3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2025-04-20 23:56:38 +00:00

Merge branch 'YosysHQ:master' into issue/2616

This commit is contained in:
Muthiah Annamalai (முத்து அண்ணாமலை) 2023-05-29 11:36:29 -07:00 committed by GitHub
commit 116141bd8b
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
11 changed files with 787 additions and 20 deletions

View file

@ -141,7 +141,7 @@ LDLIBS += -lrt
endif
endif
YOSYS_VER := 0.29+34
YOSYS_VER := 0.29+40
# Note: We arrange for .gitcommit to contain the (short) commit hash in
# tarballs generated with git-archive(1) using .gitattributes. The git repo

View file

@ -84,6 +84,12 @@ template<> struct hash_ops<int64_t> : hash_int_ops
return mkhash((unsigned int)(a), (unsigned int)(a >> 32));
}
};
template<> struct hash_ops<uint32_t> : hash_int_ops
{
static inline unsigned int hash(uint32_t a) {
return a;
}
};
template<> struct hash_ops<std::string> {
static inline bool cmp(const std::string &a, const std::string &b) {

View file

@ -16,6 +16,7 @@ OBJS += passes/sat/fmcombine.o
OBJS += passes/sat/mutate.o
OBJS += passes/sat/cutpoint.o
OBJS += passes/sat/fminit.o
OBJS += passes/sat/recover_names.o
ifeq ($(DISABLE_SPAWN),0)
OBJS += passes/sat/qbfsat.o
endif

