3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2025-04-23 09:05:32 +00:00

Merge branch 'master' of https://github.com/YosysHQ/yosys into abc_scratchpad_script

This commit is contained in:
N. Engelhardt 2020-01-03 12:28:48 +01:00
commit 341fd872b5
122 changed files with 4391 additions and 713 deletions

View file

@ -32,3 +32,4 @@ OBJS += passes/cmds/chtype.o
OBJS += passes/cmds/blackbox.o
OBJS += passes/cmds/ltp.o
OBJS += passes/cmds/bugpoint.o
OBJS += passes/cmds/scratchpad.o

130
passes/cmds/scratchpad.cc Normal file
View file

@ -0,0 +1,130 @@
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
* 2019 Nina Engelhardt <nak@symbioticeda.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/register.h"
#include "kernel/rtlil.h"
#include "kernel/log.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
struct ScratchpadPass : public Pass {
ScratchpadPass() : Pass("scratchpad", "get/set values in the scratchpad") { }
void help() YS_OVERRIDE
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" scratchpad [options]\n");
log("\n");
log("This pass allows to read and modify values from the scratchpad of the current\n");
log("design. Options:\n");
log("\n");
log(" -get <identifier>\n");
log(" print the value saved in the scratchpad under the given identifier.\n");
log("\n");
log(" -set <identifier> <value>\n");
log(" save the given value in the scratchpad under the given identifier.\n");
log("\n");
log(" -unset <identifier>\n");
log(" remove the entry for the given identifier from the scratchpad.\n");
log("\n");
log(" -copy <identifier_from> <identifier_to>\n");
log(" copy the value of the first identifier to the second identifier.\n");
log("\n");
log(" -assert <identifier> <value>\n");
log(" assert that the entry for the given identifier is set to the given value.\n");
log("\n");
log(" -assert-set <identifier>\n");
log(" assert that the entry for the given identifier exists.\n");
log("\n");
log(" -assert-unset <identifier>\n");
log(" assert that the entry for the given identifier does not exist.\n");
log("\n");
log("The identifier may not contain whitespace. By convention, it is usually prefixed\n");
log("by the name of the pass that uses it, e.g. 'opt.did_something'. If the value\n");
log("contains whitespace, it must be enclosed in double quotes.\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
{
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++)
{
if (args[argidx] == "-get" && argidx+1 < args.size()) {
string identifier = args[++argidx];
if (design->scratchpad.count(identifier)){
log("%s\n", design->scratchpad_get_string(identifier).c_str());
} else {
log("\"%s\" not set\n", identifier.c_str());
}
continue;
}
if (args[argidx] == "-set" && argidx+2 < args.size()) {
string identifier = args[++argidx];
string value = args[++argidx];
if (value.front() == '\"' && value.back() == '\"') value = value.substr(1, value.size() - 2);
design->scratchpad_set_string(identifier, value);
continue;
}
if (args[argidx] == "-unset" && argidx+1 < args.size()) {
string identifier = args[++argidx];
design->scratchpad_unset(identifier);
continue;
}
if (args[argidx] == "-copy" && argidx+2 < args.size()) {
string identifier_from = args[++argidx];
string identifier_to = args[++argidx];
if (design->scratchpad.count(identifier_from) == 0) log_error("\"%s\" not set\n", identifier_from.c_str());
string value = design->scratchpad_get_string(identifier_from);
design->scratchpad_set_string(identifier_to, value);
continue;
}
if (args[argidx] == "-assert" && argidx+2 < args.size()) {
string identifier = args[++argidx];
string expected = args[++argidx];
if (expected.front() == '\"' && expected.back() == '\"') expected = expected.substr(1, expected.size() - 2);
if (design->scratchpad.count(identifier) == 0)
log_error("Assertion failed: scratchpad entry '%s' is not defined\n", identifier.c_str());
string value = design->scratchpad_get_string(identifier);
if (value != expected) {
log_error("Assertion failed: scratchpad entry '%s' is set to '%s' instead of the asserted '%s'\n",
identifier.c_str(), value.c_str(), expected.c_str());
}
continue;
}
if (args[argidx] == "-assert-set" && argidx+1 < args.size()) {
string identifier = args[++argidx];
if (design->scratchpad.count(identifier) == 0)
log_error("Assertion failed: scratchpad entry '%s' is not defined\n", identifier.c_str());
continue;
}
if (args[argidx] == "-assert-unset" && argidx+1 < args.size()) {
string identifier = args[++argidx];
if (design->scratchpad.count(identifier) > 0)
log_error("Assertion failed: scratchpad entry '%s' is defined\n", identifier.c_str());
continue;
}
break;
}
extra_args(args, argidx, design, false);
}
} ScratchpadPass;
PRIVATE_NAMESPACE_END

View file

@ -44,6 +44,10 @@ struct EquivOptPass:public ScriptPass
log(" expand the modules in this file before proving equivalence. this is\n");
log(" useful for handling architecture-specific primitives.\n");
log("\n");
log(" -blacklist <file>\n");
log(" Do not match cells or signals that match the names in the file\n");
log(" (passed to equiv_make).\n");
log("\n");
log(" -assert\n");
log(" produce an error if the circuits are not equivalent.\n");
log("\n");
@ -61,13 +65,14 @@ struct EquivOptPass:public ScriptPass
log("\n");
}
std::string command, techmap_opts;
std::string command, techmap_opts, make_opts;
bool assert, undef, multiclock, async2sync;
void clear_flags() YS_OVERRIDE
{
command = "";
techmap_opts = "";
make_opts = "";
assert = false;
undef = false;
multiclock = false;
@ -93,6 +98,10 @@ struct EquivOptPass:public ScriptPass
techmap_opts += " -map " + args[++argidx];
continue;
}
if (args[argidx] == "-blacklist" && argidx + 1 < args.size()) {
make_opts += " -blacklist " + args[++argidx];
continue;
}
if (args[argidx] == "-assert") {
assert = true;
continue;
@ -170,7 +179,12 @@ struct EquivOptPass:public ScriptPass
run("clk2fflogic", "(only with -multiclock)");
if (async2sync || help_mode)
run("async2sync", " (only with -async2sync)");
run("equiv_make gold gate equiv");
string opts;
if (help_mode)
opts = " -blacklist <filename> ...";
else
opts = make_opts;
run("equiv_make" + opts + " gold gate equiv");
if (help_mode)
run("equiv_induct [-undef] equiv");
else if (undef)

View file

@ -134,6 +134,7 @@ struct rules_t
dict<string, int> min_limits, max_limits;
bool or_next_if_better, make_transp, make_outreg;
char shuffle_enable;
vector<vector<std::tuple<bool,IdString,Const>>> attributes;
};
dict<IdString, vector<bram_t>> brams;
@ -327,6 +328,20 @@ struct rules_t
continue;
}
if (GetSize(tokens) >= 2 && tokens[0] == "attribute") {
data.attributes.emplace_back();
for (int idx = 1; idx < GetSize(tokens); idx++) {
size_t c1 = tokens[idx][0] == '!' ? 1 : 0;
size_t c2 = tokens[idx].find("=");
bool exists = (c1 == 0);
IdString key = RTLIL::escape_id(tokens[idx].substr(c1, c2));
Const val = c2 != std::string::npos ? tokens[idx].substr(c2+1) : RTLIL::Const(1);
data.attributes.back().emplace_back(exists, key, val);
}
continue;
}
syntax_error();
}
}
@ -724,7 +739,7 @@ grow_read_ports:;
if (match.make_transp && wr_ports <= 1) {
pi.make_transp = true;
if (pi.clocks != 0) {
if (wr_ports == 1 && wr_clkdom != clkdom) {
if (wr_ports == 1 && wr_clkdom != clkdom) {
log(" Bram port %c%d.%d cannot have soft transparency logic added as read and write clock domains differ.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
goto skip_bram_rport;
}
@ -813,6 +828,43 @@ grow_read_ports:;
return false;
}
for (const auto &sums : match.attributes) {
bool found = false;
for (const auto &term : sums) {
bool exists = std::get<0>(term);
IdString key = std::get<1>(term);
const Const &value = std::get<2>(term);
auto it = cell->attributes.find(key);
if (it == cell->attributes.end()) {
if (exists)
continue;
found = true;
break;
}
else if (!exists)
continue;
if (it->second != value)
continue;
found = true;
break;
}
if (!found) {
std::stringstream ss;
bool exists = std::get<0>(sums.front());
if (!exists)
ss << "!";
IdString key = std::get<1>(sums.front());
ss << log_id(key);
const Const &value = std::get<2>(sums.front());
if (exists && value != Const(1))
ss << "=\"" << value.decode_string() << "\"";
log(" Rule for bram type %s rejected: requirement 'attribute %s ...' not met.\n",
log_id(match.name), ss.str().c_str());
return false;
}
}
if (mode == 1)
return true;
}
@ -1100,6 +1152,43 @@ void handle_cell(Cell *cell, const rules_t &rules)
goto next_match_rule;
}
for (const auto &sums : match.attributes) {
bool found = false;
for (const auto &term : sums) {
bool exists = std::get<0>(term);
IdString key = std::get<1>(term);
const Const &value = std::get<2>(term);
auto it = cell->attributes.find(key);
if (it == cell->attributes.end()) {
if (exists)
continue;
found = true;
break;
}
else if (!exists)
continue;
if (it->second != value)
continue;
found = true;
break;
}
if (!found) {
std::stringstream ss;
bool exists = std::get<0>(sums.front());
if (!exists)
ss << "!";
IdString key = std::get<1>(sums.front());
ss << log_id(key);
const Const &value = std::get<2>(sums.front());
if (exists && value != Const(1))
ss << "=\"" << value.decode_string() << "\"";
log(" Rule for bram type %s (variant %d) rejected: requirement 'attribute %s ...' not met.\n",
log_id(bram.name), bram.variant, ss.str().c_str());
goto next_match_rule;
}
}
log(" Rule #%d for bram type %s (variant %d) accepted.\n", i+1, log_id(bram.name), bram.variant);
if (or_next_if_better || !best_rule_cache.empty())
@ -1225,6 +1314,13 @@ struct MemoryBramPass : public Pass {
log(" dcells ....... number of cells in 'data-direction'\n");
log(" cells ........ total number of cells (acells*dcells*dups)\n");
log("\n");
log("A match containing the command 'attribute' followed by a list of space\n");
log("separated 'name[=string_value]' values requires that the memory contains any\n");
log("one of the given attribute name and string values (where specified), or name\n");
log("and integer 1 value (if no string_value given, since Verilog will interpret\n");
log("'(* attr *)' as '(* attr=1 *)').\n");
log("A name prefixed with '!' indicates that the attribute must not exist.\n");
log("\n");
log("The interface for the created bram instances is derived from the bram\n");
log("description. Use 'techmap' to convert the created bram instances into\n");
log("instances of the actual bram cells of your target architecture.\n");

