF3_CLK = "CLK0";
parameter DFF0_AC = "AC0";
parameter DFF1_AC = "AC0";
parameter DFF2_AC = "AC0";
parameter DFF3_AC = "AC0";
// Feedback muxes from the flip-flop outputs.
wire ff_feedback_mux0, ff_feedback_mux1;
// C-input muxes which can be set to also use the F-input.
wire c0_input_mux, c1_input_mux;
// F-input muxes which can be set to a constant to allow LUT5 use.
wire f0_input_mux, f1_input_mux;
// Adder input muxes to select between shared-arithmetic mode and arithmetic mode.
wire add0_input_mux, add1_input_mux;
// Combinational-output muxes for LUT #1 and LUT #3
wire lut1_comb_mux, lut3_comb_mux;
// Sum-output muxes for LUT #1 and LUT #3
wire lut1_sum_mux, lut3_sum_mux;
// DFF data-input muxes
wire dff01_data_mux, dff23_data_mux;
// DFF clock selectors
wire dff0_clk, dff1_clk, dff2_clk, dff3_clk;
// DFF asynchronous-clear selectors
wire dff0_ac, dff1_ac, dff2_ac, dff3_ac;
// LUT, DFF and adder output wires for routing.
wire lut0_out, lut1a_out, lut1b_out, lut2_out, lut3a_out, lut3b_out;
wire dff0_out, dff1_out, dff2_out, dff3_out;
wire add0_sum, add1_sum, add0_carry, add1_carry;
generate
if (FEEDBACK0 === "FF0")
assign ff_feedback_mux0 = dff0_out;
else if (FEEDBACK0 === "FF1")
assign ff_feedback_mux0 = dff1_out;
else
$error("Invalid FEEDBACK0 setting!");
if (FEEDBACK1 == "FF2")
assign ff_feedback_mux1 = dff2_out;
else if (FEEDBACK1 == "FF3")
assign ff_feedback_mux1 = dff3_out;
else
$error("Invalid FEEDBACK1 setting!");
if (C0_MUX === "C0")
assign c0_input_mux = C0;
else if (C0_MUX === "F1")
assign c0_input_mux = F1;
else if (C0_MUX === "FEEDBACK1")
assign c0_input_mux = ff_feedback_mux1;
else
$error("Invalid C0_MUX setting!");
if (C1_MUX === "C1")
assign c1_input_mux = C1;
else if (C1_MUX === "F0")
assign c1_input_mux = F0;
else if (C1_MUX === "FEEDBACK0")
assign c1_input_mux = ff_feedback_mux0;
else
$error("Invalid C1_MUX setting!");
// F0 == VCC is LUT5
// F0 == F0 is LUT6
// F0 == FEEDBACK is unknown
if (F0_MUX === "VCC")
assign f0_input_mux = 1'b1;
else if (F0_MUX === "F0")
assign f0_input_mux = F0;
else if (F0_MUX === "FEEDBACK0")
assign f0_input_mux = ff_feedback_mux0;
else
$error("Invalid F0_MUX setting!");
// F1 == GND is LUT5
// F1 == F1 is LUT6
// F1 == FEEDBACK is unknown
if (F1_MUX === "GND")
assign f1_input_mux = 1'b0;
else if (F1_MUX === "F1")
assign f1_input_mux = F1;
else if (F1_MUX === "FEEDBACK1")
assign f1_input_mux = ff_feedback_mux1;
else
$error("Invalid F1_MUX setting!");
if (ADD_MUX === "LUT") begin
assign add0_input_mux = ~lut1_sum_mux;
assign add1_input_mux = ~lut3_sum_mux;
end else if (ADD_MUX === "SHARE") begin
assign add0_input_mux = SHAREIN;
assign add1_input_mux = lut1_comb_mux;
end else
$error("Invalid ADD_MUX setting!");
if (DFF01_DATA_MUX === "COMB")
assign dff01_data_mux = COMB0;
else if (DFF01_DATA_MUX === "SUM")
assign dff01_data_mux = SUM0;
else
$error("Invalid DFF01_DATA_MUX setting!");
if (DFF23_DATA_MUX === "COMB")
assign dff23_data_mux = COMB0;
else if (DFF23_DATA_MUX === "SUM")
assign dff23_data_mux = SUM0;
else
$error("Invalid DFF23_DATA_MUX setting!");
if (DFF0_CLK === "CLK0")
assign dff0_clk = CLK0;
else if (DFF0_CLK === "CLK1")
assign dff0_clk = CLK1;
else if (DFF0_CLK === "CLK2")
assign dff0_clk = CLK2;
else
$error("Invalid DFF0_CLK setting!");
if (DFF1_CLK === "CLK0")
assign dff1_clk = CLK0;
else if (DFF1_CLK === "CLK1")
assign dff1_clk = CLK1;
else if (DFF1_CLK === "CLK2")
assign dff1_clk = CLK2;
else
$error("Invalid DFF1_CLK setting!");
if (DFF2_CLK === "CLK0")
assign dff2_clk = CLK0;
else if (DFF2_CLK === "CLK1")
assign dff2_clk = CLK1;
else if (DFF2_CLK === "CLK2")
assign dff2_clk = CLK2;
else
$error("Invalid DFF2_CLK setting!");
if (DFF3_CLK === "CLK0")
assign dff3_clk = CLK0;
else if (DFF3_CLK === "CLK1")
assign dff3_clk = CLK1;
else if (DFF3_CLK === "CLK2")
assign dff3_clk = CLK2;
else
$error("Invalid DFF3_CLK setting!");
if (DFF0_AC === "AC0")
assign dff0_ac = AC0;
else if (DFF0_AC === "AC1")
assign dff0_ac = AC1;
else
$error("Invalid DFF0_AC setting!");
if (DFF1_AC === "AC0")
assign dff1_ac = AC0;
else if (DFF1_AC === "AC1")
assign dff1_ac = AC1;
else
$error("Invalid DFF1_AC setting!");
if (DFF2_AC === "AC0")
assign dff2_ac = AC0;
else if (DFF2_AC === "AC1")
assign dff2_ac = AC1;
else
$error("Invalid DFF2_AC setting!");
if (DFF3_AC === "AC0")
assign dff3_ac = AC0;
else if (DFF3_AC === "AC1")
assign dff3_ac = AC1;
else
$error("Invalid DFF3_AC setting!");
endgenerate
// F0 on the Quartus diagram
MISTRAL_ALUT4 #(.LUT(LUT0)) lut0 (.A(A), .B(B), .C(C0), .D(c1_input_mux), .Q(lut0_out));
// F2 on the Quartus diagram
MISTRAL_ALUT4 #(.LUT(LUT1)) lut1_comb (.A(A), .B(B), .C(C0), .D(c1_input_mux), .Q(lut1_comb_mux));
MISTRAL_ALUT4 #(.LUT(LUT1)) lut1_sum (.A(A), .B(B), .C(C0), .D(E0), .Q(lut1_sum_mux));
// F1 on the Quartus diagram
MISTRAL_ALUT4 #(.LUT(LUT2)) lut2 (.A(A), .B(B), .C(C1), .D(c0_input_mux), .Q(lut2_out));
// F3 on the Quartus diagram
MISTRAL_ALUT4 #(.LUT(LUT3)) lut3_comb (.A(A), .B(B), .C(C1), .D(c0_input_mux), .Q(lut3_comb_mux));
MISTRAL_ALUT4 #(.LUT(LUT3)) lut3_sum (.A(A), .B(B), .C(C1), .D(E1), .Q(lut3_sum_mux));
MISTRAL_FF #(.INIT(INIT0)) dff0 (.D(dff01_data_mux), .CLK(dff0_clk), .ACn(dff0_ac), .Q(dff0_out));