730
passes/sat/recover_names.cc Normal file
View file

@ -0,0 +1,730 @@
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2021 gatecat <gatecat@ds0.me>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/yosys.h"
#include "kernel/sigtools.h"
#include "kernel/consteval.h"
#include "kernel/celltypes.h"
#include "kernel/utils.h"
#include "kernel/satgen.h"
#include <algorithm>
#include <queue>
USING_YOSYS_NAMESPACE
template<> struct hashlib::hash_ops<uint64_t> : hashlib::hash_int_ops
{
static inline unsigned int hash(uint64_t a) {
return mkhash((unsigned int)(a), (unsigned int)(a >> 32));
}
};
PRIVATE_NAMESPACE_BEGIN
// xorshift128 params
#define INIT_X 123456789
#define INIT_Y 362436069
#define INIT_Z 521288629
#define INIT_W 88675123
// Similar to a SigBit; but module-independent
struct IdBit {
IdBit() : name(), bit(0) {};
IdBit(IdString name, int bit = 0) : name(name), bit(bit) {};
bool operator==(const IdBit &other) const { return name == other.name && bit == other.bit; };
bool operator!=(const IdBit &other) const { return name != other.name || bit != other.bit; };
unsigned hash() const
{
return mkhash_add(name.hash(), bit);
}
IdString name;
int bit;
};
// As above; but can be inverted
struct InvBit {
InvBit() : bit(), inverted(false) {};
explicit InvBit(IdBit bit, bool inverted = false) : bit(bit), inverted(inverted) {};
bool operator==(const InvBit &other) const { return bit == other.bit && inverted == other.inverted; };
bool operator!=(const InvBit &other) const { return bit != other.bit || inverted != other.inverted; };
unsigned hash() const
{
return mkhash(bit.hash(), inverted);
}
IdBit bit;
bool inverted;
};
typedef uint64_t equiv_cls_t;
static const int sim_length = sizeof(equiv_cls_t) * 8;
struct RecoverModuleWorker {
Design *design = nullptr;
Module *mod, *flat = nullptr;
RecoverModuleWorker(Module *mod) : design(mod->design), mod(mod) {};
ConstEval *ce = nullptr;
SigMap *sigmap = nullptr;
dict<IdBit, SigBit> flat2orig;
dict<IdBit, IdBit> bit2primary;
dict<IdBit, Cell*> bit2driver;
void prepare()
{
// Create a derivative of the module with whiteboxes flattened so we can
// run eval and sat on it
flat = design->addModule(NEW_ID);
mod->cloneInto(flat);
Pass::call_on_module(design, flat, "flatten -wb");
ce = new ConstEval(flat);
sigmap = new SigMap(flat);
// Create a mapping from primary name-bit in the box-flattened module to original sigbit
SigMap orig_sigmap(mod);
for (auto wire : mod->wires()) {
Wire *flat_wire = flat->wire(wire->name);
if (!flat_wire)
continue;
for (int i = 0; i < wire->width; i++) {
SigBit orig_sigbit = orig_sigmap(SigBit(wire, i));
SigBit flat_sigbit = (*sigmap)(SigBit(flat_wire, i));
if (!orig_sigbit.wire || !flat_sigbit.wire)
continue;
flat2orig[IdBit(flat_sigbit.wire->name, flat_sigbit.offset)] = orig_sigbit;
}
}
find_driven_bits();
}
void find_driven_bits()
{
// Add primary inputs
for (auto wire : flat->wires()) {
if (!wire->port_input)
continue;
for (int i = 0; i < wire->width; i++) {
SigBit bit(wire, i);
bit = (*sigmap)(bit);
if (bit.wire)
bit2driver[IdBit(bit.wire->name, bit.offset)] = nullptr;
}
}
// Add cell outputs
for (auto cell : flat->cells()) {
for (auto conn : cell->connections()) {
if (!cell->output(conn.first))
continue;
for (auto bit : conn.second) {
auto resolved = (*sigmap)(bit);
if (resolved.wire)
bit2driver[IdBit(resolved.wire->name, resolved.offset)] = cell;
}
}
}
// Setup bit2primary
for (auto wire : flat->wires()) {
for (int i = 0; i < wire->width; i++) {
SigBit bit(wire, i);
bit = (*sigmap)(bit);
if (bit.wire)
bit2primary[IdBit(wire->name, i)] = IdBit(bit.wire->name, bit.offset);
}
}
}
// Mapping from bit to (candidate) equivalence classes
dict<IdBit, equiv_cls_t> bit2cls;
void sim_cycle(int t, const dict<IdBit, RTLIL::State> &anchors)
{
ce->clear();
for (auto anchor : anchors) {
SigBit bit = (*sigmap)(SigBit(flat->wire(anchor.first.name), anchor.first.bit));
// Ignore in the rare case that it's already determined
SigSpec res(bit);
if (ce->eval(res))
continue;
