mirror of
https://github.com/YosysHQ/yosys
synced 2025-04-27 10:55:51 +00:00
synth_intel_alm: alternative synthesis for Intel FPGAs
By operating at a layer of abstraction over the rather clumsy Intel primitives, we can avoid special hacks like `dffinit -highlow` in favour of simple techmapping. This also makes the primitives much easier to manipulate, and more descriptive (no more cyclonev_lcell_comb to mean anything from a LUT2 to a LUT6).
This commit is contained in:
parent
4c52691a58
commit
2e37e62e6b
29 changed files with 1662 additions and 1 deletions
64
techlibs/intel_alm/common/arith_alm_map.v
Normal file
64
techlibs/intel_alm/common/arith_alm_map.v
Normal file
|
@ -0,0 +1,64 @@
|
|||
`default_nettype none
|
||||
|
||||
module \$alu (A, B, CI, BI, X, Y, CO);
|
||||
|
||||
parameter A_SIGNED = 0;
|
||||
parameter B_SIGNED = 0;
|
||||
parameter A_WIDTH = 1;
|
||||
parameter B_WIDTH = 1;
|
||||
parameter Y_WIDTH = 1;
|
||||
|
||||
parameter _TECHMAP_CONSTMSK_CI_ = 0;
|
||||
parameter _TECHMAP_CONSTVAL_CI_ = 0;
|
||||
|
||||
input [A_WIDTH-1:0] A;
|
||||
input [B_WIDTH-1:0] B;
|
||||
input CI, BI;
|
||||
output [Y_WIDTH-1:0] X, Y, CO;
|
||||
|
||||
wire [Y_WIDTH-1:0] A_buf, B_buf;
|
||||
\$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
|
||||
\$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf));
|
||||
|
||||
wire [Y_WIDTH-1:0] AA = A_buf;
|
||||
wire [Y_WIDTH-1:0] BB = BI ? ~B_buf : B_buf;
|
||||
wire [Y_WIDTH-1:0] BX = B_buf;
|
||||
wire [Y_WIDTH:0] ALM_CARRY;
|
||||
|
||||
// Start of carry chain
|
||||
generate
|
||||
if (_TECHMAP_CONSTMSK_CI_ == 1) begin
|
||||
assign ALM_CARRY[0] = _TECHMAP_CONSTVAL_CI_;
|
||||
end else begin
|
||||
MISTRAL_ALUT_ARITH #(
|
||||
.LUT0(16'b1010_1010_1010_1010), // Q = A
|
||||
.LUT1(16'b0000_0000_0000_0000), // Q = 0 (LUT1's input to the adder is inverted)
|
||||
) alm_start (
|
||||
.A(CI), .B(1'b1), .C(1'b1), .D0(1'b1), .D1(1'b1),
|
||||
.CI(1'b0),
|
||||
.CO(ALM_CARRY[0])
|
||||
);
|
||||
end
|
||||
endgenerate
|
||||
|
||||
// Carry chain
|
||||
genvar i;
|
||||
generate for (i = 0; i < Y_WIDTH; i = i + 1) begin:slice
|
||||
// TODO: mwk suggests that a pass could merge pre-adder logic into this.
|
||||
MISTRAL_ALUT_ARITH #(
|
||||
.LUT0(16'b1010_1010_1010_1010), // Q = A
|
||||
.LUT1(16'b1100_0011_1100_0011), // Q = C ? B : ~B (LUT1's input to the adder is inverted)
|
||||
) alm_i (
|
||||
.A(AA[i]), .B(BX[i]), .C(BI), .D0(1'b1), .D1(1'b1),
|
||||
.CI(ALM_CARRY[i]),
|
||||
.SO(Y[i]),
|
||||
.CO(ALM_CARRY[i+1])
|
||||
);
|
||||
|
||||
// ALM carry chain is not directly accessible, so calculate the carry through soft logic if really needed.
|
||||
assign CO[i] = (AA[i] && BB[i]) || ((Y[i] ^ AA[i] ^ BB[i]) && (AA[i] || BB[i]));
|
||||
end endgenerate
|
||||
|
||||
assign X = AA ^ BB;
|
||||
|
||||
endmodule
|
Loading…
Add table
Add a link
Reference in a new issue