MISTRAL_FF #(.INIT(INIT1)) dff1 (.D(dff01_data_mux), .CLK(dff1_clk), .ACn(dff1_ac), .Q(dff1_out));
MISTRAL_FF #(.INIT(INIT2)) dff2 (.D(dff23_data_mux), .CLK(dff2_clk), .ACn(dff2_ac), .Q(dff2_out));
MISTRAL_FF #(.INIT(INIT3)) dff3 (.D(dff23_data_mux), .CLK(dff3_clk), .ACn(dff3_ac), .Q(dff3_out));
// Adders
assign {add0_carry, add0_sum} = CARRYIN + lut0_out + lut1_sum_mux;
assign {add1_carry, add1_sum} = add0_carry + lut2_out + lut3_sum_mux;
// COMBOUT outputs on the Quartus diagram
assign COMB0 = E0 ? (f0_input_mux ? lut3_comb_mux : lut1_comb_mux)
: (f0_input_mux ? lut2_out : lut0_out);
assign COMB1 = E1 ? (f1_input_mux ? lut3_comb_mux : lut1_comb_mux)
: (f1_input_mux ? lut2_out : lut0_out);
// SUMOUT output on the Quartus diagram
assign SUM0 = add0_sum;
assign SUM1 = add1_sum;
// COUT output on the Quartus diagram
assign CARRYOUT = add1_carry;
// SHAREOUT output on the Quartus diagram
assign SHAREOUT = lut3_comb_mux;
// REGOUT outputs on the Quartus diagram
assign FF0 = dff0_out;
assign FF1 = dff1_out;
assign FF2 = dff2_out;
assign FF3 = dff3_out;
endmodule
*/

View file

@ -0,0 +1,18 @@
bram MISTRAL_MLAB
init 0 # TODO: Re-enable when Yosys remembers the original filename.
abits 5
dbits 1
groups 2
ports 1 1
wrmode 1 0
# write enable
enable 1 0
transp 0 0
clocks 1 0
clkpol 1 1
endbram
match MISTRAL_MLAB
min efficiency 5
make_outreg
endmatch

View file

@ -0,0 +1,629 @@
// Intel megafunction declarations, to avoid Yosys complaining.
`default_nettype none
(* blackbox *)
module altera_pll
#(
parameter reference_clock_frequency = "0 ps",
parameter fractional_vco_multiplier = "false",
parameter pll_type = "General",
parameter pll_subtype = "General",
parameter number_of_clocks = 1,
parameter operation_mode = "internal feedback",
parameter deserialization_factor = 4,
parameter data_rate = 0,
parameter sim_additional_refclk_cycles_to_lock = 0,
parameter output_clock_frequency0 = "0 ps",
parameter phase_shift0 = "0 ps",
parameter duty_cycle0 = 50,
parameter output_clock_frequency1 = "0 ps",
parameter phase_shift1 = "0 ps",
parameter duty_cycle1 = 50,
parameter output_clock_frequency2 = "0 ps",
parameter phase_shift2 = "0 ps",
parameter duty_cycle2 = 50,
parameter output_clock_frequency3 = "0 ps",
parameter phase_shift3 = "0 ps",
parameter duty_cycle3 = 50,
parameter output_clock_frequency4 = "0 ps",
parameter phase_shift4 = "0 ps",
parameter duty_cycle4 = 50,
parameter output_clock_frequency5 = "0 ps",
parameter phase_shift5 = "0 ps",
parameter duty_cycle5 = 50,
parameter output_clock_frequency6 = "0 ps",
parameter phase_shift6 = "0 ps",
parameter duty_cycle6 = 50,
parameter output_clock_frequency7 = "0 ps",
parameter phase_shift7 = "0 ps",
parameter duty_cycle7 = 50,
parameter output_clock_frequency8 = "0 ps",
parameter phase_shift8 = "0 ps",
parameter duty_cycle8 = 50,
parameter output_clock_frequency9 = "0 ps",
parameter phase_shift9 = "0 ps",
parameter duty_cycle9 = 50,
parameter output_clock_frequency10 = "0 ps",
parameter phase_shift10 = "0 ps",
parameter duty_cycle10 = 50,
parameter output_clock_frequency11 = "0 ps",
parameter phase_shift11 = "0 ps",
parameter duty_cycle11 = 50,
parameter output_clock_frequency12 = "0 ps",
parameter phase_shift12 = "0 ps",
parameter duty_cycle12 = 50,
parameter output_clock_frequency13 = "0 ps",
parameter phase_shift13 = "0 ps",
parameter duty_cycle13 = 50,
parameter output_clock_frequency14 = "0 ps",
parameter phase_shift14 = "0 ps",
parameter duty_cycle14 = 50,
parameter output_clock_frequency15 = "0 ps",
parameter phase_shift15 = "0 ps",
parameter duty_cycle15 = 50,
parameter output_clock_frequency16 = "0 ps",
parameter phase_shift16 = "0 ps",
parameter duty_cycle16 = 50,
parameter output_clock_frequency17 = "0 ps",
parameter phase_shift17 = "0 ps",
parameter duty_cycle17 = 50,
parameter clock_name_0 = "",
parameter clock_name_1 = "",
parameter clock_name_2 = "",
parameter clock_name_3 = "",
parameter clock_name_4 = "",
parameter clock_name_5 = "",
parameter clock_name_6 = "",
parameter clock_name_7 = "",
parameter clock_name_8 = "",
parameter clock_name_global_0 = "false",
parameter clock_name_global_1 = "false",
parameter clock_name_global_2 = "false",
parameter clock_name_global_3 = "false",
parameter clock_name_global_4 = "false",
parameter clock_name_global_5 = "false",
parameter clock_name_global_6 = "false",
parameter clock_name_global_7 = "false",
parameter clock_name_global_8 = "false",
parameter m_cnt_hi_div = 1,
parameter m_cnt_lo_div = 1,
parameter m_cnt_bypass_en = "false",
parameter m_cnt_odd_div_duty_en = "false",
parameter n_cnt_hi_div = 1,
parameter n_cnt_lo_div = 1,
parameter n_cnt_bypass_en = "false",
parameter n_cnt_odd_div_duty_en = "false",
parameter c_cnt_hi_div0 = 1,
parameter c_cnt_lo_div0 = 1,
parameter c_cnt_bypass_en0 = "false",
parameter c_cnt_in_src0 = "ph_mux_clk",
parameter c_cnt_odd_div_duty_en0 = "false",
parameter c_cnt_prst0 = 1,
parameter c_cnt_ph_mux_prst0 = 0,
parameter c_cnt_hi_div1 = 1,
parameter c_cnt_lo_div1 = 1,
parameter c_cnt_bypass_en1 = "false",
parameter c_cnt_in_src1 = "ph_mux_clk",
parameter c_cnt_odd_div_duty_en1 = "false",
parameter c_cnt_prst1 = 1,
parameter c_cnt_ph_mux_prst1 = 0,
parameter c_cnt_hi_div2 = 1,