ce->set(bit, anchor.second);
}
// Only evaluate IdBits that exist in the non-flat design; as they are all we care about
for (auto idbit : flat2orig) {
if (anchors.count(idbit.first))
continue;
SigBit bit = (*sigmap)(SigBit(flat->wire(idbit.first.name), idbit.first.bit));
SigSpec res(bit);
if (!ce->eval(res))
continue;
if (res != State::S0 && res != State::S1)
continue;
// Update equivalence classes
if (res == State::S1)
bit2cls[idbit.first] = bit2cls[idbit.first] | (equiv_cls_t(1) << t);
}
}
// Update the equivalence class groupings
void group_classes(dict<equiv_cls_t, std::pair<pool<IdBit>, pool<InvBit>>> &cls2bits, bool is_gate)
{
equiv_cls_t all_ones = 0;
for (int i = 0; i < sim_length; i++) all_ones |= (equiv_cls_t(1) << i);
for (auto pair : bit2cls) {
if (pair.second == 0 || pair.second == all_ones)
continue; // skip stuck-ats
if (is_gate) {
// True doesn't exist in gold; but inverted does
if (!cls2bits.count(pair.second) && cls2bits.count(pair.second ^ all_ones))
cls2bits[pair.second ^ all_ones].second.emplace(pair.first, true);
else
cls2bits[pair.second].second.emplace(pair.first, false);
} else {
cls2bits[pair.second].first.insert(pair.first);
}
}
}
// Compute depths of IdBits
dict<IdBit, int> bit2depth;
void compute_depths(const dict<IdBit, IdBit> &anchor_bits)
{
dict<SigBit, pool<IdString>> bit_drivers, bit_users;
TopoSort<IdString, RTLIL::sort_by_id_str> toposort;
for (auto cell : flat->cells())
for (auto conn : cell->connections())
{
for (auto bit : (*sigmap)(conn.second)) {
if (!bit.wire)
continue;
IdBit idbit(bit.wire->name, bit.offset);
if (anchor_bits.count(idbit))
continue;
if (cell->input(conn.first))
bit_users[bit].insert(cell->name);
if (cell->output(conn.first))
bit_drivers[bit].insert(cell->name);
}
toposort.node(cell->name);
}
for (auto &it : bit_users)
if (bit_drivers.count(it.first))
for (auto driver_cell : bit_drivers.at(it.first))
for (auto user_cell : it.second)
toposort.edge(driver_cell, user_cell);
toposort.sort();
for (auto cell_name : toposort.sorted) {
Cell *cell = flat->cell(cell_name);
int cell_depth = 0;
for (auto conn : cell->connections()) {
if (!cell->input(conn.first))
continue;
for (auto bit : (*sigmap)(conn.second)) {
if (!bit.wire)
continue;
IdBit idbit(bit.wire->name, bit.offset);
if (!bit2depth.count(idbit))
continue;
cell_depth = std::max(cell_depth, bit2depth.at(idbit));
}
}
for (auto conn : cell->connections()) {
if (!cell->output(conn.first))
continue;
for (auto bit : (*sigmap)(conn.second)) {
if (!bit.wire)
continue;
IdBit idbit(bit.wire->name, bit.offset);
bit2depth[idbit] = std::max(bit2depth[idbit], cell_depth + 1);
}
}
}
}
// SAT thresholds
const int max_sat_cells = 50;
SigBit id2bit(IdBit bit) { return SigBit(flat->wire(bit.name), bit.bit); }
// Set up the SAT problem for an IdBit
// the value side of 'anchors' will be populated with the SAT variable for anchor bits
int setup_sat(SatGen *sat, const std::string &prefix, IdBit bit, const dict<IdBit, IdBit> &anchor_bits, dict<IdBit, int> &anchor2var)
{
sat->setContext(sigmap, prefix);
pool<IdString> imported_cells;
int result = sat->importSigBit(id2bit(bit));
// Recursively import driving cells
std::queue<IdBit> to_import;
to_import.push(bit);
while (!to_import.empty()) {
// Too many cells imported
if (GetSize(imported_cells) > max_sat_cells)
return -1;
IdBit cursor = to_import.front();
to_import.pop();
if (anchor_bits.count(cursor)) {
if (!anchor2var.count(cursor)) {
anchor2var[cursor] = sat->importSigBit(id2bit(cursor));
}
continue;
}
// Import driver if it exists
if (!bit2driver.count(cursor))
continue;
Cell *driver = bit2driver.at(cursor);
if (!driver || imported_cells.count(driver->name))
continue;
if (!sat->importCell(driver))
return -1; // cell can't be imported
imported_cells.insert(driver->name);
// Add cell inputs to queue
for (auto conn : driver->connections()) {
if (!driver->input(conn.first))
continue;
for (SigBit in_bit : (*sigmap)(conn.second)) {
if (!in_bit.wire)
continue;
IdBit in_idbit(in_bit.wire->name, in_bit.offset);