View file

@ -978,7 +978,7 @@ void replace_const_cells(RTLIL::Design *design, RTLIL::Module *module, bool cons
{
cover_list("opt.opt_expr.eqneq.cmpzero", "$eq", "$ne", cell->type.str());
log_debug("Replacing %s cell `%s' in module `%s' with %s.\n", log_id(cell->type), log_id(cell),
log_id(module), "$eq" ? "$logic_not" : "$reduce_bool");
log_id(module), cell->type == ID($eq) ? "$logic_not" : "$reduce_bool");
cell->type = cell->type == ID($eq) ? ID($logic_not) : ID($reduce_bool);
if (assign_map(cell->getPort(ID::A)).is_fully_zero()) {
cell->setPort(ID::A, cell->getPort(ID::B));

View file

@ -22,8 +22,9 @@ $(eval $(call add_extra_objs,passes/pmgen/ice40_wrapcarry_pm.h))
# --------------------------------------
OBJS += passes/pmgen/xilinx_dsp.o
passes/pmgen/xilinx_dsp.o: passes/pmgen/xilinx_dsp_pm.h passes/pmgen/xilinx_dsp_CREG_pm.h passes/pmgen/xilinx_dsp_cascade_pm.h
passes/pmgen/xilinx_dsp.o: passes/pmgen/xilinx_dsp_pm.h passes/pmgen/xilinx_dsp48a_pm.h passes/pmgen/xilinx_dsp_CREG_pm.h passes/pmgen/xilinx_dsp_cascade_pm.h
$(eval $(call add_extra_objs,passes/pmgen/xilinx_dsp_pm.h))
$(eval $(call add_extra_objs,passes/pmgen/xilinx_dsp48a_pm.h))
$(eval $(call add_extra_objs,passes/pmgen/xilinx_dsp_CREG_pm.h))
$(eval $(call add_extra_objs,passes/pmgen/xilinx_dsp_cascade_pm.h))

