3
0
Fork 0
mirror of https://github.com/YosysHQ/yosys synced 2025-04-27 02:45:52 +00:00

Docs: Merge yosys_source into extending_yosys

Move abc_flow content into synthesis/abc document.
This commit is contained in:
Krystine Sherwin 2024-08-22 10:03:59 +12:00
parent 8e618cac45
commit 00bb3b6fc2
No known key found for this signature in database
6 changed files with 88 additions and 94 deletions

View file

@ -1,5 +1,5 @@
The ABC toolbox
---------------
===============
.. role:: yoscrypt(code)
:language: yoscrypt
@ -21,7 +21,7 @@ global view of the mapping problem.
.. _ABC: https://github.com/berkeley-abc/abc
ABC: the unit delay model, simple and efficient
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-----------------------------------------------
The :cmd:ref:`abc` pass uses a highly simplified view of an FPGA:
@ -66,7 +66,7 @@ But this approach has drawbacks, too:
before clock edge) which affect the delay of a path.
ABC9: the generalised delay model, realistic and flexible
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
---------------------------------------------------------
ABC9 uses a more detailed and accurate model of an FPGA:
@ -101,3 +101,81 @@ optimise better around those boxes, and also permute inputs to give the critical
path the fastest inputs.
.. todo:: more about logic minimization & register balancing et al with ABC
Setting up a flow for ABC9
--------------------------
Much of the configuration comes from attributes and ``specify`` blocks in
Verilog simulation models.
``specify`` syntax
~~~~~~~~~~~~~~~~~~
Since ``specify`` is a relatively obscure part of the Verilog standard, a quick
guide to the syntax:
.. code-block:: verilog
specify // begins a specify block
(A => B) = 123; // simple combinational path from A to B with a delay of 123.
(A *> B) = 123; // simple combinational path from A to all bits of B with a delay of 123 for all.
if (FOO) (A => B) = 123; // paths may apply under specific conditions.
(posedge CLK => (Q : D)) = 123; // combinational path triggered on the positive edge of CLK; used for clock-to-Q arrival paths.
$setup(A, posedge CLK, 123); // setup constraint for an input relative to a clock.
endspecify // ends a specify block
By convention, all delays in ``specify`` blocks are in integer picoseconds.
Files containing ``specify`` blocks should be read with the ``-specify`` option
to :cmd:ref:`read_verilog` so that they aren't skipped.
LUTs
^^^^
LUTs need to be annotated with an ``(* abc9_lut=N *)`` attribute, where ``N`` is
the relative area of that LUT model. For example, if an architecture can combine
LUTs to produce larger LUTs, then the combined LUTs would have increasingly
larger ``N``. Conversely, if an architecture can split larger LUTs into smaller
LUTs, then the smaller LUTs would have smaller ``N``.
LUTs are generally specified with simple combinational paths from the LUT inputs
to the LUT output.
DFFs
^^^^
DFFs should be annotated with an ``(* abc9_flop *)`` attribute, however ABC9 has
some specific requirements for this to be valid: - the DFF must initialise to
zero (consider using :cmd:ref:`dfflegalize` to ensure this). - the DFF cannot
have any asynchronous resets/sets (see the simplification idiom and the Boxes
section for what to do here).
It is worth noting that in pure ``abc9`` mode, only the setup and arrival times
are passed to ABC9 (specifically, they are modelled as buffers with the given
delay). In ``abc9 -dff``, the flop itself is passed to ABC9, permitting
sequential optimisations.
Some vendors have universal DFF models which include async sets/resets even when
they're unused. Therefore *the simplification idiom* exists to handle this: by
using a ``techmap`` file to discover flops which have a constant driver to those
asynchronous controls, they can be mapped into an intermediate, simplified flop
which qualifies as an ``(* abc9_flop *)``, ran through :cmd:ref:`abc9`, and then
mapped back to the original flop. This is used in :cmd:ref:`synth_intel_alm` and
:cmd:ref:`synth_quicklogic` for the PolarPro3.
DFFs are usually specified to have setup constraints against the clock on the
input signals, and an arrival time for the ``Q`` output.
Boxes
^^^^^
A "box" is a purely-combinational piece of hard logic. If the logic is exposed
to ABC9, it's a "whitebox", otherwise it's a "blackbox". Carry chains would be
best implemented as whiteboxes, but a DSP would be best implemented as a
blackbox (multipliers are too complex to easily work with). LUT RAMs can be
implemented as whiteboxes too.
Boxes are arguably the biggest advantage that ABC9 has over ABC: by being aware
of carry chains and DSPs, it avoids optimising for a path that isn't the actual
critical path, while the generally-longer paths result in ABC9 being able to
reduce design area by mapping other logic to larger-but-slower cells.