to_import.push(in_idbit);
}
}
}
return result;
}
void find_buffers(const pool<IdString> &buffer_types, dict<SigBit, pool<SigBit>> &root2buffered)
{
SigMap orig_sigmap(mod);
dict<SigBit, SigBit> buffer2root;
for (auto cell : mod->cells()) {
if (!buffer_types.count(cell->type))
continue;
SigBit in, out;
for (auto conn : cell->connections()) {
if (cell->input(conn.first)) {
in = orig_sigmap(conn.second[0]);
}
if (cell->output(conn.first)) {
out = orig_sigmap(conn.second[0]);
}
}
if (!in.wire || !out.wire)
continue;
SigBit root = in;
if (buffer2root.count(root))
root = buffer2root[root];
if (root2buffered.count(out)) {
for (auto out_sig : root2buffered.at(out))
root2buffered[root].insert(out_sig);
root2buffered.erase(out);
}
root2buffered[root].insert(out);
buffer2root[out] = root;
}
}
void do_rename(Module *gold, const dict<IdBit, InvBit> &gate2gold, const pool<IdString> &buffer_types)
{
dict<SigBit, std::vector<std::tuple<Cell*, IdString, int>>> bit2port;
pool<SigBit> unused_bits;
SigMap orig_sigmap(mod);
for (auto wire : mod->wires()) {
if (wire->port_input || wire->port_output)
continue;
for (int i = 0; i < wire->width; i++)
unused_bits.insert(orig_sigmap(SigBit(wire, i)));
}
for (auto cell : mod->cells()) {
for (auto conn : cell->connections()) {
for (int i = 0; i < GetSize(conn.second); i++) {
SigBit bit = orig_sigmap(conn.second[i]);
if (!bit.wire)
continue;
bit2port[bit].emplace_back(cell, conn.first, i);
unused_bits.erase(bit);
}
}
}
dict<SigBit, pool<SigBit>> root2buffered;
find_buffers(buffer_types, root2buffered);
// An extension of gate2gold that deals with buffers too
// gate sigbit --> (new name, invert, gold wire)
dict<SigBit, std::pair<InvBit, Wire*>> rename_map;
for (auto pair : gate2gold) {
SigBit gate_bit = flat2orig.at(pair.first);
Wire *gold_wire = gold->wire(pair.second.bit.name);
rename_map[gate_bit] = std::make_pair(pair.second, gold_wire);
if (root2buffered.count(gate_bit)) {
int buf_idx = 0;
for (auto buf_bit : root2buffered.at(gate_bit)) {
std::string buf_name_str = stringf("%s_buf_%d", pair.second.bit.name.c_str(), ++buf_idx);
if (buf_name_str[0] == '\\')
buf_name_str[0] = '$';
rename_map[buf_bit] = std::make_pair(
InvBit(IdBit(IdString(buf_name_str), pair.second.bit.bit), pair.second.inverted), gold_wire);
}
}
}
for (auto rule : rename_map) {
// Pick a uniq new name
IdBit new_name = rule.second.first.bit;
int dup_idx = 0;
bool must_invert_name = rule.second.first.inverted;
while (must_invert_name ||
(mod->wire(new_name.name) && !unused_bits.count(SigBit(mod->wire(new_name.name), new_name.bit)))) {
std::string new_name_str = stringf("%s_%s_%d", rule.second.first.bit.name.c_str(),
rule.second.first.inverted ? "inv" : "dup", ++dup_idx);
if (new_name_str[0] == '\\')
new_name_str[0] = '$';
new_name.name = IdString(new_name_str);
must_invert_name = false;
}
// Create the wire if needed
Wire *new_wire = mod->wire(new_name.name);
if (!new_wire) {
Wire *gold_wire = rule.second.second;
new_wire = mod->addWire(new_name.name, gold_wire->width);
new_wire->start_offset = gold_wire->start_offset;
new_wire->upto = gold_wire->upto;
for (const auto &attr : gold_wire->attributes)
new_wire->attributes[attr.first] = attr.second;
for (int i = 0; i < new_wire->width; i++)
unused_bits.insert(SigBit(new_wire, i));
}
// Ensure it's wide enough
if (new_wire->width <= new_name.bit)
new_wire->width = new_name.bit + 1;
SigBit old_bit = rule.first;
SigBit new_bit(new_wire, new_name.bit);
unused_bits.erase(new_bit);
// Replace all users
if (bit2port.count(old_bit))
for (auto port_ref : bit2port.at(old_bit)) {
Cell *cell = std::get<0>(port_ref);
IdString port_name = std::get<1>(port_ref);
int port_bit = std::get<2>(port_ref);
SigSpec port_sig = cell->getPort(port_name);
port_sig.replace(port_bit, new_bit);
cell->unsetPort(port_name);
cell->setPort(port_name, port_sig);
}
}
}
~RecoverModuleWorker()
{
delete ce;
delete sigmap;
if (flat)
design->remove(flat);
}
};
struct RecoverNamesWorker {
Design *design, *gold_design = nullptr;