View file

@ -26,6 +26,7 @@ USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
#include "passes/pmgen/xilinx_dsp_pm.h"
#include "passes/pmgen/xilinx_dsp48a_pm.h"
#include "passes/pmgen/xilinx_dsp_CREG_pm.h"
#include "passes/pmgen/xilinx_dsp_cascade_pm.h"
@ -487,6 +488,190 @@ void xilinx_dsp_pack(xilinx_dsp_pm &pm)
pm.blacklist(cell);
}
void xilinx_dsp48a_pack(xilinx_dsp48a_pm &pm)
{
auto &st = pm.st_xilinx_dsp48a_pack;
log("Analysing %s.%s for Xilinx DSP48A/DSP48A1 packing.\n", log_id(pm.module), log_id(st.dsp));
log_debug("preAdd: %s\n", log_id(st.preAdd, "--"));
log_debug("ffA1: %s %s %s\n", log_id(st.ffA1, "--"), log_id(st.ffA1cemux, "--"), log_id(st.ffA1rstmux, "--"));
log_debug("ffA0: %s %s %s\n", log_id(st.ffA0, "--"), log_id(st.ffA0cemux, "--"), log_id(st.ffA0rstmux, "--"));
log_debug("ffB1: %s %s %s\n", log_id(st.ffB1, "--"), log_id(st.ffB1cemux, "--"), log_id(st.ffB1rstmux, "--"));
log_debug("ffB0: %s %s %s\n", log_id(st.ffB0, "--"), log_id(st.ffB0cemux, "--"), log_id(st.ffB0rstmux, "--"));
log_debug("ffD: %s %s %s\n", log_id(st.ffD, "--"), log_id(st.ffDcemux, "--"), log_id(st.ffDrstmux, "--"));
log_debug("dsp: %s\n", log_id(st.dsp, "--"));
log_debug("ffM: %s %s %s\n", log_id(st.ffM, "--"), log_id(st.ffMcemux, "--"), log_id(st.ffMrstmux, "--"));
log_debug("postAdd: %s\n", log_id(st.postAdd, "--"));
log_debug("postAddMux: %s\n", log_id(st.postAddMux, "--"));
log_debug("ffP: %s %s %s\n", log_id(st.ffP, "--"), log_id(st.ffPcemux, "--"), log_id(st.ffPrstmux, "--"));
Cell *cell = st.dsp;
SigSpec &opmode = cell->connections_.at(ID(OPMODE));
if (st.preAdd) {
log(" preadder %s (%s)\n", log_id(st.preAdd), log_id(st.preAdd->type));
bool D_SIGNED = st.preAdd->getParam(ID(A_SIGNED)).as_bool();
bool B_SIGNED = st.preAdd->getParam(ID(B_SIGNED)).as_bool();
st.sigB.extend_u0(18, B_SIGNED);
st.sigD.extend_u0(18, D_SIGNED);
cell->setPort(ID(B), st.sigB);
cell->setPort(ID(D), st.sigD);
opmode[4] = State::S1;
if (st.preAdd->type == ID($add))
opmode[6] = State::S0;
else if (st.preAdd->type == ID($sub))
opmode[6] = State::S1;
else
log_assert(!"strange pre-adder type");
pm.autoremove(st.preAdd);
}
if (st.postAdd) {
log(" postadder %s (%s)\n", log_id(st.postAdd), log_id(st.postAdd->type));
if (st.postAddMux) {
log_assert(st.ffP);
opmode[2] = st.postAddMux->getPort(ID(S));
pm.autoremove(st.postAddMux);
}
else if (st.ffP && st.sigC == st.sigP)
opmode[2] = State::S0;
else
opmode[2] = State::S1;
opmode[3] = State::S1;
if (opmode[2] != State::S0) {
if (st.postAddMuxAB == ID(A))
st.sigC.extend_u0(48, st.postAdd->getParam(ID(B_SIGNED)).as_bool());
else
st.sigC.extend_u0(48, st.postAdd->getParam(ID(A_SIGNED)).as_bool());
cell->setPort(ID(C), st.sigC);
}
pm.autoremove(st.postAdd);
}
if (st.clock != SigBit())
{
cell->setPort(ID(CLK), st.clock);
auto f = [&pm,cell](SigSpec &A, Cell* ff, Cell* cemux, bool cepol, IdString ceport, Cell* rstmux, bool rstpol, IdString rstport) {
SigSpec D = ff->getPort(ID(D));
SigSpec Q = pm.sigmap(ff->getPort(ID(Q)));
if (!A.empty())
A.replace(Q, D);
if (rstmux) {
SigSpec Y = rstmux->getPort(ID(Y));
SigSpec AB = rstmux->getPort(rstpol ? ID(A) : ID(B));
if (!A.empty())
A.replace(Y, AB);
if (rstport != IdString()) {
SigSpec S = rstmux->getPort(ID(S));
cell->setPort(rstport, rstpol ? S : pm.module->Not(NEW_ID, S));
}
}
else if (rstport != IdString())
cell->setPort(rstport, State::S0);
if (cemux) {
SigSpec Y = cemux->getPort(ID(Y));
SigSpec BA = cemux->getPort(cepol ? ID(B) : ID(A));
SigSpec S = cemux->getPort(ID(S));
if (!A.empty())
A.replace(Y, BA);
cell->setPort(ceport, cepol ? S : pm.module->Not(NEW_ID, S));
}
else
cell->setPort(ceport, State::S1);
for (auto c : Q.chunks()) {
auto it = c.wire->attributes.find(ID(init));
if (it == c.wire->attributes.end())
continue;
for (int i = c.offset; i < c.offset+c.width; i++) {
log_assert(it->second[i] == State::S0 || it->second[i] == State::Sx);
it->second[i] = State::Sx;
}
}
};
if (st.ffA0 || st.ffA1) {
SigSpec A = cell->getPort(ID(A));
if (st.ffA1) {
f(A, st.ffA1, st.ffA1cemux, st.ffAcepol, ID(CEA), st.ffA1rstmux, st.ffArstpol, ID(RSTA));
cell->setParam(ID(A1REG), 1);
}
if (st.ffA0) {
f(A, st.ffA0, st.ffA0cemux, st.ffAcepol, ID(CEA), st.ffA0rstmux, st.ffArstpol, ID(RSTA));
cell->setParam(ID(A0REG), 1);
}
pm.add_siguser(A, cell);
cell->setPort(ID(A), A);
}
if (st.ffB0 || st.ffB1) {
SigSpec B = cell->getPort(ID(B));
if (st.ffB1) {
f(B, st.ffB1, st.ffB1cemux, st.ffBcepol, ID(CEB), st.ffB1rstmux, st.ffBrstpol, ID(RSTB));
cell->setParam(ID(B1REG), 1);
}
if (st.ffB0) {
f(B, st.ffB0, st.ffB0cemux, st.ffBcepol, ID(CEB), st.ffB0rstmux, st.ffBrstpol, ID(RSTB));
cell->setParam(ID(B0REG), 1);
}
pm.add_siguser(B, cell);
cell->setPort(ID(B), B);
}
if (st.ffD) {
SigSpec D = cell->getPort(ID(D));
f(D, st.ffD, st.ffDcemux, st.ffDcepol, ID(CED), st.ffDrstmux, st.ffDrstpol, ID(RSTD));
pm.add_siguser(D, cell);
cell->setPort(ID(D), D);
cell->setParam(ID(DREG), 1);
}
if (st.ffM) {
SigSpec M; // unused
f(M, st.ffM, st.ffMcemux, st.ffMcepol, ID(CEM), st.ffMrstmux, st.ffMrstpol, ID(RSTM));
st.ffM->connections_.at(ID(Q)).replace(st.sigM, pm.module->addWire(NEW_ID, GetSize(st.sigM)));
cell->setParam(ID(MREG), State::S1);
}
if (st.ffP) {
SigSpec P; // unused
f(P, st.ffP, st.ffPcemux, st.ffPcepol, ID(CEP), st.ffPrstmux, st.ffPrstpol, ID(RSTP));
st.ffP->connections_.at(ID(Q)).replace(st.sigP, pm.module->addWire(NEW_ID, GetSize(st.sigP)));
cell->setParam(ID(PREG), State::S1);
}
log(" clock: %s (%s)", log_signal(st.clock), "posedge");
if (st.ffA0)
log(" ffA0:%s", log_id(st.ffA0));
if (st.ffA1)
log(" ffA1:%s", log_id(st.ffA1));
if (st.ffB0)
log(" ffB0:%s", log_id(st.ffB0));
if (st.ffB1)
log(" ffB1:%s", log_id(st.ffB1));
if (st.ffD)
log(" ffD:%s", log_id(st.ffD));
if (st.ffM)
log(" ffM:%s", log_id(st.ffM));
if (st.ffP)
log(" ffP:%s", log_id(st.ffP));
}
log("\n");
SigSpec P = st.sigP;
if (GetSize(P) < 48)
P.append(pm.module->addWire(NEW_ID, 48-GetSize(P)));
cell->setPort(ID(P), P);
pm.blacklist(cell);
}
void xilinx_dsp_packC(xilinx_dsp_CREG_pm &pm)
{
auto &st = pm.st_xilinx_dsp_packC;
@ -592,33 +777,48 @@ struct XilinxDspPass : public Pass {
log("P output implementing the operation \"(P >= <power-of-2>)\" will be transformed\n");
log("into using the DSP48E1's pattern detector feature for overflow detection.\n");
log("\n");
log(" -family {xcup|xcu|xc7|xc6v|xc5v|xc4v|xc6s|xc3sda}\n");
log(" select the family to target\n");
log(" default: xc7\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
{
log_header(design, "Executing XILINX_DSP pass (pack resources into DSPs).\n");
std::string family = "xc7";
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++)
{
// if (args[argidx] == "-singleton") {
// singleton_mode = true;
// continue;
// }
if ((args[argidx] == "-family" || args[argidx] == "-arch") && argidx+1 < args.size()) {
family = args[++argidx];
continue;
}
break;
}
extra_args(args, argidx, design);
// Don't bother distinguishing between those.
if (family == "xc6v")
family = "xc7";
if (family == "xcup")
family = "xcu";
for (auto module : design->selected_modules()) {
// Experimental feature: pack $add/$sub cells with
// (* use_dsp48="simd" *) into DSP48E1's using its
// SIMD feature
xilinx_simd_pack(module, module->selected_cells());
if (family == "xc7")
xilinx_simd_pack(module, module->selected_cells());
// Match for all features ([ABDMP][12]?REG, pre-adder,
// post-adder, pattern detector, etc.) except for CREG
{
if (family == "xc7") {
xilinx_dsp_pm pm(module, module->selected_cells());
pm.run_xilinx_dsp_pack(xilinx_dsp_pack);
} else if (family == "xc6s" || family == "xc3sda") {
xilinx_dsp48a_pm pm(module, module->selected_cells());
pm.run_xilinx_dsp48a_pack(xilinx_dsp48a_pack);
}
// Separating out CREG packing is necessary since there
// is no guarantee that the cell ordering corresponds