parameter c_cnt_lo_div2 = 1,
parameter c_cnt_bypass_en2 = "false",
parameter c_cnt_in_src2 = "ph_mux_clk",
parameter c_cnt_odd_div_duty_en2 = "false",
parameter c_cnt_prst2 = 1,
parameter c_cnt_ph_mux_prst2 = 0,
parameter c_cnt_hi_div3 = 1,
parameter c_cnt_lo_div3 = 1,
parameter c_cnt_bypass_en3 = "false",
parameter c_cnt_in_src3 = "ph_mux_clk",
parameter c_cnt_odd_div_duty_en3 = "false",
parameter c_cnt_prst3 = 1,
parameter c_cnt_ph_mux_prst3 = 0,
parameter c_cnt_hi_div4 = 1,
parameter c_cnt_lo_div4 = 1,
parameter c_cnt_bypass_en4 = "false",
parameter c_cnt_in_src4 = "ph_mux_clk",
parameter c_cnt_odd_div_duty_en4 = "false",
parameter c_cnt_prst4 = 1,
parameter c_cnt_ph_mux_prst4 = 0,
parameter c_cnt_hi_div5 = 1,
parameter c_cnt_lo_div5 = 1,
parameter c_cnt_bypass_en5 = "false",
parameter c_cnt_in_src5 = "ph_mux_clk",
parameter c_cnt_odd_div_duty_en5 = "false",
parameter c_cnt_prst5 = 1,
parameter c_cnt_ph_mux_prst5 = 0,
parameter c_cnt_hi_div6 = 1,
parameter c_cnt_lo_div6 = 1,
parameter c_cnt_bypass_en6 = "false",
parameter c_cnt_in_src6 = "ph_mux_clk",
parameter c_cnt_odd_div_duty_en6 = "false",
parameter c_cnt_prst6 = 1,
parameter c_cnt_ph_mux_prst6 = 0,
parameter c_cnt_hi_div7 = 1,
parameter c_cnt_lo_div7 = 1,
parameter c_cnt_bypass_en7 = "false",
parameter c_cnt_in_src7 = "ph_mux_clk",
parameter c_cnt_odd_div_duty_en7 = "false",
parameter c_cnt_prst7 = 1,
parameter c_cnt_ph_mux_prst7 = 0,
parameter c_cnt_hi_div8 = 1,
parameter c_cnt_lo_div8 = 1,
parameter c_cnt_bypass_en8 = "false",
parameter c_cnt_in_src8 = "ph_mux_clk",
parameter c_cnt_odd_div_duty_en8 = "false",
parameter c_cnt_prst8 = 1,
parameter c_cnt_ph_mux_prst8 = 0,
parameter c_cnt_hi_div9 = 1,
parameter c_cnt_lo_div9 = 1,
parameter c_cnt_bypass_en9 = "false",
parameter c_cnt_in_src9 = "ph_mux_clk",
parameter c_cnt_odd_div_duty_en9 = "false",
parameter c_cnt_prst9 = 1,
parameter c_cnt_ph_mux_prst9 = 0,
parameter c_cnt_hi_div10 = 1,
parameter c_cnt_lo_div10 = 1,
parameter c_cnt_bypass_en10 = "false",
parameter c_cnt_in_src10 = "ph_mux_clk",
parameter c_cnt_odd_div_duty_en10 = "false",
parameter c_cnt_prst10 = 1,
parameter c_cnt_ph_mux_prst10 = 0,
parameter c_cnt_hi_div11 = 1,
parameter c_cnt_lo_div11 = 1,
parameter c_cnt_bypass_en11 = "false",
parameter c_cnt_in_src11 = "ph_mux_clk",
parameter c_cnt_odd_div_duty_en11 = "false",
parameter c_cnt_prst11 = 1,
parameter c_cnt_ph_mux_prst11 = 0,
parameter c_cnt_hi_div12 = 1,
parameter c_cnt_lo_div12 = 1,
parameter c_cnt_bypass_en12 = "false",
parameter c_cnt_in_src12 = "ph_mux_clk",
parameter c_cnt_odd_div_duty_en12 = "false",
parameter c_cnt_prst12 = 1,
parameter c_cnt_ph_mux_prst12 = 0,
parameter c_cnt_hi_div13 = 1,
parameter c_cnt_lo_div13 = 1,
parameter c_cnt_bypass_en13 = "false",
parameter c_cnt_in_src13 = "ph_mux_clk",
parameter c_cnt_odd_div_duty_en13 = "false",
parameter c_cnt_prst13 = 1,
parameter c_cnt_ph_mux_prst13 = 0,
parameter c_cnt_hi_div14 = 1,
parameter c_cnt_lo_div14 = 1,
parameter c_cnt_bypass_en14 = "false",
parameter c_cnt_in_src14 = "ph_mux_clk",
parameter c_cnt_odd_div_duty_en14 = "false",
parameter c_cnt_prst14 = 1,
parameter c_cnt_ph_mux_prst14 = 0,
parameter c_cnt_hi_div15 = 1,
parameter c_cnt_lo_div15 = 1,
parameter c_cnt_bypass_en15 = "false",
parameter c_cnt_in_src15 = "ph_mux_clk",
parameter c_cnt_odd_div_duty_en15 = "false",
parameter c_cnt_prst15 = 1,
parameter c_cnt_ph_mux_prst15 = 0,
parameter c_cnt_hi_div16 = 1,
parameter c_cnt_lo_div16 = 1,
parameter c_cnt_bypass_en16 = "false",
parameter c_cnt_in_src16 = "ph_mux_clk",
parameter c_cnt_odd_div_duty_en16 = "false",
parameter c_cnt_prst16 = 1,
parameter c_cnt_ph_mux_prst16 = 0,
parameter c_cnt_hi_div17 = 1,
parameter c_cnt_lo_div17 = 1,
parameter c_cnt_bypass_en17 = "false",
parameter c_cnt_in_src17 = "ph_mux_clk",
parameter c_cnt_odd_div_duty_en17 = "false",
parameter c_cnt_prst17 = 1,
parameter c_cnt_ph_mux_prst17 = 0,
parameter pll_vco_div = 1,
parameter pll_slf_rst = "false",
parameter pll_bw_sel = "low",
parameter pll_output_clk_frequency = "0 MHz",
parameter pll_cp_current = 0,
parameter pll_bwctrl = 0,
parameter pll_fractional_division = 1,
parameter pll_fractional_cout = 24,
parameter pll_dsm_out_sel = "1st_order",
parameter mimic_fbclk_type = "gclk",
parameter pll_fbclk_mux_1 = "glb",
parameter pll_fbclk_mux_2 = "fb_1",
parameter pll_m_cnt_in_src = "ph_mux_clk",
parameter pll_vcoph_div = 1,
parameter refclk1_frequency = "0 MHz",
parameter pll_clkin_0_src = "clk_0",
parameter pll_clkin_1_src = "clk_0",
parameter pll_clk_loss_sw_en = "false",
parameter pll_auto_clk_sw_en = "false",
parameter pll_manu_clk_sw_en = "false",
parameter pll_clk_sw_dly = 0,
parameter pll_extclk_0_cnt_src = "pll_extclk_cnt_src_vss",
parameter pll_extclk_1_cnt_src = "pll_extclk_cnt_src_vss"
) (
//input
input refclk,
input refclk1,
input fbclk,
input rst,
input phase_en,
input updn,
input [2:0] num_phase_shifts,
input scanclk,
input [4:0] cntsel,
input [63:0] reconfig_to_pll,
input extswitch,
input adjpllin,
input cclk,
//output
output [ number_of_clocks -1 : 0] outclk,
output fboutclk,
output locked,
output phase_done,
output [63:0] reconfig_from_pll,
output activeclk,
output [1:0] clkbad,
output [7:0] phout,
output [1:0] lvds_clk,