CellTypes ct_all;
RecoverNamesWorker(Design *design) : design(design) {}
pool<IdString> comb_whiteboxes, buffer_types;
// class -> (gold, (gate, inverted))
dict<equiv_cls_t, std::pair<pool<IdBit>, dict<IdBit, bool>>> cls2bits;
void analyse_boxes()
{
for (auto mod : design->modules()) {
if (!mod->get_bool_attribute(ID::whitebox))
continue;
bool is_comb = true;
for (auto cell : mod->cells()) {
if (ct_all.cell_evaluable(cell->type)) {
is_comb = false;
break;
}
}
if (!is_comb)
continue;
comb_whiteboxes.insert(mod->name);
// Buffers have one input and one output; exactly
SigBit in{}, out{};
ConstEval eval(mod);
for (auto wire : mod->wires()) {
if (wire->port_input) {
if (wire->width != 1 || in.wire)
goto not_buffer;
in = SigBit(wire, 0);
}
if (wire->port_output) {
if (wire->width != 1 || out.wire)
goto not_buffer;
out = SigBit(wire, 0);
}
}
if (!in.wire || !out.wire)
goto not_buffer;
// Buffer input mirrors output
for (auto bit : {State::S0, State::S1}) {
eval.clear();
eval.set(in, bit);
SigSpec result(out);
if (!eval.eval(result))
goto not_buffer;
if (result != bit)
goto not_buffer;
}
buffer_types.insert(mod->name);
if (false) {
not_buffer:
continue;
}
}
log_debug("Found %d combinational cells and %d buffer whiteboxes.\n", GetSize(comb_whiteboxes), GetSize(buffer_types));
}
uint32_t x, y, z, w, rng_val;
int rng_bit;
void rng_init()
{
x = INIT_X;
y = INIT_Y;
z = INIT_Z;
w = INIT_W;
rng_bit = 32;
}
uint32_t xorshift128()
{
uint32_t t = x ^ (x << 11);
x = y; y = z; z = w;
w ^= (w >> 19) ^ t ^ (t >> 8);
return w;
}
RTLIL::State next_randbit()
{
if (rng_bit >= 32) {
rng_bit = 0;
rng_val = xorshift128();
}
return ((rng_val >> (rng_bit++)) & 0x1) ? RTLIL::State::S1 : RTLIL::State::S0;
}
int popcount(equiv_cls_t cls) {
int result = 0;
for (unsigned i = 0; i < 8*sizeof(equiv_cls_t); i++)
if ((cls >> i) & 0x1)
++result;
return result;
}
bool prove_equiv(RecoverModuleWorker &gold_worker, RecoverModuleWorker &gate_worker,
const dict<IdBit, IdBit> &gold_anchors, const dict<IdBit, IdBit> &gate_anchors,
IdBit gold_bit, IdBit gate_bit, bool invert) {
ezSatPtr ez;
SatGen satgen(ez.get(), nullptr);
dict<IdBit, int> anchor2var_gold, anchor2var_gate;
int gold_var = gold_worker.setup_sat(&satgen, "gold", gold_bit, gold_anchors, anchor2var_gold);
if (gold_var == -1)
return false;
int gate_var = gate_worker.setup_sat(&satgen, "gate", gate_bit, gate_anchors, anchor2var_gate);
if (gate_var == -1)
return false;
// Assume anchors are equal
for (auto anchor : anchor2var_gate) {
IdBit gold_anchor = gate_anchors.at(anchor.first);
if (!anchor2var_gold.count(gold_anchor))
continue;
ez->assume(ez->IFF(anchor.second, anchor2var_gold.at(gold_anchor)));
}
// Prove equivalence
return !ez->solve(ez->NOT(ez->IFF(gold_var, invert ? ez->NOT(gate_var) : gate_var)));
}
void analyse_mod(Module *gate_mod)
{
Module *gold_mod = gold_design->module(gate_mod->name);
if (!gold_mod)
return;
RecoverModuleWorker gold_worker(gold_mod);
RecoverModuleWorker gate_worker(gate_mod);
gold_worker.prepare();
gate_worker.prepare();
// Find anchors (same-name wire-bits driven in both gold and gate)
dict<IdBit, IdBit> gold_anchors, gate_anchors;
for (auto gold_bit : gold_worker.bit2driver) {
if (gate_worker.bit2primary.count(gold_bit.first)) {
IdBit gate_bit = gate_worker.bit2primary.at(gold_bit.first);
if (!gate_worker.bit2driver.count(gate_bit))
continue;
gold_anchors[gold_bit.first] = gate_bit;
gate_anchors[gate_bit] = gold_bit.first;
}
}
// Run a random-value combinational simulation to find candidate equivalence classes
dict<IdBit, RTLIL::State> gold_anchor_vals, gate_anchor_vals;
rng_init();
for (int t = 0; t < sim_length; t++) {
for (auto anchor : gold_anchors) {
gold_anchor_vals[anchor.first] = next_randbit();
gate_anchor_vals[anchor.second] = gold_anchor_vals[anchor.first];
}
gold_worker.sim_cycle(t, gold_anchor_vals);
gate_worker.sim_cycle(t, gate_anchor_vals);
}
log_debug("%d candidate equiv classes in gold; %d in gate\n", GetSize(gold_worker.bit2cls), GetSize(gate_worker.bit2cls));
