3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2025-04-24 01:25:33 +00:00

SMALL mode with first pass of opt_balance_tree

This commit is contained in:
Akash Levy 2024-08-26 22:36:47 -07:00
parent 4e03e8d877
commit 243d8317a5
3 changed files with 283 additions and 3 deletions

View file

@ -12,14 +12,16 @@ OBJS += passes/opt/opt_share.o
OBJS += passes/opt/opt_clean.o
OBJS += passes/opt/opt_expr.o
OBJS += passes/opt/opt_balance_tree.o
OBJS += passes/opt/muxpack.o
OBJS += passes/opt/wreduce.o
ifneq ($(SMALL),1)
OBJS += passes/opt/share.o
OBJS += passes/opt/wreduce.o
OBJS += passes/opt/opt_demorgan.o
OBJS += passes/opt/rmports.o
OBJS += passes/opt/opt_lut.o
OBJS += passes/opt/opt_lut_ins.o
OBJS += passes/opt/opt_ffinv.o
OBJS += passes/opt/pmux2shiftx.o
OBJS += passes/opt/muxpack.o
endif

View file

@ -0,0 +1,276 @@
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
* 2019 Eddie Hung <eddie@fpgeh.com>
* 2024 Akash Levy <akash@silimate.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/yosys.h"
#include "kernel/sigtools.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
struct OptBalanceTreeWorker {
Module *module;
SigMap sigmap;
dict<IdString, int> cell_count;
pool<Cell*> remove_cells;
dict<SigSpec, Cell*> sig_chain_next;
dict<SigSpec, Cell*> sig_chain_prev;
pool<SigBit> sigbit_with_non_chain_users;
pool<Cell*> chain_start_cells;
pool<Cell*> candidate_cells;
void make_sig_chain_next_prev(IdString cell_type) {
// Mark all wires with keep attribute as having non-chain users
for (auto wire : module->wires()) {
if (wire->get_bool_attribute(ID::keep)) {
for (auto bit : sigmap(wire))
sigbit_with_non_chain_users.insert(bit);
}
}
// Iterate over all cells in module
for (auto cell : module->cells()) {
// If cell matches and not marked as keep
if (cell->type == cell_type && !cell->get_bool_attribute(ID::keep)) {
// Get signals for cell ports
SigSpec a_sig = sigmap(cell->getPort(ID::A));
SigSpec b_sig = sigmap(cell->getPort(ID::B));
SigSpec y_sig = sigmap(cell->getPort(ID::Y));
// If a_sig already has a chain user, mark its bits as having non-chain users
if (sig_chain_next.count(a_sig) && !a_sig.is_fully_const()) // also ok if a_sig is fully const
for (auto a_bit : a_sig.bits())
sigbit_with_non_chain_users.insert(a_bit);
// Otherwise, mark cell as the next in the chain relative to a_sig
else {
sig_chain_next[a_sig] = cell;
candidate_cells.insert(cell);
}
if (!b_sig.empty()) {
// If b_sig already has a chain user, mark its bits as having non-chain users
if (sig_chain_next.count(b_sig) && !b_sig.is_fully_const()) // also ok if b_sig is fully const
for (auto b_bit : b_sig.bits())
sigbit_with_non_chain_users.insert(b_bit);
// Otherwise, mark cell as the next in the chain relative to b_sig
else {
sig_chain_next[b_sig] = cell;
candidate_cells.insert(cell);
}
}
// Mark cell as the previous in the chain relative to y_sig
sig_chain_prev[y_sig] = cell;
}
// If cell is not matching type, mark all cell input signals as being non-chain users
else {
for (auto conn : cell->connections())
if (cell->input(conn.first))
for (auto bit : sigmap(conn.second))
sigbit_with_non_chain_users.insert(bit);
}
}
}
void find_chain_start_cells() {
for (auto cell : candidate_cells) {
// Log candidate cell
log("Considering %s (%s)\n", log_id(cell), log_id(cell->type));
// Get signals for cell ports
SigSpec a_sig = sigmap(cell->getPort(ID::A));
SigSpec b_sig = sigmap(cell->getPort(ID::B));
SigSpec prev_sig = sig_chain_prev.count(a_sig) ? a_sig : b_sig;
// This is a start cell if there was no previous cell in the chain for a_sig or b_sig
if (sig_chain_prev.count(a_sig) + sig_chain_prev.count(b_sig) != 1) {
chain_start_cells.insert(cell);
continue;
}
// If any bits in previous cell signal have non-chain users, this is a start cell
for (auto bit : prev_sig.bits())
if (sigbit_with_non_chain_users.count(bit)) {
chain_start_cells.insert(cell);
continue;
}
}
}
vector<Cell*> create_chain(Cell *start_cell) {
// Chain of cells
vector<Cell*> chain;
// Current cell
Cell *c = start_cell;
// Iterate over cells and add to chain