View file

@ -0,0 +1,673 @@
// This file describes the main pattern matcher setup (of three total) that
// forms the `xilinx_dsp` pass described in xilinx_dsp.cc - version for
// DSP48A/DSP48A1 (Spartan 3A DSP, Spartan 6).
// At a high level, it works as follows:
// ( 1) Starting from a DSP48A/DSP48A1 cell
// ( 2) Match the driver of the 'B' input to a possible $dff cell (B1REG)
// (attached to at most two $mux cells that implement clock-enable or
// reset functionality, using a subpattern discussed below)
// If B1REG matched, treat 'B' input as input of B1REG
// ( 3) Match the driver of the 'B' and 'D' inputs for a possible $add cell
// (pre-adder)
// ( 4) Match 'B' input for B0REG
// ( 5) Match 'A' input for A1REG
// If A1REG, then match 'A' input for A0REG
// ( 6) Match 'D' input for DREG
// ( 7) Match 'P' output that exclusively drives an MREG
// ( 8) Match 'P' output that exclusively drives one of two inputs to an $add
// cell (post-adder).
// The other input to the adder is assumed to come in from the 'C' input
// (note: 'P' -> 'C' connections that exist for accumulators are
// recognised in xilinx_dsp.cc).
// ( 9) Match 'P' output that exclusively drives a PREG
// (10) If post-adder and PREG both present, match for a $mux cell driving
// the 'C' input, where one of the $mux's inputs is the PREG output.
// This indicates an accumulator situation, and one where a $mux exists
// to override the accumulated value:
// +--------------------------------+
// | ____ |
// +--| \ |
// |$mux|-+ |
// 'C' ---|____/ | |
// | /-------\ +----+ |
// +----+ +-| post- |___|PREG|---+ 'P'
// |MREG|------ | adder | +----+
// +----+ \-------/
// Notes: see the notes in xilinx_dsp.pmg
pattern xilinx_dsp48a_pack
state <SigBit> clock
state <SigSpec> sigA sigB sigC sigD sigM sigP
state <IdString> postAddAB postAddMuxAB
state <bool> ffAcepol ffBcepol ffDcepol ffMcepol ffPcepol
state <bool> ffArstpol ffBrstpol ffDrstpol ffMrstpol ffPrstpol
state <Cell*> ffA0 ffA0cemux ffA0rstmux ffA1 ffA1cemux ffA1rstmux
state <Cell*> ffB0 ffB0cemux ffB0rstmux ffB1 ffB1cemux ffB1rstmux
state <Cell*> ffD ffDcemux ffDrstmux ffM ffMcemux ffMrstmux ffP ffPcemux ffPrstmux
// Variables used for subpatterns
state <SigSpec> argQ argD
state <bool> ffcepol ffrstpol
state <int> ffoffset
udata <SigSpec> dffD dffQ
udata <SigBit> dffclock
udata <Cell*> dff dffcemux dffrstmux
udata <bool> dffcepol dffrstpol
// (1) Starting from a DSP48A/DSP48A1 cell
match dsp
select dsp->type.in(\DSP48A, \DSP48A1)
endmatch
code sigA sigB sigC sigD sigM clock
auto unextend = [](const SigSpec &sig) {
int i;
for (i = GetSize(sig)-1; i > 0; i--)
if (sig[i] != sig[i-1])
break;
// Do not remove non-const sign bit
if (sig[i].wire)
++i;
return sig.extract(0, i);
};
sigA = unextend(port(dsp, \A));
sigB = unextend(port(dsp, \B));
sigC = port(dsp, \C, SigSpec());
sigD = port(dsp, \D, SigSpec());
SigSpec P = port(dsp, \P);
// Only care about those bits that are used
int i;
for (i = GetSize(P)-1; i >= 0; i--)
if (nusers(P[i]) > 1)
break;
i++;
log_assert(nusers(P.extract_end(i)) <= 1);
// This sigM could have no users if downstream sinks (e.g. $add) is
// narrower than $mul result, for example
if (i == 0)
reject;
sigM = P.extract(0, i);
clock = port(dsp, \CLK, SigBit());
endcode
// (2) Match the driver of the 'B' input to a possible $dff cell (B1REG)
// (attached to at most two $mux cells that implement clock-enable or
// reset functionality, using a subpattern discussed above)
// If matched, treat 'B' input as input of B1REG
code argQ ffB1 ffB1cemux ffB1rstmux ffBcepol ffBrstpol sigB clock
if (param(dsp, \B1REG).as_int() == 0 && param(dsp, \B0REG).as_int() == 0 && port(dsp, \OPMODE, SigSpec()).extract(4, 1).is_fully_zero()) {
argQ = sigB;
subpattern(in_dffe);
if (dff) {
ffB1 = dff;
clock = dffclock;
if (dffrstmux) {
ffB1rstmux = dffrstmux;
ffBrstpol = dffrstpol;
}
if (dffcemux) {
ffB1cemux = dffcemux;
ffBcepol = dffcepol;
}
sigB = dffD;
}
}
endcode
// (3) Match the driver of the 'B' and 'D' inputs for a possible $add cell
// (pre-adder)
match preAdd
if sigD.empty() || sigD.is_fully_zero()
if param(dsp, \B0REG).as_int() == 0
// Ensure that preAdder not already used
if port(dsp, \OPMODE, SigSpec()).extract(4, 1).is_fully_zero()
select preAdd->type.in($add, $sub)
// Output has to be 18 bits or less
select GetSize(port(preAdd, \Y)) <= 18
select nusers(port(preAdd, \Y)) == 2
// D port has to be 18 bits or less
select GetSize(port(preAdd, \A)) <= 18
// B port has to be 18 bits or less
select GetSize(port(preAdd, \B)) <= 18
index <SigSpec> port(preAdd, \Y) === sigB
optional
endmatch
code sigB sigD
if (preAdd) {
sigD = port(preAdd, \A);
sigB = port(preAdd, \B);
}
endcode
// (4) Match 'B' input for B0REG
code argQ ffB0 ffB0cemux ffB0rstmux ffBcepol ffBrstpol sigB clock
if (param(dsp, \B0REG).as_int() == 0) {
argQ = sigB;
subpattern(in_dffe);
if (dff) {
if (ffB1) {
if ((ffB1rstmux != nullptr) ^ (dffrstmux != nullptr))
goto ffB0_end;
if ((ffB1cemux != nullptr) ^ (dffcemux != nullptr))
goto ffB0_end;
if (dffrstmux) {
if (ffBrstpol != dffrstpol)
goto ffB0_end;
if (port(ffB1rstmux, \S) != port(dffrstmux, \S))
goto ffB0_end;
ffB0rstmux = dffrstmux;
}
if (dffcemux) {
if (ffBcepol != dffcepol)
goto ffB0_end;
if (port(ffB1cemux, \S) != port(dffcemux, \S))
goto ffB0_end;
ffB0cemux = dffcemux;
}
}
ffB0 = dff;
clock = dffclock;
if (dffrstmux) {
ffB0rstmux = dffrstmux;
ffBrstpol = dffrstpol;
}
if (dffcemux) {
ffB0cemux = dffcemux;
ffBcepol = dffcepol;
}
sigB = dffD;
}
}
ffB0_end:
endcode
// (5) Match 'A' input for A1REG
// If A1REG, then match 'A' input for A0REG
code argQ ffA1 ffA1cemux ffA1rstmux ffAcepol ffArstpol sigA clock ffA0 ffA0cemux ffA0rstmux
if (param(dsp, \A0REG).as_int() == 0 && param(dsp, \A1REG).as_int() == 0) {
argQ = sigA;
subpattern(in_dffe);
if (dff) {
ffA1 = dff;
clock = dffclock;
if (dffrstmux) {
ffA1rstmux = dffrstmux;
ffArstpol = dffrstpol;
}
if (dffcemux) {
ffA1cemux = dffcemux;
ffAcepol = dffcepol;
}
sigA = dffD;
// Now attempt to match A0
if (ffA1) {
argQ = sigA;
subpattern(in_dffe);
if (dff) {
if ((ffA1rstmux != nullptr) ^ (dffrstmux != nullptr))
goto ffA0_end;
if ((ffA1cemux != nullptr) ^ (dffcemux != nullptr))
goto ffA0_end;
if (dffrstmux) {
if (ffArstpol != dffrstpol)
goto ffA0_end;
if (port(ffA1rstmux, \S) != port(dffrstmux, \S))
goto ffA0_end;
ffA0rstmux = dffrstmux;
}
if (dffcemux) {
if (ffAcepol != dffcepol)
goto ffA0_end;
if (port(ffA1cemux, \S) != port(dffcemux, \S))
goto ffA0_end;
ffA0cemux = dffcemux;
}
ffA0 = dff;
clock = dffclock;
if (dffcemux) {
ffA0cemux = dffcemux;
ffAcepol = dffcepol;
}
sigA = dffD;
ffA0_end: ;
}
}
}
}
endcode
// (6) Match 'D' input for DREG
code argQ ffD ffDcemux ffDrstmux ffDcepol ffDrstpol sigD clock
if (param(dsp, \DREG).as_int() == 0) {
argQ = sigD;
subpattern(in_dffe);
if (dff) {
ffD = dff;
clock = dffclock;
if (dffrstmux) {
ffDrstmux = dffrstmux;
ffDrstpol = dffrstpol;
}
if (dffcemux) {
ffDcemux = dffcemux;
ffDcepol = dffcepol;
}
sigD = dffD;
}
}
endcode
// (7) Match 'P' output that exclusively drives an MREG
code argD ffM ffMcemux ffMrstmux ffMcepol ffMrstpol sigM sigP clock
if (param(dsp, \MREG).as_int() == 0 && nusers(sigM) == 2) {
argD = sigM;
subpattern(out_dffe);
if (dff) {
ffM = dff;
clock = dffclock;
if (dffrstmux) {
ffMrstmux = dffrstmux;
ffMrstpol = dffrstpol;
}
if (dffcemux) {
ffMcemux = dffcemux;
ffMcepol = dffcepol;
}
sigM = dffQ;
}
}
sigP = sigM;
endcode
// (8) Match 'P' output that exclusively drives one of two inputs to an $add
// cell (post-adder).
// The other input to the adder is assumed to come in from the 'C' input
// (note: 'P' -> 'C' connections that exist for accumulators are
// recognised in xilinx_dsp.cc).
match postAdd
// Ensure that Z mux is not already used
if port(dsp, \OPMODE, SigSpec()).extract(2,2).is_fully_zero()
select postAdd->type.in($add)
select GetSize(port(postAdd, \Y)) <= 48
choice <IdString> AB {\A, \B}
select nusers(port(postAdd, AB)) <= 3
filter ffMcemux || nusers(port(postAdd, AB)) == 2
filter !ffMcemux || nusers(port(postAdd, AB)) == 3
index <SigBit> port(postAdd, AB)[0] === sigP[0]
filter GetSize(port(postAdd, AB)) >= GetSize(sigP)
filter port(postAdd, AB).extract(0, GetSize(sigP)) == sigP
// Check that remainder of AB is a sign- or zero-extension
filter port(postAdd, AB).extract_end(GetSize(sigP)) == SigSpec(sigP[GetSize(sigP)-1], GetSize(port(postAdd, AB))-GetSize(sigP)) || port(postAdd, AB).extract_end(GetSize(sigP)) == SigSpec(State::S0, GetSize(port(postAdd, AB))-GetSize(sigP))
set postAddAB AB
optional
endmatch
code sigC sigP
if (postAdd) {
sigC = port(postAdd, postAddAB == \A ? \B : \A);
sigP = port(postAdd, \Y);
}
endcode
// (9) Match 'P' output that exclusively drives a PREG
code argD ffP ffPcemux ffPrstmux ffPcepol ffPrstpol sigP clock
if (param(dsp, \PREG).as_int() == 0) {
int users = 2;
// If ffMcemux and no postAdd new-value net must have three users: ffMcemux, ffM and ffPcemux
if (ffMcemux && !postAdd) users++;
if (nusers(sigP) == users) {
argD = sigP;
subpattern(out_dffe);
if (dff) {
ffP = dff;
clock = dffclock;
if (dffrstmux) {
ffPrstmux = dffrstmux;
ffPrstpol = dffrstpol;
}
if (dffcemux) {
ffPcemux = dffcemux;