// Group bits by equivalence classes together
dict<equiv_cls_t, std::pair<pool<IdBit>, pool<InvBit>>> cls2bits;
gold_worker.group_classes(cls2bits, false);
gate_worker.group_classes(cls2bits, true);
gate_worker.compute_depths(gate_anchors);
// Sort equivalence classes by shallowest first (so we have as many anchors as possible when reaching deeper bits)
std::vector<std::pair<equiv_cls_t, int>> cls_depth;
for (auto &cls : cls2bits) {
if (cls.second.second.empty())
continue;
int depth = 0;
for (auto gate_bit : cls.second.second) {
if (!gate_worker.bit2depth.count(gate_bit.bit))
continue;
depth = std::max(depth, gate_worker.bit2depth.at(gate_bit.bit));
}
cls_depth.emplace_back(cls.first, depth);
}
std::stable_sort(cls_depth.begin(), cls_depth.end(),
[](const std::pair<equiv_cls_t, int> &a, const std::pair<equiv_cls_t, int> &b) {
return a.second < b.second;
});
// The magic result we've worked hard for....
dict<IdBit, InvBit> gate2gold;
// Solve starting from shallowest
for (auto cls : cls_depth) {
int pop = popcount(cls.first);
// Equivalence classes with only one set bit are invariably a waste of SAT time
if (pop == 1 || pop == (8*sizeof(equiv_cls_t) - 1))
continue;
log_debug("equivalence class: %016lx\n", cls.first);
const pool<IdBit> &gold_bits = cls2bits.at(cls.first).first;
const pool<InvBit> &gate_bits = cls2bits.at(cls.first).second;
if (gold_bits.empty() || gate_bits.empty())
continue;
pool<IdBit> solved_gate;
if (GetSize(gold_bits) > 10)
continue; // large equivalence classes are not very interesting; skip
for (IdBit gold_bit : gold_bits) {
for (auto gate_bit : gate_bits) {
if (solved_gate.count(gate_bit.bit))
continue;
log_debug(" attempting to prove %s[%d] == %s%s[%d]\n", log_id(gold_bit.name), gold_bit.bit,
gate_bit.inverted ? "" : "!", log_id(gate_bit.bit.name), gate_bit.bit.bit);
if (!prove_equiv(gold_worker, gate_worker, gold_anchors, gate_anchors, gold_bit, gate_bit.bit, gate_bit.inverted))
continue;
log_debug(" success!\n");
// Success!
gate2gold[gate_bit.bit] = InvBit(gold_bit, gate_bit.inverted);
if (!gate_bit.inverted) {
// Only add as anchor if not inverted
gold_anchors[gold_bit] = gate_bit.bit;
gate_anchors[gate_bit.bit] = gold_bit;
}
solved_gate.insert(gate_bit.bit);
}
// All solved...
if (GetSize(solved_gate) == GetSize(gate_bits))
break;
}
}
log("Recovered %d net name pairs in module `%s' out.\n", GetSize(gate2gold), log_id(gate_mod));
gate_worker.do_rename(gold_mod, gate2gold, buffer_types);
}
void operator()(string command)
{
// Make a backup copy of the pre-mapping design for later
gold_design = new RTLIL::Design;
for (auto mod : design->modules())
gold_design->add(mod->clone());
run_pass(command, design);
analyse_boxes();
// keeping our own std::vector here avoids modify-while-iterating issues
std::vector<Module *> to_analyse;
for (auto mod : design->modules())
if (!mod->get_blackbox_attribute())
to_analyse.push_back(mod);
for (auto mod : to_analyse)
analyse_mod(mod);
}
~RecoverNamesWorker() {
delete gold_design;
}
};
struct RecoverNamesPass : public Pass {
RecoverNamesPass() : Pass("recover_names", "Execute a lossy mapping command and recover original netnames") { }
void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" recover_names [command]\n");
log("\n");
log("This pass executes a lossy mapping command and uses a combination of simulation\n");
log(" to find candidate equivalences and SAT to recover exact original net names.\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) override
{
log_header(design, "Executing RECOVER_NAMES pass (run mapping and recover original names).\n");
string command;
size_t argidx = 1;
for (; argidx < args.size(); argidx++) {
if (command.empty()) {
if (args[argidx].compare(0, 1, "-") == 0)
cmd_error(args, argidx, "Unknown option.");
} else {
command += " ";
}
command += args[argidx];
}
if (command.empty())
log_cmd_error("No mapping pass specified!\n");
RecoverNamesWorker worker(design);
worker(command);
}
} RecoverNamesPass;
PRIVATE_NAMESPACE_END