while (c != nullptr) {
chain.push_back(c);
SigSpec y_sig = sigmap(c->getPort(ID::Y));
if (sig_chain_next.count(y_sig) == 0)
break;
c = sig_chain_next.at(y_sig);
if (chain_start_cells.count(c) != 0)
break;
}
// Return chain of cells
return chain;
}
void process_chain(vector<Cell*> &chain) {
// If chain size is less than 3, no balancing needed
if (GetSize(chain) < 3)
return;
// Get mid, midnext (at index mid+1) and end of chain
Cell *mid_cell = chain[GetSize(chain) / 2];
Cell *midnext_cell = chain[GetSize(chain) / 2 + 1];
Cell *end_cell = chain.back();
// Get mid signals
SigSpec mid_a_sig = sigmap(mid_cell->getPort(ID::A));
SigSpec mid_b_sig = sigmap(mid_cell->getPort(ID::B));
SigSpec mid_non_chain_sig = sig_chain_prev.count(mid_a_sig) ? mid_b_sig : mid_a_sig;
IdString mid_non_chain_port = sig_chain_prev.count(mid_a_sig) ? ID::B : ID::A;
// Get midnext signals
SigSpec midnext_a_sig = sigmap(midnext_cell->getPort(ID::A));
SigSpec midnext_b_sig = sigmap(midnext_cell->getPort(ID::B));
IdString midnext_chain_port = sig_chain_next.count(midnext_a_sig) ? ID::A : ID::B;
// Get output signal
SigSpec end_y_sig = sigmap(end_cell->getPort(ID::Y));
// Unset ports involved in rotation
mid_cell->unsetPort(mid_non_chain_port);
mid_cell->unsetPort(ID::Y);
midnext_cell->unsetPort(midnext_chain_port);
end_cell->unsetPort(ID::Y);
// Perform rotation
mid_cell->setPort(ID::Y, end_y_sig);
midnext_cell->setPort(midnext_chain_port, mid_non_chain_sig);
end_cell->setPort(ID::Y, mid_cell->getPort(mid_non_chain_port));
// Recurse on subtrees
vector<Cell*> left_chain(chain.begin(), chain.begin() + GetSize(chain) / 2);
vector<Cell*> right_chain(chain.begin() + GetSize(chain) / 2 + 1, chain.end());
process_chain(left_chain);
process_chain(right_chain);
}
void cleanup() {
// Remove cells
for (auto cell : remove_cells)
module->remove(cell);
// Fix ports
module->fixup_ports();
// Clear data structures
remove_cells.clear();
sig_chain_next.clear();
sig_chain_prev.clear();
sigbit_with_non_chain_users.clear();
chain_start_cells.clear();
candidate_cells.clear();
}
OptBalanceTreeWorker(Module *module, const vector<IdString> cell_types) : module(module), sigmap(module) {
// Do for each cell type
for (auto cell_type : cell_types) {
// Find chains of ops
make_sig_chain_next_prev(cell_type);
find_chain_start_cells();
// For each chain, if len >= 3, convert to tree via "rotation" and recurse on subtrees
for (auto c : chain_start_cells) {
vector<Cell*> chain = create_chain(c);
process_chain(chain);
}
// Clean up
cleanup();
}
}
};
struct OptBalanceTreePass : public Pass {
OptBalanceTreePass() : Pass("opt_balance_tree", "$and/$or/$xor/$xnor/$add/$mul cascades to trees") { }
void help() override {
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" opt_balance_tree [options] [selection]\n");
log("\n");
log("This pass converts cascaded chains of $and/$or/$xor/$xnor/$add/$mul cells into\n");
log("trees of cells to improve timing.\n");
log("\n");
log(" -splitfanout\n");
log(" run splitfanout pass first\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override {
bool splitfanout = false;
log_header(design, "Executing OPT_BALANCE_TREE pass (cell cascades to trees).\n");
// Handle arguments
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
if (args[argidx] == "-splitfanout") {
splitfanout = true;
continue;
}
break;
}
extra_args(args, argidx, design);
// Run splitfanout pass first
if (splitfanout) {
string cmd = "splitfanout t:$and t:$or t:$xor t:$add t:$mul";
Pass::call(design, cmd);
}
// Count of all cells that were packed
dict<IdString, int> cell_count;
const vector<IdString> cell_types = {ID($and), ID($or), ID($xor), ID($xnor), ID($add), ID($mul)};
for (auto module : design->selected_modules()) {
OptBalanceTreeWorker worker(module, cell_types);
for (auto cell : worker.cell_count) {
cell_count[cell.first] += cell.second;
}
}
// Log stats
for (auto cell_type : cell_types)
log("Converted %d %s cells into %s trees.\n", cell_count[cell_type], log_id(cell_type), log_id(cell_type.str() + "_tree"));
}
} OptBalanceTreePass;
PRIVATE_NAMESPACE_END