ffPcepol = dffcepol;
}
sigP = dffQ;
}
}
}
endcode
// (10) If post-adder and PREG both present, match for a $mux cell driving
// the 'C' input, where one of the $mux's inputs is the PREG output.
// This indicates an accumulator situation, and one where a $mux exists
// to override the accumulated value:
// +--------------------------------+
// | ____ |
// +--| \ |
// |$mux|-+ |
// 'C' ---|____/ | |
// | /-------\ +----+ |
// +----+ +-| post- |___|PREG|---+ 'P'
// |MREG|------ | adder | +----+
// +----+ \-------/
match postAddMux
if postAdd
if ffP
select postAddMux->type.in($mux)
select nusers(port(postAddMux, \Y)) == 2
choice <IdString> AB {\A, \B}
index <SigSpec> port(postAddMux, AB) === sigP
index <SigSpec> port(postAddMux, \Y) === sigC
set postAddMuxAB AB
optional
endmatch
code sigC
if (postAddMux)
sigC = port(postAddMux, postAddMuxAB == \A ? \B : \A);
endcode
code
accept;
endcode
// #######################
// Subpattern for matching against input registers, based on knowledge of the
// 'Q' input. Typically, identifying registers with clock-enable and reset
// capability would be a task would be handled by other Yosys passes such as
// dff2dffe, but since DSP inference happens much before this, these patterns
// have to be manually identified.
// At a high level:
// (1) Starting from a $dff cell that (partially or fully) drives the given
// 'Q' argument
// (2) Match for a $mux cell implementing synchronous reset semantics ---
// one that exclusively drives the 'D' input of the $dff, with one of its
// $mux inputs being fully zero
// (3) Match for a $mux cell implement clock enable semantics --- one that
// exclusively drives the 'D' input of the $dff (or the other input of
// the reset $mux) and where one of this $mux's inputs is connected to
// the 'Q' output of the $dff
subpattern in_dffe
arg argD argQ clock
code
dff = nullptr;
if (GetSize(argQ) == 0)
reject;
for (const auto &c : argQ.chunks()) {
// Abandon matches when 'Q' is a constant
if (!c.wire)
reject;
// Abandon matches when 'Q' has the keep attribute set
if (c.wire->get_bool_attribute(\keep))
reject;
// Abandon matches when 'Q' has a non-zero init attribute set
// (not supported by DSP48E1)
Const init = c.wire->attributes.at(\init, Const());
if (!init.empty())
for (auto b : init.extract(c.offset, c.width))
if (b != State::Sx && b != State::S0)
reject;
}
endcode
// (1) Starting from a $dff cell that (partially or fully) drives the given
// 'Q' argument
match ff
select ff->type.in($dff)
// DSP48E1 does not support clock inversion
select param(ff, \CLK_POLARITY).as_bool()
slice offset GetSize(port(ff, \D))
index <SigBit> port(ff, \Q)[offset] === argQ[0]
// Check that the rest of argQ is present
filter GetSize(port(ff, \Q)) >= offset + GetSize(argQ)
filter port(ff, \Q).extract(offset, GetSize(argQ)) == argQ
filter clock == SigBit() || port(ff, \CLK) == clock
set ffoffset offset
endmatch
code argQ argD
SigSpec Q = port(ff, \Q);
dff = ff;
dffclock = port(ff, \CLK);
dffD = argQ;
argD = port(ff, \D);
argQ = Q;
dffD.replace(argQ, argD);
// Only search for ffrstmux if dffD only
// has two (ff, ffrstmux) users
if (nusers(dffD) > 2)
argD = SigSpec();
endcode
// (2) Match for a $mux cell implementing synchronous reset semantics ---
// exclusively drives the 'D' input of the $dff, with one of the $mux
// inputs being fully zero
match ffrstmux
if !argD.empty()
select ffrstmux->type.in($mux)
index <SigSpec> port(ffrstmux, \Y) === argD
choice <IdString> BA {\B, \A}
// DSP48E1 only supports reset to zero
select port(ffrstmux, BA).is_fully_zero()
define <bool> pol (BA == \B)
set ffrstpol pol
semioptional
endmatch
code argD
if (ffrstmux) {
dffrstmux = ffrstmux;
dffrstpol = ffrstpol;
argD = port(ffrstmux, ffrstpol ? \A : \B);
dffD.replace(port(ffrstmux, \Y), argD);
// Only search for ffcemux if argQ has at
// least 3 users (ff, <upstream>, ffrstmux) and
// dffD only has two (ff, ffrstmux)
if (!(nusers(argQ) >= 3 && nusers(dffD) == 2))
argD = SigSpec();
}
else
dffrstmux = nullptr;
endcode
// (3) Match for a $mux cell implement clock enable semantics --- one that
// exclusively drives the 'D' input of the $dff (or the other input of
// the reset $mux) and where one of this $mux's inputs is connected to
// the 'Q' output of the $dff
match ffcemux
if !argD.empty()
select ffcemux->type.in($mux)
index <SigSpec> port(ffcemux, \Y) === argD
choice <IdString> AB {\A, \B}
index <SigSpec> port(ffcemux, AB) === argQ
define <bool> pol (AB == \A)
set ffcepol pol
semioptional
endmatch
code argD
if (ffcemux) {
dffcemux = ffcemux;
dffcepol = ffcepol;
argD = port(ffcemux, ffcepol ? \B : \A);
dffD.replace(port(ffcemux, \Y), argD);
}
else
dffcemux = nullptr;
endcode
// #######################
// Subpattern for matching against output registers, based on knowledge of the
// 'D' input.
// At a high level:
// (1) Starting from an optional $mux cell that implements clock enable
// semantics --- one where the given 'D' argument (partially or fully)
// drives one of its two inputs
// (2) Starting from, or continuing onto, another optional $mux cell that
// implements synchronous reset semantics --- one where the given 'D'
// argument (or the clock enable $mux output) drives one of its two inputs
// and where the other input is fully zero
// (3) Match for a $dff cell (whose 'D' input is the 'D' argument, or the
// output of the previous clock enable or reset $mux cells)
subpattern out_dffe
arg argD argQ clock
code
dff = nullptr;
for (auto c : argD.chunks())
// Abandon matches when 'D' has the keep attribute set
if (c.wire->get_bool_attribute(\keep))
reject;
endcode
// (1) Starting from an optional $mux cell that implements clock enable
// semantics --- one where the given 'D' argument (partially or fully)
// drives one of its two inputs
match ffcemux
select ffcemux->type.in($mux)
// ffcemux output must have two users: ffcemux and ff.D
select nusers(port(ffcemux, \Y)) == 2
choice <IdString> AB {\A, \B}
// keep-last-value net must have at least three users: ffcemux, ff, downstream sink(s)
select nusers(port(ffcemux, AB)) >= 3
slice offset GetSize(port(ffcemux, \Y))
define <IdString> BA (AB == \A ? \B : \A)
index <SigBit> port(ffcemux, BA)[offset] === argD[0]
// Check that the rest of argD is present
filter GetSize(port(ffcemux, BA)) >= offset + GetSize(argD)
filter port(ffcemux, BA).extract(offset, GetSize(argD)) == argD
set ffoffset offset
define <bool> pol (AB == \A)
set ffcepol pol
semioptional
endmatch
code argD argQ
dffcemux = ffcemux;
if (ffcemux) {
SigSpec BA = port(ffcemux, ffcepol ? \B : \A);
SigSpec Y = port(ffcemux, \Y);
argQ = argD;
argD.replace(BA, Y);
argQ.replace(BA, port(ffcemux, ffcepol ? \A : \B));
dffcemux = ffcemux;
dffcepol = ffcepol;
}
endcode
// (2) Starting from, or continuing onto, another optional $mux cell that
// implements synchronous reset semantics --- one where the given 'D'
// argument (or the clock enable $mux output) drives one of its two inputs
// and where the other input is fully zero
match ffrstmux
select ffrstmux->type.in($mux)
// ffrstmux output must have two users: ffrstmux and ff.D
select nusers(port(ffrstmux, \Y)) == 2
choice <IdString> BA {\B, \A}
// DSP48E1 only supports reset to zero
select port(ffrstmux, BA).is_fully_zero()
slice offset GetSize(port(ffrstmux, \Y))
define <IdString> AB (BA == \B ? \A : \B)
index <SigBit> port(ffrstmux, AB)[offset] === argD[0]
// Check that offset is consistent
filter !ffcemux || ffoffset == offset
// Check that the rest of argD is present
filter GetSize(port(ffrstmux, AB)) >= offset + GetSize(argD)
filter port(ffrstmux, AB).extract(offset, GetSize(argD)) == argD
set ffoffset offset
define <bool> pol (AB == \A)
set ffrstpol pol
semioptional
endmatch
code argD argQ
dffrstmux = ffrstmux;
if (ffrstmux) {
SigSpec AB = port(ffrstmux, ffrstpol ? \A : \B);
SigSpec Y = port(ffrstmux, \Y);
argD.replace(AB, Y);
dffrstmux = ffrstmux;
dffrstpol = ffrstpol;
}
endcode
// (3) Match for a $dff cell (whose 'D' input is the 'D' argument, or the
// output of the previous clock enable or reset $mux cells)
match ff
select ff->type.in($dff)
// DSP48E1 does not support clock inversion
select param(ff, \CLK_POLARITY).as_bool()
slice offset GetSize(port(ff, \D))
index <SigBit> port(ff, \D)[offset] === argD[0]
// Check that offset is consistent
filter (!ffcemux && !ffrstmux) || ffoffset == offset
// Check that the rest of argD is present
filter GetSize(port(ff, \D)) >= offset + GetSize(argD)
filter port(ff, \D).extract(offset, GetSize(argD)) == argD
// Check that FF.Q is connected to CE-mux
filter !ffcemux || port(ff, \Q).extract(offset, GetSize(argQ)) == argQ
filter clock == SigBit() || port(ff, \CLK) == clock
set ffoffset offset
endmatch
code argQ
SigSpec D = port(ff, \D);
SigSpec Q = port(ff, \Q);
if (!ffcemux) {
argQ = argD;
argQ.replace(D, Q);
}
// Abandon matches when 'Q' has a non-zero init attribute set
// (not supported by DSP48E1)
for (auto c : argQ.chunks()) {
Const init = c.wire->attributes.at(\init, Const());
if (!init.empty())
for (auto b : init.extract(c.offset, c.width))
if (b != State::Sx && b != State::S0)
reject;
}
dff = ff;
dffQ = argQ;
dffclock = port(ff, \CLK);
endcode