output [1:0] loaden,
output [1:0] extclk_out,
output [ number_of_clocks -1 : 0] cascade_out,
//inout
inout zdbfbclk
);
endmodule
(* blackbox *)
module altera_std_synchronizer(clk, din, dout, reset_n);
parameter depth = 2;
input clk;
input reset_n;
input din;
output dout;
endmodule
(* blackbox *)
module altddio_in (
datain, // required port, DDR input data
inclock, // required port, input reference clock to sample data by
inclocken, // enable data clock
aset, // asynchronous set
aclr, // asynchronous clear
sset, // synchronous set
sclr, // synchronous clear
dataout_h, // data sampled at the rising edge of inclock
dataout_l // data sampled at the falling edge of inclock
);
parameter width = 1;
parameter power_up_high = "OFF";
parameter invert_input_clocks = "OFF";
parameter intended_device_family = "Stratix";
parameter lpm_type = "altddio_in";
parameter lpm_hint = "UNUSED";
input [width-1:0] datain;
input inclock;
input inclocken;
input aset;
input aclr;
input sset;
input sclr;
output [width-1:0] dataout_h;
output [width-1:0] dataout_l;
endmodule
(* blackbox *)
module altddio_out (
datain_h,
datain_l,
outclock,
outclocken,
aset,
aclr,
sset,
sclr,
oe,
dataout,
oe_out
);
parameter width = 1;
parameter power_up_high = "OFF";
parameter oe_reg = "UNUSED";
parameter extend_oe_disable = "UNUSED";
parameter intended_device_family = "Stratix";
parameter invert_output = "OFF";
parameter lpm_type = "altddio_out";
parameter lpm_hint = "UNUSED";
input [width-1:0] datain_h;
input [width-1:0] datain_l;
input outclock;
input outclocken;
input aset;
input aclr;
input sset;
input sclr;
input oe;
output [width-1:0] dataout;
output [width-1:0] oe_out;
endmodule
(* blackbox *)
module altddio_bidir (
datain_h,
datain_l,
inclock,
inclocken,
outclock,
outclocken,
aset,
aclr,
sset,
sclr,
oe,
dataout_h,
dataout_l,
combout,
oe_out,
dqsundelayedout,
padio
);
// GLOBAL PARAMETER DECLARATION
parameter width = 1; // required parameter
parameter power_up_high = "OFF";
parameter oe_reg = "UNUSED";
parameter extend_oe_disable = "UNUSED";
parameter implement_input_in_lcell = "UNUSED";
parameter invert_output = "OFF";
parameter intended_device_family = "Stratix";
parameter lpm_type = "altddio_bidir";
parameter lpm_hint = "UNUSED";
// INPUT PORT DECLARATION
input [width-1:0] datain_h;
input [width-1:0] datain_l;
input inclock;
input inclocken;
input outclock;
input outclocken;
input aset;
input aclr;
input sset;
input sclr;
input oe;
// OUTPUT PORT DECLARATION
output [width-1:0] dataout_h;
output [width-1:0] dataout_l;
output [width-1:0] combout;
output [width-1:0] oe_out;
output [width-1:0] dqsundelayedout;
// BIDIRECTIONAL PORT DECLARATION
inout [width-1:0] padio;
endmodule
(* blackbox *)
module altiobuf_in(datain, dataout);
parameter enable_bus_hold = "FALSE";
parameter use_differential_mode = "FALSE";
parameter number_of_channels = 1;
input [number_of_channels-1:0] datain;
output [number_of_channels-1:0] dataout;
endmodule
(* blackbox *)
module altiobuf_out(datain, dataout);
parameter enable_bus_hold = "FALSE";
parameter use_differential_mode = "FALSE";
parameter use_oe = "FALSE";
parameter number_of_channels = 1;
input [number_of_channels-1:0] datain;
output [number_of_channels-1:0] dataout;
endmodule
(* blackbox *)
module altiobuf_bidir(dataio, oe, datain, dataout);
parameter number_of_channels = 1;
parameter enable_bus_hold = "OFF";
inout [number_of_channels-1:0] dataio;
input [number_of_channels-1:0] datain;
output [number_of_channels-1:0] dataout;
input [number_of_channels-1:0] oe;
endmodule
(* blackbox *)
module altsyncram(clock0, clock1, address_a, data_a, rden_a, wren_a, byteena_a, q_a, addressstall_a, address_b, data_b, rden_b, wren_b, byteena_b, q_b, addressstall_b, clocken0, clocken1, clocken2, clocken3, aclr0, aclr1, eccstatus);
parameter lpm_type = "altsyncram";
parameter operation_mode = "dual_port";
parameter ram_block_type = "auto";
parameter intended_device_family = "auto";
parameter power_up_uninitialized = "false";
parameter read_during_write_mode_mixed_ports = "dontcare";
parameter byte_size = 8;
parameter widthad_a = 1;
parameter width_a = 1;
parameter width_byteena_a = 1;
parameter numwords_a = 1;
parameter clock_enable_input_a = "clocken0";
parameter widthad_b = 1;
parameter width_b = 1;
parameter numwords_b = 1;
parameter address_aclr_b = "aclr0";
parameter address_reg_b = "";
parameter outdata_aclr_b = "aclr0";
parameter outdata_reg_b = "";
parameter clock_enable_input_b = "clocken0";
parameter clock_enable_output_b = "clocken0";
input clock0, clock1;
input [widthad_a-1:0] address_a;
input [width_a-1:0] data_a;
input rden_a;
input wren_a;
input [(width_a/8)-1:0] byteena_a;
input addressstall_a;
output [width_a-1:0] q_a;
input wren_b;
input rden_b;
input [widthad_b-1:0] address_b;
input [width_b-1:0] data_b;
input [(width_b/8)-1:0] byteena_b;
input addressstall_b;
output [width_b-1:0] q_b;
input clocken0;
input clocken1;
input clocken2;
input clocken3;
input aclr0;
input aclr1;
output eccstatus;
endmodule
(* blackbox *)
module cyclonev_mlab_cell(portaaddr, portadatain, portbaddr, portbdataout, ena0, clk0, clk1);
parameter logical_ram_name = "";
parameter logical_ram_depth = 32;