View file

@ -233,22 +233,23 @@ void prep_hier(RTLIL::Design *design, bool dff_mode)
if (derived_type != cell->type) {
auto unmap_module = unmap_design->addModule(derived_type);
auto replace_cell = unmap_module->addCell(ID::_TECHMAP_REPLACE_, cell->type);
for (auto port : derived_module->ports) {
auto w = unmap_module->addWire(port, derived_module->wire(port));
// Do not propagate (* init *) values into the box,
// in fact, remove it from outside too
if (w->port_output)
w->attributes.erase(ID::init);
// Attach (* techmap_autopurge *) to all ports to ensure that
// undriven inputs/unused outputs are propagated through to
// the techmapped cell
w->attributes[ID::techmap_autopurge] = 1;
replace_cell->setPort(port, w);
}
unmap_module->ports = derived_module->ports;
unmap_module->check();
auto replace_cell = unmap_module->addCell(ID::_TECHMAP_REPLACE_, cell->type);
for (const auto &conn : cell->connections()) {
auto w = unmap_module->wire(conn.first);
log_assert(w);
replace_cell->setPort(conn.first, w);
}
replace_cell->parameters = cell->parameters;
}
}

View file

@ -1,5 +1,5 @@
// The core logic primitive of the Cyclone V/10GX is the Adaptive Logic Module
// (ALM). Each ALM is made up of an 8-input, 2-output look-up table, covered
// (ALM). Each ALM is made up of an 8-input, 2-output look-up table, covered
// in this file, connected to combinational outputs, a carry chain, and four
// D flip-flops (which are covered as MISTRAL_FF in dff_sim.v).
//
@ -283,10 +283,8 @@ assign Q = ~A;
endmodule
// Despite the abc9_carry attributes, this doesn't seem to stop ABC9 adding illegal fanout to the carry chain that nextpnr cannot handle.
// So we treat it as a total blackbox from ABC9's perspective for now.
// (* abc9_box, lib_whitebox *)
module MISTRAL_ALUT_ARITH(input A, B, C, D0, D1, /* (* abc9_carry *) */ input CI, output SO, /* (* abc9_carry *) */ output CO);
(* abc9_box, lib_whitebox *)
module MISTRAL_ALUT_ARITH(input A, B, C, D0, D1, (* abc9_carry *) input CI, output SO, (* abc9_carry *) output CO);
parameter LUT0 = 16'h0000;
parameter LUT1 = 16'h0000;

View file

@ -1,5 +1,5 @@
bram $__MISTRAL_M10K
init 0 # TODO: Re-enable when I figure out how BRAM init works
init 1
abits 13 @D8192x1
dbits 1 @D8192x1
abits 12 @D4096x2
@ -10,6 +10,8 @@ bram $__MISTRAL_M10K
dbits 10 @D1024x10
abits 9 @D512x20
dbits 20 @D512x20
abits 8 @D256x40
dbits 40 @D256x40
groups 2
ports 1 1
wrmode 1 0

View file

@ -2,6 +2,8 @@
module \$__MISTRAL_M10K (CLK1, A1ADDR, A1DATA, A1EN, B1ADDR, B1DATA, B1EN);
parameter INIT = 0;
parameter CFG_ABITS = 10;
parameter CFG_DBITS = 10;
@ -11,6 +13,14 @@ input [CFG_DBITS-1:0] A1DATA;
input A1EN, B1EN;
output reg [CFG_DBITS-1:0] B1DATA;
MISTRAL_M10K #(.CFG_ABITS(CFG_ABITS), .CFG_DBITS(CFG_DBITS)) _TECHMAP_REPLACE_ (.CLK1(CLK1), .A1ADDR(A1ADDR), .A1DATA(A1DATA), .A1EN(!A1EN), .B1ADDR(B1ADDR), .B1DATA(B1DATA), .B1EN(B1EN));
// Normal M10K configs use WREN[1], which is negative-true.
// However, 8x40-bit mode uses WREN[0], which is positive-true.
wire a1en;
if (CFG_DBITS == 40)
assign a1en = A1EN;
else
assign a1en = !A1EN;
endmodule
MISTRAL_M10K #(.INIT(INIT), .CFG_ABITS(CFG_ABITS), .CFG_DBITS(CFG_DBITS)) _TECHMAP_REPLACE_ (.CLK1(CLK1), .A1ADDR(A1ADDR), .A1DATA(A1DATA), .A1EN(a1en), .B1ADDR(B1ADDR), .B1DATA(B1DATA), .B1EN(B1EN));
endmodule