View file

@ -1,7 +1,7 @@
// This file describes the second of three pattern matcher setups that
// forms the `xilinx_dsp` pass described in xilinx_dsp.cc
// At a high level, it works as follows:
// (1) Starting from a DSP48E1 cell that (a) doesn't have a CREG already,
// (1) Starting from a DSP48* cell that (a) doesn't have a CREG already,
// and (b) uses the 'C' port
// (2) Match the driver of the 'C' input to a possible $dff cell (CREG)
// (attached to at most two $mux cells that implement clock-enable or
@ -38,10 +38,10 @@ udata <SigBit> dffclock
udata <Cell*> dff dffcemux dffrstmux
udata <bool> dffcepol dffrstpol
// (1) Starting from a DSP48E1 cell that (a) doesn't have a CREG already,
// (1) Starting from a DSP48* cell that (a) doesn't have a CREG already,
// and (b) uses the 'C' port
match dsp
select dsp->type.in(\DSP48E1)
select dsp->type.in(\DSP48A, \DSP48A1, \DSP48E1)
select param(dsp, \CREG, 1).as_int() == 0
select nusers(port(dsp, \C, SigSpec())) > 1
endmatch
@ -60,7 +60,8 @@ code sigC sigP clock
sigC = unextend(port(dsp, \C, SigSpec()));
SigSpec P = port(dsp, \P);
if (param(dsp, \USE_MULT, Const("MULTIPLY")).decode_string() == "MULTIPLY") {
if (!dsp->type.in(\DSP48E1) ||
param(dsp, \USE_MULT, Const("MULTIPLY")).decode_string() == "MULTIPLY") {
// Only care about those bits that are used
int i;
for (i = GetSize(P)-1; i >= 0; i--)