parameter logical_ram_width = 20;
parameter mixed_port_feed_through_mode = "new";
parameter first_bit_number = 0;
parameter first_address = 0;
parameter last_address = 31;
parameter address_width = 5;
parameter data_width = 1;
parameter byte_enable_mask_width = 1;
parameter port_b_data_out_clock = "NONE";
parameter [639:0] mem_init0 = 640'b0;
input [address_width-1:0] portaaddr, portbaddr;
input [data_width-1:0] portadatain;
output [data_width-1:0] portbdataout;
input ena0, clk0, clk1;
endmodule
(* blackbox *)
module cyclonev_mac(ax, ay, resulta);
parameter ax_width = 9;
parameter signed_max = "true";
parameter ay_scan_in_width = 9;
parameter signed_may = "true";
parameter result_a_width = 18;
parameter operation_mode = "M9x9";
input [ax_width-1:0] ax;
input [ay_scan_in_width-1:0] ay;
output [result_a_width-1:0] resulta;
endmodule
(* blackbox *)
module cyclone10gx_mac(ax, ay, resulta);
parameter ax_width = 18;
parameter signed_max = "true";
parameter ay_scan_in_width = 18;
parameter signed_may = "true";
parameter result_a_width = 36;
parameter operation_mode = "M18X18_FULL";
input [ax_width-1:0] ax;
input [ay_scan_in_width-1:0] ay;
output [result_a_width-1:0] resulta;
endmodule
(* blackbox *)
module cyclonev_ram_block(portaaddr, portadatain, portawe, portbaddr, portbdataout, portbre, clk0);
parameter operation_mode = "dual_port";
parameter logical_ram_name = "";
parameter port_a_address_width = 10;
parameter port_a_data_width = 10;
parameter port_a_logical_ram_depth = 1024;
parameter port_a_logical_ram_width = 10;
parameter port_a_first_address = 0;
parameter port_a_last_address = 1023;
parameter port_a_first_bit_number = 0;
parameter port_b_address_width = 10;
parameter port_b_data_width = 10;
parameter port_b_logical_ram_depth = 1024;
parameter port_b_logical_ram_width = 10;
parameter port_b_first_address = 0;
parameter port_b_last_address = 1023;
parameter port_b_first_bit_number = 0;
parameter port_b_address_clock = "clock0";
parameter port_b_read_enable_clock = "clock0";
parameter mem_init0 = "";
parameter mem_init1 = "";
parameter mem_init2 = "";
parameter mem_init3 = "";
parameter mem_init4 = "";
input [port_a_address_width-1:0] portaaddr;
input [port_b_address_width-1:0] portbaddr;
input [port_a_data_width-1:0] portadatain;
output [port_b_data_width-1:0] portbdataout;
input clk0, portawe, portbre;
endmodule

View file

@ -0,0 +1,109 @@
// The MLAB
// --------
// In addition to Logic Array Blocks (LABs) that contain ten Adaptive Logic
// Modules (ALMs, see alm_sim.v), the Cyclone V/10GX also contain
// Memory/Logic Array Blocks (MLABs) that can act as either ten ALMs, or utilise
// the memory the ALM uses to store the look-up table data for general usage,
// producing a 32 address by 20-bit block of memory. MLABs are spread out
// around the chip, so they can be placed near where they are needed, rather than
// being comparatively limited in placement for a deep but narrow memory such as
// the M10K memory block.
//
// MLABs are used mainly for shallow but wide memories, such as CPU register
// files (which have perhaps 32 registers that are comparatively wide (16/32-bit))
// or shift registers (by using the output of the Nth bit as input for the N+1th
// bit).
//
// Oddly, instead of providing a block 32 address by 20-bit cell, Quartus asks
// synthesis tools to build MLABs out of 32 address by 1-bit cells, and tries
// to put these cells in the same MLAB during cell placement. Because of this
// a MISTRAL_MLAB cell represents one of these 32 address by 1-bit cells, and
// 20 of them represent a physical MLAB.
//
// How the MLAB works
// ------------------
// MLABs are poorly documented, so the following information is based mainly
// on the simulation model and my knowledge of how memories like these work.
// Additionally, note that the ports of MISTRAL_MLAB are the ones auto-generated
// by the Yosys `memory_bram` pass, and it doesn't make sense to me to use
// `techmap` just for the sake of renaming the cell ports.
//
// The MLAB can be initialised to any value, but unfortunately Quartus only
// allows memory initialisation from a file. Since Yosys doesn't preserve input
// file information, or write the contents of an `initial` block to a file,
// Yosys can't currently initialise the MLAB in a way Quartus will accept.
//
// The MLAB takes in data from A1DATA at the rising edge of CLK1, and if A1EN
// is high, writes it to the address in A1ADDR. A1EN can therefore be used to
// conditionally write data to the MLAB.
//
// Simultaneously, the MLAB reads data from B1ADDR, and outputs it to B1DATA,
// asynchronous to CLK1 and ignoring A1EN. If a synchronous read is needed
// then the output can be fed to embedded flops. Presently, Yosys assumes
// Quartus will pack external flops into the MLAB, but this is an assumption
// that needs testing.
// The vendor sim model outputs 'x for a very short period (a few
// combinational delta cycles) after each write. This has been omitted from
// the following model because it's very difficult to trigger this in practice
// as clock cycles will be much longer than any potential blip of 'x, so the
// model can be treated as always returning a defined result.