View file

@ -3,7 +3,7 @@
// In addition to Logic Array Blocks (LABs) that contain ten Adaptive Logic
// Modules (ALMs, see alm_sim.v), the Cyclone V/10GX also contain
// Memory/Logic Array Blocks (MLABs) that can act as either ten ALMs, or utilise
// the memory the ALM uses to store the look-up table data for general usage,
// the memory the ALM uses to store the look-up table data for general usage,
// producing a 32 address by 20-bit block of memory. MLABs are spread out
// around the chip, so they can be placed near where they are needed, rather than
// being comparatively limited in placement for a deep but narrow memory such as
@ -43,7 +43,7 @@
// Quartus will pack external flops into the MLAB, but this is an assumption
// that needs testing.
// The vendor sim model outputs 'x for a very short period (a few
// The vendor sim model outputs 'x for a very short period (a few
// combinational delta cycles) after each write. This has been omitted from
// the following model because it's very difficult to trigger this in practice
// as clock cycles will be much longer than any potential blip of 'x, so the
@ -110,6 +110,8 @@ endmodule
module MISTRAL_M10K(CLK1, A1ADDR, A1DATA, A1EN, B1ADDR, B1DATA, B1EN);
parameter INIT = 0;
parameter CFG_ABITS = 10;
parameter CFG_DBITS = 10;
@ -119,7 +121,7 @@ input [CFG_DBITS-1:0] A1DATA;
input A1EN, B1EN;
output reg [CFG_DBITS-1:0] B1DATA;
reg [2**CFG_ABITS * CFG_DBITS - 1 : 0] mem = 0;
reg [2**CFG_ABITS * CFG_DBITS - 1 : 0] mem = INIT;
`ifdef cyclonev
specify

View file

@ -6,7 +6,7 @@ equiv_opt -assert -async2sync -map +/intel_alm/common/alm_sim.v -map +/intel_alm
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd top # Constrain all select calls below inside the top module
select -assert-count 1 t:MISTRAL_NOT
select -assert-count 2 t:MISTRAL_NOT
select -assert-count 8 t:MISTRAL_ALUT_ARITH
select -assert-count 8 t:MISTRAL_FF
select -assert-none t:MISTRAL_NOT t:MISTRAL_ALUT_ARITH t:MISTRAL_FF %% t:* %D
@ -21,7 +21,7 @@ equiv_opt -assert -async2sync -map +/intel_alm/common/alm_sim.v -map +/intel_alm
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
cd top # Constrain all select calls below inside the top module
select -assert-count 1 t:MISTRAL_NOT
select -assert-count 2 t:MISTRAL_NOT
select -assert-count 8 t:MISTRAL_ALUT_ARITH
select -assert-count 8 t:MISTRAL_FF
select -assert-none t:MISTRAL_NOT t:MISTRAL_ALUT_ARITH t:MISTRAL_FF %% t:* %D

View file

@ -1,3 +1,5 @@
logger -nowarn "Yosys has only limited support for tri-state logic at the moment\. .*"
read_verilog <<EOT
module top(input [24:0] A, input [17:0] B, output [47:0] P);
DSP48E1 #(.PREG(0)) dsp(.A(A), .B(B), .P(P));
@ -35,3 +37,18 @@ techmap -autoproc -wb -map +/xilinx/cells_sim.v
opt -full -fine
select -assert-count 0 t:* t:$assert %d
sat -verify -prove-asserts
design -reset
read_verilog <<EOT
module top(input signed [29:0] A, input signed [17:0] B, output signed [47:0] P);
wire [47:0] casc;
DSP48E1 #(.AREG(1)) u1(.A(A), .B(B), .PCOUT(casc));
DSP48E1 #(.AREG(1)) u2(.A(A), .B(B), .PCIN(casc), .P(P));
endmodule
EOT
synth_xilinx -run :prepare
abc9
clean
check
logger -expect-no-warnings