View file

@ -62,12 +62,11 @@ code
#define MAX_DSP_CASCADE 20
endcode
// (1) Starting from a DSP48E1 cell that (a) has the Z multiplexer
// (controlled by OPMODE[6:4]) set to zero and (b) doesn't already
// use the 'PCOUT' port
// (1) Starting from a DSP48* cell that (a) has the Z multiplexer
// (controlled by OPMODE[3:2] for DSP48A*, by OPMODE[6:4] for DSP48E1)
// set to zero and (b) doesn't already use the 'PCOUT' port
match first
select first->type.in(\DSP48E1)
select port(first, \OPMODE, Const(0, 7)).extract(4,3) == Const::from_string("000")
select (first->type.in(\DSP48A, \DSP48A1) && port(first, \OPMODE, Const(0, 8)).extract(2,2) == Const::from_string("00")) || (first->type.in(\DSP48E1) && port(first, \OPMODE, Const(0, 7)).extract(4,3) == Const::from_string("000"))
select nusers(port(first, \PCOUT, SigSpec())) <= 1
endmatch
@ -100,14 +99,21 @@ finally
add_siguser(cascade, dsp);
SigSpec opmode = port(dsp_pcin, \OPMODE, Const(0, 7));
if (P == 17)
opmode[6] = State::S1;
else if (P == 0)
opmode[6] = State::S0;
else log_abort();
if (dsp->type.in(\DSP48A, \DSP48A1)) {
log_assert(P == 0);
opmode[3] = State::S0;
opmode[2] = State::S1;
}
else if (dsp->type.in(\DSP48E1)) {
if (P == 17)
opmode[6] = State::S1;
else if (P == 0)
opmode[6] = State::S0;
else log_abort();
opmode[5] = State::S0;
opmode[4] = State::S1;
opmode[5] = State::S0;
opmode[4] = State::S1;
}
dsp_pcin->setPort(\OPMODE, opmode);
log_debug("PCOUT -> PCIN cascade for %s -> %s\n", log_id(dsp), log_id(dsp_pcin));
@ -120,21 +126,42 @@ finally
add_siguser(cascade, dsp_pcin);
add_siguser(cascade, dsp);
dsp->setParam(ID(ACASCREG), AREG);
if (dsp->type.in(\DSP48E1))
dsp->setParam(ID(ACASCREG), AREG);
dsp_pcin->setParam(ID(A_INPUT), Const("CASCADE"));
log_debug("ACOUT -> ACIN cascade for %s -> %s\n", log_id(dsp), log_id(dsp_pcin));
}
if (BREG >= 0) {
Wire *cascade = module->addWire(NEW_ID, 18);
dsp_pcin->setPort(ID(B), Const(0, 18));
dsp_pcin->setPort(ID(BCIN), cascade);
if (dsp->type.in(\DSP48A, \DSP48A1)) {
// According to UG389 p9 [https://www.xilinx.com/support/documentation/user_guides/ug389.pdf]
// "The DSP48A1 component uses this input when cascading
// BCOUT from an adjacent DSP48A1 slice. The tools then
// translate BCOUT cascading to the dedicated BCIN input
// and set the B_INPUT attribute for implementation."
dsp_pcin->setPort(ID(B), cascade);
}
else {
dsp_pcin->setPort(ID(B), Const(0, 18));
dsp_pcin->setPort(ID(BCIN), cascade);
}
dsp->setPort(ID(BCOUT), cascade);
add_siguser(cascade, dsp_pcin);
add_siguser(cascade, dsp);
dsp->setParam(ID(BCASCREG), BREG);
dsp_pcin->setParam(ID(B_INPUT), Const("CASCADE"));
if (dsp->type.in(\DSP48E1)) {
dsp->setParam(ID(BCASCREG), BREG);
// According to UG389 p13 [https://www.xilinx.com/support/documentation/user_guides/ug389.pdf]
// "The attribute is only used by place and route tools and
// is not necessary for the users to set for synthesis. The
// attribute is determined by the connection to the B port
// of the DSP48A1 slice. If the B port is connected to the
// BCOUT of another DSP48A1 slice, then the tools automatically
// set the attribute to 'CASCADE', otherwise it is set to
// 'DIRECT'".
dsp_pcin->setParam(ID(B_INPUT), Const("CASCADE"));
}
log_debug("BCOUT -> BCIN cascade for %s -> %s\n", log_id(dsp), log_id(dsp_pcin));
}
@ -156,22 +183,21 @@ subpattern tail
arg first
arg next
// (2.1) Match another DSP48E1 cell that (a) does not have the CREG enabled,
// (2.1) Match another DSP48* cell that (a) does not have the CREG enabled,
// (b) has its Z multiplexer output set to the 'C' port, which is
// driven by the 'P' output of the previous DSP cell, and (c) has its
// 'PCIN' port unused
match nextP
select nextP->type.in(\DSP48E1)
select !param(nextP, \CREG, State::S1).as_bool()
select port(nextP, \OPMODE, Const(0, 7)).extract(4,3) == Const::from_string("011")
select (nextP->type.in(\DSP48A, \DSP48A1) && port(nextP, \OPMODE, Const(0, 8)).extract(2,2) == Const::from_string("11")) || (nextP->type.in(\DSP48E1) && port(nextP, \OPMODE, Const(0, 7)).extract(4,3) == Const::from_string("011"))
select nusers(port(nextP, \C, SigSpec())) > 1
select nusers(port(nextP, \PCIN, SigSpec())) == 0
index <SigBit> port(nextP, \C)[0] === port(std::get<0>(chain.back()), \P)[0]
semioptional
endmatch
// (2.2) Same as (2.1) but with the 'C' port driven by the 'P' output of the
// previous DSP cell right-shifted by 17 bits
// (2.2) For DSP48E1 only, same as (2.1) but with the 'C' port driven
// by the 'P' output of the previous DSP cell right-shifted by 17 bits
match nextP_shift17
if !nextP
select nextP_shift17->type.in(\DSP48E1)
@ -188,6 +214,8 @@ code next
if (!nextP)
next = nextP_shift17;
if (next) {
if (next->type != first->type)
reject;
unextend = [](const SigSpec &sig) {
int i;
for (i = GetSize(sig)-1; i > 0; i--)
@ -202,38 +230,50 @@ code next
endcode
// (3) For this subequent DSP48E1 match (i.e. PCOUT -> PCIN cascade exists)
// if (a) the previous DSP48E1 uses either the A2REG or A1REG, (b) this
// DSP48 does not use A2REG nor A1REG, (c) this DSP48E1 does not already
// have an ACOUT -> ACIN cascade, (d) the previous DSP does not already
// use its ACOUT port, then examine if an ACOUT -> ACIN cascade
// opportunity exists by matching for a $dff-with-optional-clock-enable-
// or-reset and checking that the 'D' input of this register is the same
// as the 'A' input of the previous DSP
// if (a) this DSP48E1 does not already have an ACOUT -> ACIN cascade,
// (b) the previous DSP does not already use its ACOUT port, then
// examine if an ACOUT -> ACIN cascade opportunity exists if
// (i) A ports are identical, or (ii) separated by a
// $dff-with-optional-clock-enable-or-reset and checking that the 'D' input
// of this register is the same as the 'A' input of the previous DSP
// TODO: Check for two levels of flops, instead of just one
code argQ clock AREG
AREG = -1;
if (next) {
if (next && next->type.in(\DSP48E1)) {
Cell *prev = std::get<0>(chain.back());
if (param(prev, \AREG, 2).as_int() > 0 &&
param(next, \AREG, 2).as_int() > 0 &&
param(next, \A_INPUT, Const("DIRECT")).decode_string() == "DIRECT" &&
if (param(next, \A_INPUT, Const("DIRECT")).decode_string() == "DIRECT" &&
port(next, \ACIN, SigSpec()).is_fully_zero() &&
nusers(port(prev, \ACOUT, SigSpec())) <= 1) {
argQ = unextend(port(next, \A));
clock = port(prev, \CLK);
subpattern(in_dffe);
if (dff) {
if (!dffrstmux && port(prev, \RSTA, State::S0) != State::S0)
goto reject_AREG;
if (dffrstmux && port(dffrstmux, \S) != port(prev, \RSTA, State::S0))
goto reject_AREG;
if (!dffcemux && port(prev, \CEA2, State::S0) != State::S0)
goto reject_AREG;
if (dffcemux && port(dffcemux, \S) != port(prev, \CEA2, State::S0))
goto reject_AREG;
if (dffD == unextend(port(prev, \A)))
AREG = 1;
reject_AREG: ;
if (param(prev, \AREG, 2) == 0) {
if (port(prev, \A) == port(next, \A))
AREG = 0;
}
else {
argQ = unextend(port(next, \A));
clock = port(prev, \CLK);
subpattern(in_dffe);
if (dff) {
if (!dffrstmux && port(prev, \RSTA, State::S0) != State::S0)
goto reject_AREG;
if (dffrstmux && port(dffrstmux, \S) != port(prev, \RSTA, State::S0))
goto reject_AREG;
IdString CEA;
if (param(prev, \AREG, 2) == 1)
CEA = \CEA2;
else if (param(prev, \AREG, 2) == 2)
CEA = \CEA1;
else log_abort();
if (!dffcemux && port(prev, CEA, State::S0) != State::S1)
goto reject_AREG;
if (dffcemux && port(dffcemux, \S) != port(prev, CEA, State::S0))
goto reject_AREG;
if (dffD == unextend(port(prev, \A)))
AREG = 1;
}
}
}
reject_AREG: ;
}
endcode
@ -242,28 +282,47 @@ code argQ clock BREG
BREG = -1;
if (next) {
Cell *prev = std::get<0>(chain.back());
if (param(prev, \BREG, 2).as_int() > 0 &&
param(next, \BREG, 2).as_int() > 0 &&
param(next, \B_INPUT, Const("DIRECT")).decode_string() == "DIRECT" &&
if (param(next, \B_INPUT, Const("DIRECT")).decode_string() == "DIRECT" &&
port(next, \BCIN, SigSpec()).is_fully_zero() &&
nusers(port(prev, \BCOUT, SigSpec())) <= 1) {
argQ = unextend(port(next, \B));
clock = port(prev, \CLK);
subpattern(in_dffe);
if (dff) {
if (!dffrstmux && port(prev, \RSTB, State::S0) != State::S0)
goto reject_BREG;
if (dffrstmux && port(dffrstmux, \S) != port(prev, \RSTB, State::S0))
goto reject_BREG;
if (!dffcemux && port(prev, \CEB2, State::S0) != State::S0)
goto reject_BREG;
if (dffcemux && port(dffcemux, \S) != port(prev, \CEB2, State::S0))
goto reject_BREG;
if (dffD == unextend(port(prev, \B)))
BREG = 1;
reject_BREG: ;
if ((next->type.in(\DSP48A, \DSP48A1) && param(prev, \B0REG, 0) == 0 && param(prev, \B1REG, 1) == 0) ||
(next->type.in(\DSP48E1) && param(prev, \BREG, 2) == 0)) {
if (port(prev, \B) == port(next, \B))
BREG = 0;
}
else {
argQ = unextend(port(next, \B));
clock = port(prev, \CLK);
subpattern(in_dffe);
if (dff) {
if (!dffrstmux && port(prev, \RSTB, State::S0) != State::S0)
goto reject_BREG;
if (dffrstmux && port(dffrstmux, \S) != port(prev, \RSTB, State::S0))
goto reject_BREG;
IdString CEB;
if (next->type.in(\DSP48A, \DSP48A1))
CEB = \CEB;
else if (next->type.in(\DSP48E1)) {
if (param(prev, \BREG, 2) == 1)
CEB = \CEB2;
else if (param(prev, \BREG, 2) == 2)
CEB = \CEB1;
else log_abort();
}
else log_abort();
if (!dffcemux && port(prev, CEB, State::S0) != State::S1)
goto reject_BREG;
if (dffcemux && port(dffcemux, \S) != port(prev, CEB, State::S0))
goto reject_BREG;
if (dffD == unextend(port(prev, \B))) {
if (next->type.in(\DSP48A, \DSP48A1) && param(prev, \B0REG, 0) != 0)
goto reject_BREG;
BREG = 1;
}
}
}
}
reject_BREG: ;
}
endcode

View file

@ -230,7 +230,7 @@ struct SimInstance
bool did_something = false;
sig = sigmap(sig);
log_assert(GetSize(sig) == GetSize(value));
log_assert(GetSize(sig) <= GetSize(value));
for (int i = 0; i < GetSize(sig); i++)
if (state_nets.at(sig[i]) != value[i]) {

View file

@ -29,17 +29,17 @@
// Kahn, Arthur B. (1962), "Topological sorting of large networks", Communications of the ACM 5 (11): 558-562, doi:10.1145/368996.369025
// http://en.wikipedia.org/wiki/Topological_sorting
#define ABC_COMMAND_LIB "strash; ifraig; scorr; dc2; dretime; retime {D}; strash; &get -n; &dch -f; &nf {D}; &put"
#define ABC_COMMAND_CTR "strash; ifraig; scorr; dc2; dretime; retime {D}; strash; &get -n; &dch -f; &nf {D}; &put; buffer; upsize {D}; dnsize {D}; stime -p"
#define ABC_COMMAND_LUT "strash; ifraig; scorr; dc2; dretime; retime {D}; strash; dch -f; if; mfs2"
#define ABC_COMMAND_SOP "strash; ifraig; scorr; dc2; dretime; retime {D}; strash; dch -f; cover {I} {P}"
#define ABC_COMMAND_DFL "strash; ifraig; scorr; dc2; dretime; retime {D}; strash; &get -n; &dch -f; &nf {D}; &put"
#define ABC_COMMAND_LIB "strash; ifraig; scorr; dc2; dretime; strash; &get -n; &dch -f; &nf {D}; &put"
#define ABC_COMMAND_CTR "strash; ifraig; scorr; dc2; dretime; strash; &get -n; &dch -f; &nf {D}; &put; buffer; upsize {D}; dnsize {D}; stime -p"
#define ABC_COMMAND_LUT "strash; ifraig; scorr; dc2; dretime; strash; dch -f; if; mfs2"
#define ABC_COMMAND_SOP "strash; ifraig; scorr; dc2; dretime; strash; dch -f; cover {I} {P}"
#define ABC_COMMAND_DFL "strash; ifraig; scorr; dc2; dretime; strash; &get -n; &dch -f; &nf {D}; &put"
#define ABC_FAST_COMMAND_LIB "strash; dretime; retime {D}; map {D}"
#define ABC_FAST_COMMAND_CTR "strash; dretime; retime {D}; map {D}; buffer; upsize {D}; dnsize {D}; stime -p"
#define ABC_FAST_COMMAND_LUT "strash; dretime; retime {D}; if"
#define ABC_FAST_COMMAND_SOP "strash; dretime; retime {D}; cover -I {I} -P {P}"
#define ABC_FAST_COMMAND_DFL "strash; dretime; retime {D}; map"
#define ABC_FAST_COMMAND_LIB "strash; dretime; map {D}"
#define ABC_FAST_COMMAND_CTR "strash; dretime; map {D}; buffer; upsize {D}; dnsize {D}; stime -p"
#define ABC_FAST_COMMAND_LUT "strash; dretime; if"
#define ABC_FAST_COMMAND_SOP "strash; dretime; cover -I {I} -P {P}"
#define ABC_FAST_COMMAND_DFL "strash; dretime; map"
#include "kernel/register.h"
#include "kernel/sigtools.h"
@ -749,6 +749,10 @@ void abc_module(RTLIL::Design *design, RTLIL::Module *current_module, std::strin
else
abc_script += fast_mode ? ABC_FAST_COMMAND_DFL : ABC_COMMAND_DFL;
if (script_file.empty() && !delay_target.empty())
for (size_t pos = abc_script.find("dretime;"); pos != std::string::npos; pos = abc_script.find("dretime;", pos+1))
abc_script = abc_script.substr(0, pos) + "dretime; retime -o {D};" + abc_script.substr(pos+8);
for (size_t pos = abc_script.find("{D}"); pos != std::string::npos; pos = abc_script.find("{D}", pos))
abc_script = abc_script.substr(0, pos) + delay_target + abc_script.substr(pos+3);
@ -1769,7 +1773,7 @@ struct AbcPass : public Pass {
extra_args(args, argidx, design);
if (!lut_costs.empty() && !liberty_file.empty())
log_cmd_error("Got -lut and -liberty! This two options are exclusive.\n");
log_cmd_error("Got -lut and -liberty! These two options are exclusive.\n");
if (!constr_file.empty() && liberty_file.empty())
log_cmd_error("Got -constr but no -liberty!\n");