(* abc9_box, lib_whitebox *)
module MISTRAL_MLAB(input [4:0] A1ADDR, input A1DATA, A1EN, CLK1, input [4:0] B1ADDR, output B1DATA);
reg [31:0] mem = 32'b0;
// TODO: Cyclone 10 GX timings; the below timings are for Cyclone V
specify
$setup(A1ADDR, posedge CLK1, 86);
$setup(A1DATA, posedge CLK1, 86);
$setup(A1EN, posedge CLK1, 86);
(B1ADDR[0] => B1DATA) = 487;
(B1ADDR[1] => B1DATA) = 475;
(B1ADDR[2] => B1DATA) = 382;
(B1ADDR[3] => B1DATA) = 284;
(B1ADDR[4] => B1DATA) = 96;
endspecify
always @(posedge CLK1)
if (A1EN) mem[A1ADDR] <= A1DATA;
assign B1DATA = mem[B1ADDR];
endmodule
// The M10K
// --------
// TODO
module MISTRAL_M10K(CLK1, A1ADDR, A1DATA, A1EN, B1ADDR, B1DATA, B1EN);
parameter CFG_ABITS = 10;
parameter CFG_DBITS = 10;
input CLK1;
input [CFG_ABITS-1:0] A1ADDR, B1ADDR;
input [CFG_DBITS-1:0] A1DATA;
input A1EN, B1EN;
output reg [CFG_DBITS-1:0] B1DATA;
reg [2**CFG_ABITS * CFG_DBITS - 1 : 0] mem = 0;
specify
$setup(A1ADDR, posedge CLK1, 0);
$setup(A1DATA, posedge CLK1, 0);
if (B1EN) (posedge CLK1 => (B1DATA : A1DATA)) = 0;
endspecify
always @(posedge CLK1) begin
if (A1EN)
mem[(A1ADDR + 1) * CFG_DBITS - 1 : A1ADDR * CFG_DBITS] <= A1DATA;
if (B1EN)
B1DATA <= mem[(B1ADDR + 1) * CFG_DBITS - 1 : B1ADDR * CFG_DBITS];
end
endmodule

View file

@ -0,0 +1,235 @@
`ifdef cyclonev
`define LCELL cyclonev_lcell_comb
`define MAC cyclonev_mac
`define MLAB cyclonev_mlab_cell
`endif
`ifdef cyclone10gx
`define LCELL cyclone10gx_lcell_comb
`define MAC cyclone10gx_mac
`define MLAB cyclone10gx_mlab_cell
`endif
module __MISTRAL_VCC(output Q);
MISTRAL_ALUT2 #(.LUT(4'b1111)) _TECHMAP_REPLACE_ (.A(1'b1), .B(1'b1), .Q(Q));
endmodule
module __MISTRAL_GND(output Q);
MISTRAL_ALUT2 #(.LUT(4'b0000)) _TECHMAP_REPLACE_ (.A(1'b1), .B(1'b1), .Q(Q));
endmodule
module MISTRAL_FF(input DATAIN, CLK, ACLR, ENA, SCLR, SLOAD, SDATA, output reg Q);
dffeas #(.power_up("low"), .is_wysiwyg("true")) _TECHMAP_REPLACE_ (.d(DATAIN), .clk(CLK), .clrn(ACLR), .ena(ENA), .sclr(SCLR), .sload(SLOAD), .asdata(SDATA), .q(Q));
endmodule
module MISTRAL_ALUT6(input A, B, C, D, E, F, output Q);
parameter [63:0] LUT = 64'h0000_0000_0000_0000;
`LCELL #(.lut_mask(LUT)) _TECHMAP_REPLACE_ (.dataa(A), .datab(B), .datac(C), .datad(D), .datae(E), .dataf(F), .combout(Q));
endmodule
module MISTRAL_ALUT5(input A, B, C, D, E, output Q);
parameter [31:0] LUT = 32'h0000_0000;
`LCELL #(.lut_mask({2{LUT}})) _TECHMAP_REPLACE_ (.dataa(A), .datab(B), .datac(C), .datad(D), .datae(E), .combout(Q));
endmodule
module MISTRAL_ALUT4(input A, B, C, D, output Q);
parameter [15:0] LUT = 16'h0000;
`LCELL #(.lut_mask({4{LUT}})) _TECHMAP_REPLACE_ (.dataa(A), .datab(B), .datac(C), .datad(D), .combout(Q));
endmodule
module MISTRAL_ALUT3(input A, B, C, output Q);
parameter [7:0] LUT = 8'h00;
`LCELL #(.lut_mask({8{LUT}})) _TECHMAP_REPLACE_ (.dataa(A), .datab(B), .datac(C), .combout(Q));
endmodule
module MISTRAL_ALUT2(input A, B, output Q);
parameter [3:0] LUT = 4'h0;
`LCELL #(.lut_mask({16{LUT}})) _TECHMAP_REPLACE_ (.dataa(A), .datab(B), .combout(Q));
endmodule
module MISTRAL_NOT(input A, output Q);
NOT _TECHMAP_REPLACE_ (.IN(A), .OUT(Q));
endmodule
module MISTRAL_ALUT_ARITH(input A, B, C, D0, D1, CI, output SO, CO);
parameter LUT0 = 16'h0000;
parameter LUT1 = 16'h0000;
`LCELL #(.lut_mask({16'h0, LUT1, 16'h0, LUT0})) _TECHMAP_REPLACE_ (.dataa(A), .datab(B), .datac(C), .datad(D0), .dataf(D1), .cin(CI), .sumout(SO), .cout(CO));
endmodule
module MISTRAL_MLAB(input [4:0] A1ADDR, input A1DATA, A1EN, CLK1, input [4:0] B1ADDR, output B1DATA);
parameter _TECHMAP_CELLNAME_ = "";
// Here we get to an unfortunate situation. The cell has a mem_init0 parameter,
// which takes in a hexadecimal string that could be used to initialise RAM.
// In the vendor simulation models, this appears to work fine, but Quartus,
// either intentionally or not, forgets about this parameter and initialises the
// RAM to zero.
//
// Because of this, RAM initialisation is presently disabled, but the source
// used to generate mem_init0 is kept (commented out) in case this gets fixed
// or an undocumented way to get Quartus to initialise from mem_init0 is found.
`MLAB #(
.logical_ram_name(_TECHMAP_CELLNAME_),
.logical_ram_depth(32),
.logical_ram_width(1),
.mixed_port_feed_through_mode("Dont Care"),
.first_bit_number(0),
.first_address(0),
.last_address(31),
.address_width(5),
.data_width(1),
.byte_enable_mask_width(1),
.port_b_data_out_clock("NONE"),
// .mem_init0($sformatf("%08x", INIT))
) _TECHMAP_REPLACE_ (
.portaaddr(A1ADDR),
.portadatain(A1DATA),
.portbaddr(B1ADDR),
.portbdataout(B1DATA),
.ena0(A1EN),
.clk0(CLK1)
);
endmodule
module MISTRAL_M10K(A1ADDR, A1DATA, A1EN, CLK1, B1ADDR, B1DATA, B1EN);
parameter CFG_ABITS = 10;
parameter CFG_DBITS = 10;
parameter _TECHMAP_CELLNAME_ = "";
input [CFG_ABITS-1:0] A1ADDR, B1ADDR;
input [CFG_DBITS-1:0] A1DATA;
input CLK1, A1EN, B1EN;
output [CFG_DBITS-1:0] B1DATA;
// Much like the MLAB, the M10K has mem_init[01234] parameters which would let
// you initialise the RAM cell via hex literals. If they were implemented.
cyclonev_ram_block #(
.operation_mode("dual_port"),
.logical_ram_name(_TECHMAP_CELLNAME_),
.port_a_address_width(CFG_ABITS),
.port_a_data_width(CFG_DBITS),
.port_a_logical_ram_depth(2**CFG_ABITS),
.port_a_logical_ram_width(CFG_DBITS),
.port_a_first_address(0),
.port_a_last_address(2**CFG_ABITS - 1),
.port_a_first_bit_number(0),
.port_b_address_width(CFG_ABITS),
.port_b_data_width(CFG_DBITS),
.port_b_logical_ram_depth(2**CFG_ABITS),
.port_b_logical_ram_width(CFG_DBITS),
.port_b_first_address(0),
.port_b_last_address(2**CFG_ABITS - 1),
.port_b_first_bit_number(0),
.port_b_address_clock("clock0"),
.port_b_read_enable_clock("clock0")
) _TECHMAP_REPLACE_ (
.portaaddr(A1ADDR),
.portadatain(A1DATA),
.portawe(A1EN),
.portbaddr(B1ADDR),
.portbdataout(B1DATA),
.portbre(B1EN),
.clk0(CLK1)
);
endmodule
module MISTRAL_MUL27X27(input [26:0] A, B, output [53:0] Y);
parameter A_SIGNED = 1;
parameter B_SIGNED = 1;
`MAC #(
.ax_width(27),
.signed_max(A_SIGNED ? "true" : "false"),
.ay_scan_in_width(27),
.signed_may(B_SIGNED ? "true" : "false"),
.result_a_width(54),
.operation_mode("M27x27")
) _TECHMAP_REPLACE_ (
.ax(A),
.ay(B),
.resulta(Y)
);
endmodule
module MISTRAL_MUL18X18(input [17:0] A, B, output [35:0] Y);
parameter A_SIGNED = 1;
parameter B_SIGNED = 1;
`MAC #(
.ax_width(18),
.signed_max(A_SIGNED ? "true" : "false"),
.ay_scan_in_width(18),
.signed_may(B_SIGNED ? "true" : "false"),
.result_a_width(36),
.operation_mode("M18x18_FULL")
) _TECHMAP_REPLACE_ (
.ax(A),
.ay(B),
.resulta(Y)
);
endmodule
module MISTRAL_MUL9X9(input [8:0] A, B, output [17:0] Y);
parameter A_SIGNED = 1;
parameter B_SIGNED = 1;
`MAC #(
.ax_width(9),
.signed_max(A_SIGNED ? "true" : "false"),
.ay_scan_in_width(9),
.signed_may(B_SIGNED ? "true" : "false"),
.result_a_width(18),
.operation_mode("M9x9")
) _TECHMAP_REPLACE_ (
.ax(A),
.ay(B),
.resulta(Y)
);
endmodule

View file

@ -0,0 +1,150 @@
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
module VCC (output V);
assign V = 1'b1;
endmodule // VCC
module GND (output G);
assign G = 1'b0;
endmodule // GND
/* Altera Cyclone IV devices Input Buffer Primitive */
module cyclonev_io_ibuf
(output o, input i, input ibar);
assign ibar = ibar;
assign o = i;
endmodule // cyclonev_io_ibuf
/* Altera Cyclone IV devices Output Buffer Primitive */
module cyclonev_io_obuf
(output o, input i, input oe);
assign o = i;
assign oe = oe;
endmodule // cyclonev_io_obuf
/* Altera Cyclone V LUT Primitive */
module cyclonev_lcell_comb
(output combout, cout, sumout, shareout,
input dataa, datab, datac, datad,
input datae, dataf, datag, cin,
input sharein);
parameter lut_mask = 64'hFFFFFFFFFFFFFFFF;
parameter dont_touch = "off";
parameter lpm_type = "cyclonev_lcell_comb";
parameter shared_arith = "off";
parameter extended_lut = "off";
// Internal variables
// Sub mask for fragmented LUTs
wire [15:0] mask_a, mask_b, mask_c, mask_d;
// Independent output for fragmented LUTs
wire output_0, output_1, output_2, output_3;
// Extended mode uses mux to define the output
wire mux_0, mux_1;
// Input for hold the shared LUT mode value
wire shared_lut_alm;
// Simulation model of 4-input LUT
function lut4;
input [15:0] mask;
input dataa, datab, datac, datad;
reg [7:0] s3;
reg [3:0] s2;
reg [1:0] s1;
begin
s3 = datad ? mask[15:8] : mask[7:0];
s2 = datac ? s3[7:4] : s3[3:0];
s1 = datab ? s2[3:2] : s2[1:0];
lut4 = dataa ? s1[1] : s1[0];
end
endfunction // lut4
// Simulation model of 5-input LUT
function lut5;
input [31:0] mask; // wp-01003.pdf, page 3: "a 5-LUT can be built with two 4-LUTs and a multiplexer.
input dataa, datab, datac, datad, datae;
reg upper_lut_value;
reg lower_lut_value;
begin
upper_lut_value = lut4(mask[31:16], dataa, datab, datac, datad);
lower_lut_value = lut4(mask[15:0], dataa, datab, datac, datad);
lut5 = (datae) ? upper_lut_value : lower_lut_value;
end
endfunction // lut5
// Simulation model of 6-input LUT
function lut6;
input [63:0] mask;
input dataa, datab, datac, datad, datae, dataf;
reg upper_lut_value;
reg lower_lut_value;
reg out_0, out_1, out_2, out_3;
begin
upper_lut_value = lut5(mask[63:32], dataa, datab, datac, datad, datae);
lower_lut_value = lut5(mask[31:0], dataa, datab, datac, datad, datae);
lut6 = (dataf) ? upper_lut_value : lower_lut_value;
end
endfunction // lut6
assign {mask_a, mask_b, mask_c, mask_d} = {lut_mask[15:0], lut_mask[31:16], lut_mask[47:32], lut_mask[63:48]};
`ifdef ADVANCED_ALM
always @(*) begin
if(extended_lut == "on")
shared_lut_alm = datag;
else
shared_lut_alm = datac;
// Build the ALM behaviour
out_0 = lut4(mask_a, dataa, datab, datac, datad);
out_1 = lut4(mask_b, dataa, datab, shared_lut_alm, datad);
out_2 = lut4(mask_c, dataa, datab, datac, datad);
out_3 = lut4(mask_d, dataa, datab, shared_lut_alm, datad);
end
`else
`ifdef DEBUG
initial $display("Advanced ALM lut combine is not implemented yet");
`endif
`endif
endmodule // cyclonev_lcell_comb
/* Altera D Flip-Flop Primitive */
module dffeas
(output q,
input d, clk, clrn, prn, ena,
input asdata, aload, sclr, sload);
// Timing simulation is not covered
parameter power_up="dontcare";
parameter is_wysiwyg="false";
reg q_tmp;
wire reset;
reg [7:0] debug_net;
assign reset = (prn && sclr && ~clrn && ena);
assign q = q_tmp & 1'b1;
always @(posedge clk, posedge aload) begin
if(reset) q_tmp <= 0;
else q_tmp <= d;
end
assign q = q_tmp;
endmodule // dffeas

View file

@ -0,0 +1,280 @@
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Claire Wolf <claire@symbioticeda.com>
* Copyright (C) 2019 Dan Ravensloft <dan.ravensloft@gmail.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/celltypes.h"
#include "kernel/log.h"
#include "kernel/register.h"
#include "kernel/rtlil.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
struct SynthIntelLEPass : public ScriptPass {
SynthIntelLEPass() : ScriptPass("synth_intel_le", "synthesis for LE-based Intel (Altera) FPGAs.") {}
void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" synth_intel_le [options]\n");
log("\n");
log("This command runs synthesis for LE-based Intel FPGAs.\n");
log("\n");
log(" -top <module>\n");
log(" use the specified module as top module\n");
log("\n");
log(" -family <family>\n");
log(" target one of:\n");
log(" \"cycloneiv\" - Cyclone IV (default)\n");
log("\n");
log(" -vqm <file>\n");
log(" write the design to the specified Verilog Quartus Mapping File. Writing of an\n");