View file

@ -985,29 +985,28 @@ struct Abc9Pass : public Pass {
//}
if (arg == "-lut" && argidx+1 < args.size()) {
string arg = args[++argidx];
size_t pos = arg.find_first_of(':');
int lut_mode = 0, lut_mode2 = 0;
if (pos != string::npos) {
lut_mode = atoi(arg.substr(0, pos).c_str());
lut_mode2 = atoi(arg.substr(pos+1).c_str());
} else {
pos = arg.find_first_of('.');
if (arg.find_first_not_of("0123456789:") == std::string::npos) {
size_t pos = arg.find_first_of(':');
int lut_mode = 0, lut_mode2 = 0;
if (pos != string::npos) {
lut_file = arg;
rewrite_filename(lut_file);
if (!lut_file.empty() && !is_absolute_path(lut_file))
lut_file = std::string(pwd) + "/" + lut_file;
}
else {
lut_mode = atoi(arg.substr(0, pos).c_str());
lut_mode2 = atoi(arg.substr(pos+1).c_str());
} else {
lut_mode = atoi(arg.c_str());
lut_mode2 = lut_mode;
}
lut_costs.clear();
for (int i = 0; i < lut_mode; i++)
lut_costs.push_back(1);
for (int i = lut_mode; i < lut_mode2; i++)
lut_costs.push_back(2 << (i - lut_mode));
}
else {
lut_file = arg;
rewrite_filename(lut_file);
if (!lut_file.empty() && !is_absolute_path(lut_file) && lut_file[0] != '+')
lut_file = std::string(pwd) + "/" + lut_file;
}
lut_costs.clear();
for (int i = 0; i < lut_mode; i++)
lut_costs.push_back(1);
for (int i = lut_mode; i < lut_mode2; i++)
lut_costs.push_back(2 << (i - lut_mode));
continue;
}
if (arg == "-luts" && argidx+1 < args.size()) {
@ -1076,7 +1075,7 @@ struct Abc9Pass : public Pass {
box_file = "+/dummy.box";
rewrite_filename(box_file);
if (!box_file.empty() && !is_absolute_path(box_file))
if (!box_file.empty() && !is_absolute_path(box_file) && box_file[0] != '+')
box_file = std::string(pwd) + "/" + box_file;
dict<int,IdString> box_lookup;

View file

@ -192,11 +192,28 @@ struct IopadmapPass : public Pass {
if (!toutpad_celltype.empty() || !tinoutpad_celltype.empty())
{
dict<SigBit, Cell *> tbuf_bits;
pool<SigBit> driven_bits;
// Gather tristate buffers and always-on drivers.
for (auto cell : module->cells())
if (cell->type == ID($_TBUF_)) {
SigBit bit = cell->getPort(ID::Y).as_bit();
tbuf_bits[bit] = cell;
} else {
for (auto port : cell->connections())
if (!cell->known() || cell->output(port.first))
for (auto bit : port.second)
driven_bits.insert(bit);
}
// If a wire is a target of an assignment, it is driven, unless the source is 'z.
for (auto &conn : module->connections())
for (int i = 0; i < GetSize(conn.first); i++) {
SigBit dstbit = conn.first[i];
SigBit srcbit = conn.second[i];
if (!srcbit.wire && srcbit.data == State::Sz)
continue;
driven_bits.insert(dstbit);
}
for (auto wire : module->selected_wires())
@ -204,41 +221,71 @@ struct IopadmapPass : public Pass {
if (!wire->port_output)
continue;
// Don't handle inout ports if we have no suitable buffer type.
if (wire->port_input && tinoutpad_celltype.empty())
continue;
// likewise for output ports.
if (!wire->port_input && toutpad_celltype.empty())
continue;
for (int i = 0; i < GetSize(wire); i++)
{
SigBit wire_bit(wire, i);
Cell *tbuf_cell = nullptr;
if (tbuf_bits.count(wire_bit) == 0)
if (skip_wire_bits.count(wire_bit))
continue;
Cell *tbuf_cell = tbuf_bits.at(wire_bit);
if (tbuf_bits.count(wire_bit))
tbuf_cell = tbuf_bits.at(wire_bit);
if (tbuf_cell == nullptr)
continue;
SigBit en_sig;
SigBit data_sig;
bool is_driven = driven_bits.count(wire_bit);
SigBit en_sig = tbuf_cell->getPort(ID(E)).as_bit();
SigBit data_sig = tbuf_cell->getPort(ID::A).as_bit();
if (tbuf_cell != nullptr) {
// Found a tristate buffer — use it.
en_sig = tbuf_cell->getPort(ID(E)).as_bit();
data_sig = tbuf_cell->getPort(ID::A).as_bit();
} else if (is_driven) {
// No tristate buffer, but an always-on driver is present.
// If this is an inout port, we're creating a tinoutpad
// anyway, just with a constant 1 as enable.
if (!wire->port_input)
continue;
en_sig = SigBit(State::S1);
data_sig = wire_bit;
} else {
// No driver on a wire. Create a tristate pad with always-0
// enable.
en_sig = SigBit(State::S0);
data_sig = SigBit(State::Sx);
}
if (wire->port_input && !tinoutpad_celltype.empty())
if (wire->port_input)
{
log("Mapping port %s.%s[%d] using %s.\n", log_id(module), log_id(wire), i, tinoutpad_celltype.c_str());
Cell *cell = module->addCell(NEW_ID, RTLIL::escape_id(tinoutpad_celltype));
cell->setPort(RTLIL::escape_id(tinoutpad_portname_oe), en_sig);
cell->setPort(RTLIL::escape_id(tinoutpad_portname_o), wire_bit);
cell->setPort(RTLIL::escape_id(tinoutpad_portname_i), data_sig);
cell->attributes[ID::keep] = RTLIL::Const(1);
module->remove(tbuf_cell);
if (tbuf_cell) {
module->remove(tbuf_cell);
cell->setPort(RTLIL::escape_id(tinoutpad_portname_o), wire_bit);
cell->setPort(RTLIL::escape_id(tinoutpad_portname_i), data_sig);
} else if (is_driven) {
cell->setPort(RTLIL::escape_id(tinoutpad_portname_i), wire_bit);
} else {
cell->setPort(RTLIL::escape_id(tinoutpad_portname_o), wire_bit);
cell->setPort(RTLIL::escape_id(tinoutpad_portname_i), data_sig);
}
skip_wire_bits.insert(wire_bit);
if (!tinoutpad_portname_pad.empty())
rewrite_bits[wire][i] = make_pair(cell, RTLIL::escape_id(tinoutpad_portname_pad));
continue;
}
if (!wire->port_input && !toutpad_celltype.empty())
{
} else {
log("Mapping port %s.%s[%d] using %s.\n", log_id(module), log_id(wire), i, toutpad_celltype.c_str());
Cell *cell = module->addCell(NEW_ID, RTLIL::escape_id(toutpad_celltype));
@ -247,12 +294,13 @@ struct IopadmapPass : public Pass {
cell->setPort(RTLIL::escape_id(toutpad_portname_i), data_sig);
cell->attributes[ID::keep] = RTLIL::Const(1);
module->remove(tbuf_cell);
module->connect(wire_bit, data_sig);
if (tbuf_cell) {
module->remove(tbuf_cell);
module->connect(wire_bit, data_sig);
}
skip_wire_bits.insert(wire_bit);
if (!toutpad_portname_pad.empty())
rewrite_bits[wire][i] = make_pair(cell, RTLIL::escape_id(toutpad_portname_pad));
continue;
}
}
}