log(" output file is omitted if this parameter is not specified. Implies -quartus.\n");
log("\n");
log(" -noflatten\n");
log(" do not flatten design before synthesis; useful for per-module area statistics\n");
log("\n");
log(" -quartus\n");
log(" output a netlist using Quartus cells instead of MISTRAL_* cells\n");
log("\n");
log(" -dff\n");
log(" pass DFFs to ABC to perform sequential logic optimisations (EXPERIMENTAL)\n");
log("\n");
log(" -run <from_label>:<to_label>\n");
log(" only run the commands between the labels (see below). an empty\n");
log(" from label is synonymous to 'begin', and empty to label is\n");
log(" synonymous to the end of the command list.\n");
log("\n");
log(" -nolutram\n");
log(" do not use LUT RAM cells in output netlist\n");
log("\n");
log(" -nobram\n");
log(" do not use block RAM cells in output netlist\n");
log("\n");
log(" -nodsp\n");
log(" do not map multipliers to MISTRAL_MUL cells\n");
log("\n");
log("The following commands are executed by this synthesis command:\n");
help_script();
log("\n");
}
string top_opt, family_opt, bram_type, vout_file;
bool flatten, quartus, nolutram, nobram, dff, nodsp;
void clear_flags() override
{
top_opt = "-auto-top";
family_opt = "cycloneiv";
bram_type = "m10k";
vout_file = "";
flatten = true;
quartus = false;
nolutram = false;
nobram = false;
dff = false;
nodsp = false;
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override
{
string run_from, run_to;
clear_flags();
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
if (args[argidx] == "-family" && argidx + 1 < args.size()) {
family_opt = args[++argidx];
continue;
}
if (args[argidx] == "-top" && argidx + 1 < args.size()) {
top_opt = "-top " + args[++argidx];
continue;
}
if (args[argidx] == "-vqm" && argidx + 1 < args.size()) {
quartus = true;
vout_file = args[++argidx];
continue;
}
if (args[argidx] == "-run" && argidx + 1 < args.size()) {
size_t pos = args[argidx + 1].find(':');
if (pos == std::string::npos)
break;
run_from = args[++argidx].substr(0, pos);
run_to = args[argidx].substr(pos + 1);
continue;
}
if (args[argidx] == "-quartus") {
quartus = true;
continue;
}
if (args[argidx] == "-nolutram") {
nolutram = true;
continue;
}
if (args[argidx] == "-nobram") {
nobram = true;
continue;
}
if (args[argidx] == "-nodsp") {
nodsp = true;
continue;
}
if (args[argidx] == "-noflatten") {
flatten = false;
continue;
}
if (args[argidx] == "-dff") {
dff = true;
continue;
}
break;
}
extra_args(args, argidx, design);
if (!design->full_selection())
log_cmd_error("This command only operates on fully selected designs!\n");
if (family_opt == "cycloneiv") {
bram_type = "m9k";
} else {
log_cmd_error("Invalid family specified: '%s'\n", family_opt.c_str());
}
log_header(design, "Executing SYNTH_intel_le pass.\n");
log_push();
run_script(design, run_from, run_to);
log_pop();
}
void script() override
{
if (help_mode) {
family_opt = "<family>";
bram_type = "<bram_type>";
}
if (check_label("begin")) {
if (family_opt == "cyclonev")
run(stringf("read_verilog -sv -lib +/intel_le/%s/cells_sim.v", family_opt.c_str()));
run(stringf("read_verilog -specify -lib -D %s +/intel_le/common/alm_sim.v", family_opt.c_str()));
run(stringf("read_verilog -specify -lib -D %s +/intel_le/common/dff_sim.v", family_opt.c_str()));
run(stringf("read_verilog -specify -lib -D %s +/intel_le/common/dsp_sim.v", family_opt.c_str()));
run(stringf("read_verilog -specify -lib -D %s +/intel_le/common/mem_sim.v", family_opt.c_str()));
run(stringf("read_verilog -specify -lib -D %s -icells +/intel_le/common/abc9_model.v", family_opt.c_str()));
// Misc and common cells
run("read_verilog -lib +/intel/common/altpll_bb.v");
run("read_verilog -lib +/intel_le/common/megafunction_bb.v");
run(stringf("hierarchy -check %s", help_mode ? "-top <top>" : top_opt.c_str()));
}
if (check_label("coarse")) {
run("proc");
if (flatten || help_mode)
run("flatten", "(skip if -noflatten)");
run("tribuf -logic");
run("deminout");
run("opt_expr");
run("opt_clean");
run("check");
run("opt -nodffe -nosdff");
run("fsm");
run("opt");
run("wreduce");
run("peepopt");
run("opt_clean");
run("share");
run("techmap -map +/cmp2lut.v -D LUT_WIDTH=4");
run("opt_expr");
run("opt_clean");
run("alumacc");
run("techmap -map +/intel_le/common/arith_alm_map.v -map +/intel_le/common/dsp_map.v");
run("opt");
run("memory -nomap");
run("opt_clean");
}
if (!nobram && check_label("map_bram", "(skip if -nobram)")) {
run(stringf("memory_bram -rules +/intel_le/common/bram_%s.txt", bram_type.c_str()));
if (help_mode || bram_type != "m9k")
run(stringf("techmap -map +/intel_le/common/bram_%s_map.v", bram_type.c_str()));
}
if (!nolutram && check_label("map_lutram", "(skip if -nolutram)")) {
run("memory_bram -rules +/intel_le/common/lutram_mlab.txt", "(for Cyclone IV )");
}
if (check_label("map_ffram")) {
run("memory_map");
run("opt -full");
}
if (check_label("map_ffs")) {
run("techmap");
run("dfflegalize -cell $_DFFE_PN0P_ 0 -cell $_SDFFCE_PP0P_ 0");
run("techmap -map +/intel_le/common/dff_map.v");
run("opt -full -undriven -mux_undef");
run("clean -purge");
}
if (check_label("map_luts")) {
run("techmap -map +/intel_le/common/abc9_map.v");
run(stringf("abc9 %s -maxlut 6 -W 600", help_mode ? "[-dff]" : dff ? "-dff" : ""));
run("techmap -map +/intel_le/common/abc9_unmap.v");
run("techmap -map +/intel_le/common/alm_map.v");
run("opt -fast");
run("autoname");
run("clean");
}
if (check_label("check")) {
run("hierarchy -check");
run("stat");
run("check");
}
if (check_label("quartus")) {
if (quartus || help_mode) {
// Quartus ICEs if you have a wire which has `[]` in its name,
// which Yosys produces when building memories out of flops.
run("rename -hide w:*[* w:*]*");
// VQM mode does not support 'x, so replace those with zero.
run("setundef -zero");
// VQM mode does not support multi-bit constant assignments
// (e.g. 2'b00 is an error), so as a workaround use references
// to constant driver cells, which Quartus accepts.
run("hilomap -singleton -hicell __MISTRAL_VCC Q -locell __MISTRAL_GND Q");
// Rename from Yosys-internal MISTRAL_* cells to Quartus cells.
run(stringf("techmap -D %s -map +/intel_le/common/quartus_rename.v", family_opt.c_str()));
}
}
if (check_label("vqm")) {
if (!vout_file.empty() || help_mode) {
run(stringf("write_verilog -attr2comment -defparam -nohex -decimal %s", help_mode ? "<file-name>" : vout_file.c_str()));
}
}
}
} SynthIntelLEPass;
PRIVATE_NAMESPACE_END